Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 999
Filtrar
1.
PLoS One ; 19(1): e0292091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277356

RESUMO

Many of the pathological consequences of chronic kidney disease can be attributed to an elevation in serum phosphate levels. Current therapies focused on decreasing intestinal phosphate absorption to treat hyperphosphatemia are inadequate. The most effective therapeutic strategy may be to target multiple absorptive pathways. In this study, the ability of a novel inhibitor of the intestinal sodium hydrogen exchanger 3 (NHE3), LY3304000, which inhibits paracellular, diffusional uptake of phosphate, to work in combination with an inhibitor of the active transporter, sodium dependent phosphate cotransporter 2b (NPT2b), LY3358966, was explored. LY3304000 modestly inhibited the acute uptake of phosphate into plasma of rats, while surprisingly, it doubled the rate of phosphate uptake in mice, an animal model dominated by NPT2b mediated acute phosphate uptake. In rats, LY3004000 and LY3358966 work in concert to inhibit acute phosphate uptake. On top of LY3358966, LY3304000 further decreased the acute uptake of phosphate into plasma. Studies measuring the recovery of radiolabeled phosphate in the intestine demonstrated LY3304000 and LY3358966 synergistically inhibited the absorption of phosphate in rats. We hypothesize the synergism is because the NHE3 inhibitor, LY3304000, has two opposing effects on intestinal phosphate absorption in rats, first it decreases diffusion mediated paracellular phosphate absorption, while second, it simultaneously increases phosphate absorption through the NPT2b pathway. NHE3 inhibition decreases proton export from enterocytes and raises the cell surface pH. In vitro, NPT2b mediated phosphate transport is increased at higher pHs. The increased NPT2b mediated transport induced by NHE3 inhibition is masked in rats which have relatively low levels of NPT2b mediated phosphate transport, by the more robust inhibition of diffusion mediated phosphate absorption. Thus, the inhibition of NPT2b mediated phosphate transport in rats in the presence of NHE3 inhibition has an effect that exceeds its effect in the absence of NHE3 inhibition, leading to the observed synergism on phosphate absorption between NPT2b and NHE3 inhibition.


Assuntos
Fosfatos , Insuficiência Renal Crônica , Ratos , Camundongos , Animais , Fosfatos/metabolismo , Trocador 3 de Sódio-Hidrogênio , Roedores , Absorção Intestinal , Insuficiência Renal Crônica/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
2.
Am J Physiol Cell Physiol ; 326(3): C829-C842, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223928

RESUMO

Loss of function mutations in the SLC26A3 gene cause chloride-losing diarrhea in mice and humans. Although systemic adaptive changes have been documented in these patients and in the corresponding knockout mice, how colonic enterocytes adapt to loss of this highly expressed and highly regulated luminal membrane anion exchanger remains unclear. To address this question, SLC26A3 was deleted in the self-differentiating Caco2BBe colonic cell line by the CRISPR/Cas9 technique. We selected a clone with loss of SLC26A3 protein expression and morphological features indistinguishable from those of the native cell line. Neither growth curves nor development of transepithelial electrical resistance (TEER) differed between wild-type (WT) and SLC26A3 knockout (KO) cells. Real-time qPCR and Western analysis in SLC26A3-KO cells revealed an increase in AE2 expression without significant change in NHE3 expression or localization. Steady-state pHi and apical and basolateral Cl-/HCO3- exchange activities were assessed fluorometrically in a dual perfusion chamber with independent perfusion of luminal and serosal baths. Apical Cl-/HCO3- exchange rates were strongly reduced in SLC26A3-KO cells, accompanied by a surface pH more acidic than that of WT cells. Steady-state pHi was not significantly different from that of WT cells, but basolateral Cl-/HCO3- exchange rates were higher in SLC26A3-KO than in WT cells. The data show that CRISPR/Cas9-mediated SLC26A3 deletion strongly reduced apical Cl-/HCO3- exchange rate and apical surface pH, but sustained a normal steady-state pHi due to increased expression and function of basolateral AE2. The low apical surface pH resulted in functional inhibition of NHE-mediated fluid absorption despite normal expression of NHE3 polypeptide.NEW & NOTEWORTHY SLC26A3 gene mutations cause chloride-losing diarrhea. To understand how colonic enterocytes adapt, SLC26A3 was deleted in Caco2BBe cells using CRISPR/Cas9. In comparison to the wild-type cells, SLC26A3 knockout cells showed similar growth and transepithelial resistance but substantially reduced apical Cl-/HCO3- exchange rates, and an acidic surface pH. Steady-state intracellular pH was comparable between the WT and KO cells due to increased basolateral AE2 expression and function.


Assuntos
Cloretos , Diarreia , Humanos , Animais , Camundongos , Trocador 3 de Sódio-Hidrogênio/genética , Ânions , Enterócitos , Concentração de Íons de Hidrogênio , Transportadores de Sulfato/genética , Antiportadores de Cloreto-Bicarbonato/genética
3.
Nephrol Dial Transplant ; 39(2): 297-304, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37463050

RESUMO

BACKGROUND: The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS: Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS: CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION: Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.


Assuntos
Ciclosporina , Hipertensão , Adulto , Humanos , Masculino , Ratos , Animais , Ciclosporina/efeitos adversos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Regulação para Cima , Furosemida , Ratos Sprague-Dawley , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
4.
Am J Physiol Cell Physiol ; 326(1): C50-C59, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047302

RESUMO

Electroneutral NaCl transport by Na+/H+ exchanger 3 (NHE3, SLC9A3) is the major Na+ absorptive mechanism in the intestine and decreased NHE3 activity contributes to diarrhea. Patients with diabetes often experience gastrointestinal adverse effects and medications are often a culprit for chronic diarrhea in type 2 diabetes (T2D). We have shown previously that metformin, the most widely prescribed drug for the treatment of T2D, induces diarrhea by inhibition of Na+/H+ exchanger 3 (NHE3) in rodent models of T2D. Metformin was shown to activate AMP-activated protein kinase (AMPK), but AMPK-independent glycemic effects of metformin are also known. The current study is undertaken to determine whether metformin inhibits NHE3 by activation of AMPK and the mechanism by which NHE3 is inhibited by AMPK. Inhibition of NHE3 by metformin was abolished by knockdown of AMPK-α1 or AMPK-α2. AMPK activation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) phosphorylated NHE3 at S555. S555 is the primary site of phosphorylation by protein kinase A (PKA), but AMPK phosphorylated S555 independently of PKA. Using Mass spectrometry, we found S563 as a newly recognized phosphorylation site in NHE3. Altering either S555 or S563 to Ala was sufficient to block the inhibition of NHE3 activity by AMPK. NHE3 inhibition is dependent on ubiquitination by the E3 ubiquitin ligase Nedd4-2 and metformin was shown to induce NHE3 internalization via Nedd4-2-mediated ubiquitination. AICAR did not increase NHE3 ubiquitination when S555 or S563 was mutated. We conclude that AMPK activation inhibits NHE3 activity and NHE3 inhibition is associated with phosphorylation of NHE3 at S555 and S563.NEW & NOTEWORTHY We show that AMP-activated protein kinase (AMPK) phosphorylates NHE3 at S555 and S563 to inhibit NHE3 activity in intestinal epithelial cells. Phosphorylation of NHE3 by AMPK is necessary for ubiquitination of NHE3.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Fosforilação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/farmacologia , Intestinos , Diarreia , Aminoimidazol Carboxamida/farmacologia
5.
Am J Physiol Cell Physiol ; 326(2): C317-C330, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38073487

RESUMO

Small organic molecules in the intestinal lumen, particularly short-chain fatty acids (SCFAs) and glucose, have long been postulated to enhance calcium absorption. Here, we used 45Ca radioactive tracer to determine calcium fluxes across the rat intestine after exposure to glucose and SCFAs. Confirming previous reports, glucose was found to increase the apical-to-basolateral calcium flux in the cecum. Under apical glucose-free conditions, SCFAs (e.g., butyrate) stimulated the cecal calcium fluxes by approximately twofold, while having no effect on proximal colon. Since SCFAs could be absorbed into the circulation, we further determined whether basolateral SCFA exposure rendered some positive actions. It was found that exposure of duodenum and cecum on the basolateral side to acetate or butyrate increased calcium fluxes. Under butyrate-rich conditions, cecal calcium transport was partially diminished by Na+/H+ exchanger 3 (NHE3) inhibitor (tenapanor) and nonselective transient receptor potential vanilloid subfamily 6 (TRPV6) inhibitor (miconazole). To confirm the contribution of TRPV6 to SCFA-stimulated calcium transport, we synthesized another TRPV6 inhibitor that was demonstrated by in silico molecular docking and molecular dynamics to occlude TRPV6 pore and diminish the glucose- and butyrate-induced calcium fluxes. Therefore, besides corroborating the importance of luminal molecules in calcium absorption, our findings provided foundation for development of more effective calcium-rich nutraceuticals in combination with various absorptive enhancers, e.g., glucose and SCFAs.NEW & NOTEWORTHY Organic molecules in the intestinal lumen, e.g., glucose and short-chain fatty acids (SCFAs), the latter of which are normally produced by microfloral fermentation, can stimulate calcium absorption dependent on transient receptor potential vanilloid subfamily 6 (TRPV6) and Na+/H+ exchanger 3 (NHE3). A selective TRPV6 inhibitor synthesized and demonstrated by in silico docking and molecular dynamics to specifically bind to the pore domain of TRPV6 was used to confirm a significant contribution of this channel. Our findings corroborate physiological significance of nutrients and SCFAs in enhancing calcium absorption.


Assuntos
Cálcio , Ácidos Graxos Voláteis , Ratos , Animais , Trocador 3 de Sódio-Hidrogênio/metabolismo , Cálcio/metabolismo , Simulação de Acoplamento Molecular , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/metabolismo , Butiratos/farmacologia , Proteínas de Transporte/metabolismo , Duodeno/metabolismo , Glucose/metabolismo , Absorção Intestinal
6.
J Virol ; 98(1): e0162523, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38084960

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Diarreia/tratamento farmacológico , Diarreia/veterinária , Simulação de Acoplamento Molecular , Proteínas do Nucleocapsídeo/metabolismo , Pemetrexede/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Suínos , Doenças dos Suínos/tratamento farmacológico
7.
J Ethnopharmacol ; 319(Pt 3): 117336, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37907143

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese herbal medicine, rhubarb is said to remove accumulation with purgation, clearing heat, and discharging fire. Modern pharmacology has shown that rhubarb extract has a purgative effect when given to experimental animals in an appropriate dose. However, the active components and their mechanism of action are still not clearly defined. AIM OF THE STUDY: The current research aimed to evaluate the synergistic stool-softening effects and explore the action mechanism of rhubarb free anthraquinones (RhA) and their monomers on constipation in rats. MATERIALS AND METHODS: A rat model of water deficit-induced constipation was established to induce constipation, and these rats were treated with RhA and its monomers. ELISA, histopathology, immunohistochemistry, qPCR and Western blotting based on network pharmacology and molecular docking were conducted to explore the possible mechanism of action of RhA and its monomers. RESULTS: RhA, aloe-emodin, rhein, and chrysophanol showed stool-softening activity, and the combination of aloe-emodin and rhein had the strongest softening effect on faecal pellets. Aloe-emodin, rhein, and chrysophanol significantly increased the serum levels of vasoactive intestinal peptide (VIP), motilin (MTL), and substance P (SP), upregulated the expression of VIP, cyclase-associated protein 1 (CAP1), protein kinase A (PKA), cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 3 (AQP3), aquaporin 4 (AQP4), and aquaporin 8 (AQP8), decreased the expression of epithelial sodium channel (ENaC) and Na+/H+ exchanger 3 (NHE3), and reduced the colonic tissue concentration of Na+-K+-ATPase in the constipated rats. Osmolality of colonic fluid in model rats treated by RhA, aloe-emodin, rhein, and chrysophanol was increased. CONCLUSION: Aloe-emodin, rhein, and chrysophanol were the stool-softening components of the RhA extract, and there were certain drug-interactions between the components. RhA upregulated VIP expression, activated the cyclic adenosine monophosphate protein kinase A (cAMP/PKA) pathway, and further stimulated CFTR expression while inhibiting NHE3 and ENaC expression, resulting in a hypertonic state in the colonic lumen. Water transport could then be driven by an osmotic gradient, which in turn led to the upregulation of AQP3, AQP4, and AQP8 expression. In addition, RhA likely improved gastrointestinal motility by increasing serum VIP, SP, and MTL concentrations, thus promoting faecal excretion.


Assuntos
Emodina , Rheum , Animais , Ratos , Regulador de Condutância Transmembrana em Fibrose Cística , Simulação de Acoplamento Molecular , Trocador 3 de Sódio-Hidrogênio , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Aquaporina 3 , Proteínas Quinases Dependentes de AMP Cíclico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
8.
Vet Microbiol ; 289: 109916, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159369

RESUMO

Porcine deltacoronavirus (PDCoV) infection in piglets can cause small intestinal epithelial necrosis and atrophic enteritis, which leads to severe damages to host cells, and result in diarrhea. In this study, we investigated the relationship between miR-361, SLC9A3(Solute carrier family 9, subfamily A, member 3), and NHE3(sodium-hydrogen exchanger member 3) in in porcine intestinal epithelial cells (IPI-2I) cells after PDCoV infection. Our results showed that the ssc-miR-361-3p expression inhibits the mRNA level of SLC9A3 gene which lead to the descending of NHE3 protein expression, and the NHE3 activity was suppressed. NHE3 activity was suppressed via down-regulation expression of SLC9A3 mRNA by transfection with siRNA. Ssc-miR-361-3p mimics and inhibitors were used to change the expression of ssc-miR-361-3p in IPI-2I cells. Ssc-miR-361-3p overexpression reduced the mRNA level of SLC9A3 gene, the level of NHE3 protein expression and NHE3 activity in IPI-2I cells, while ssc-miR-361-3p inhibits NHE3. Furthermore, luciferase reporter assay showed that SLC9A3 gene was a direct target of ssc-miR-361-3p. Ssc-miR-361-3p inhibition restored NHE3 activity in PDCoV infected IPI-2I cells by up-regulating SLC9A3 mRNA expression and NHE3 protein expression. These results demonstrate that the PDCoV infection can inhibit NHE3 activity through miR-361-3p/SLC9A3 regulatory axis. The relevant research is reported for the first time in PDCoV, which has significance in exploring the pathogenic mechanism of PDCoV and can provide a theoretical basis for its prevention and control. suggesting that NHE3 and ssc-miR-361-3p may be potential therapeutic targets for diarrhea in infected piglets.


Assuntos
Infecções por Coronavirus , Coronavirus , MicroRNAs , Doenças dos Suínos , Suínos , Animais , Coronavirus/fisiologia , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo , Infecções por Coronavirus/veterinária , Células Epiteliais , Diarreia/veterinária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069326

RESUMO

Cystinosis is an autosomal recessive disease resulting from mutations in ctns, which encodes for cystinosin, a proton-coupled cystine transporter that exports cystine from lysosomes. The major clinical form, infantile cystinosis, is associated with renal failure due to the malfunctioning of the renal proximal tubule (RPT). To examine the hypothesis that the malfunctioning of the cystinotic RPT arises from defective differentiation, human-induced pluripotent stem cells (hiPSCs) were generated from human dermal fibroblasts from an individual with infantile cystinosis, as well as a normal individual. The results indicate that both the cystinotic and normal hiPSCs are pluripotent and can form embryoid bodies (EBs) with the three primordial germ layers. When the normal hiPSCs were subjected to a differentiation regime that induces RPT formation, organoids containing tubules with lumens emerged that expressed distinctive RPT proteins, including villin, the Na+/H+ Exchanger (NHE) isoform 3 (NHE3), and the NHE Regulatory Factor 1 (NHERF1). The formation of tubules with lumens was less pronounced in organoids derived from cystinotic hiPSCs, although the organoids expressed villin, NHE3, and NHERF1. These observations can be attributed to an impairment in differentiation and/or by other defects which cause cystinotic RPTs to have an increased propensity to undergo apoptosis or other types of programmed cell death.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Células-Tronco Pluripotentes Induzidas , Humanos , Cistinose/genética , Cistina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética , Mutação , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Lisossomos/metabolismo
10.
Expert Opin Drug Metab Toxicol ; 19(12): 889-894, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38108081

RESUMO

INTRODUCTION: Tenapanor is the latest addition to the second-line pharmacotherapeutic options for the treatment of irritable bowel syndrome with constipation. It is a first-in-class inhibitor of type 3 sodium/hydrogen exchanger (NHE3), characterized by very low oral absorption. Its pharmacological properties are discussed here based on the latest literature. AREAS COVERED: A general description of tenapanor is provided, highlighting those pharmacokinetic and pharmacodynamic characteristics of the drug which may be of major importance for tolerability and safety. This description is associated with a summary and analysis of currently available toxicological data. EXPERT OPINION: Plasma concentrations of free tenapanor after oral administration are well below the half maximal inhibitory concentration for NHE3, so that systemic effects of the drug are minimal. Therefore, the action of tenapanor is limited to NHE3 located on the apical membrane of enterocytes. The consequent reduction in intestinal sodium absorption increases the intraluminal content by osmosis, which in turn enhances the propulsive activity of the colon. Diarrhea is the most frequent adverse effect of tenapanor. Increased fecal sodium and water excretion do not appear to expose patients to short- and long-term hydro-electrolyte imbalances.


Assuntos
Síndrome do Intestino Irritável , Isoquinolinas , Sulfonamidas , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Trocador 3 de Sódio-Hidrogênio , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/complicações , Sódio/metabolismo , Sódio/uso terapêutico
11.
Sci Rep ; 13(1): 19100, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925471

RESUMO

Phosphate binders (PBs) generally have a high pill burden. Tenapanor selectively inhibits sodium/hydrogen exchanger isoform 3, reducing intestinal phosphate absorption. Tenapanor is a novel drug administered as a small tablet, twice daily. This multicenter, open-label, single-arm, phase 3 study aimed to evaluate the long-term safety of tenapanor and its efficacy in decreasing PB pill burden. Tenapanor 5 mg twice daily was administered to hemodialysis patients with serum phosphorus level 3.5-7.0 mg/dl at baseline; the dose could be increased up to 30 mg twice daily. Patients could also switch from PBs. The primary endpoint was safety during 52-week administration. The key secondary endpoint was a ≥ 30% reduction in the total pill number of daily PBs and tenapanor from baseline. Of 212 patients starting treatment, 154 completed the study. Diarrhea was the most frequent adverse event, occurring in 135 patients (63.7%); most events were classified as mild (74.8%). No clinically significant changes occurred other than serum phosphorus level. At Week 52/discontinuation, 158/204 patients (77.5%) achieved the key secondary endpoint. Complete switching from PBs to tenapanor was achieved in 50-76 patients (26.7%-41.5%), and 80 patients (51.9%) at Week 8-12 and Week 50, respectively. Serum phosphorus remained generally stable within the target range (3.5-6.0 mg/dl). These findings suggest the long-term safety and tolerability of tenapanor. Tenapanor could reduce or eliminate PB pill burden while controlling serum phosphorus levels.Trial registration: NCT04771780.


Assuntos
Hiperfosfatemia , Diálise Renal , Humanos , Hiperfosfatemia/tratamento farmacológico , Fosfatos , Fósforo/metabolismo , Trocador 3 de Sódio-Hidrogênio
12.
BMC Nephrol ; 24(1): 309, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880610

RESUMO

INTRODUCTION: Nephrotic syndrome (NS) is characterized by renal sodium and water retention. The mechanisms are not fully elucidated. METHODS: The NS rat model was established by single intraperitoneal injection of 100 mg/kg puromycin aminonucleoside (PAN). The plasma electrolyte level and urinary sodium excretion were monitored dynamically. The changes of some sodium transporters, including epithelial Na+ channel (ENaC), Na+/H+ exchanger 3 (NHE3), Na+-K+-2Cl- cotransporter 2 (NKCC2) and Na+-Cl- cotransporter (NCC) in renal cortex at different time points and the level of peripheral circulation factors were detected. RESULTS: The urinary sodium excretion of the model group increased significantly on the first day, then decreased compared with the control group, and there was no significant difference between the model group and the control group on the 12th day. The changes of peripheral circulation factors were not obvious. Some sodium transporters in renal cortex increased in varying degrees, while NKCC2 decreased significantly compared with the control group. CONCLUSIONS: The occurrence of NS edema may not be related to the angiotensin system. The decrease of urinary sodium excretion is independent of the development of albuminuria. During the 18 days of observation, it can be divided into three stages: sodium retention, sodium compensation, and simple water retention. The mechanism is related to the increased expression of α-ENaC, γ-ENaC, NHE3 and NCC in a certain period of time, the compensatory decrease of NKCC2 expression and the continuous increase of aquaporin 2 (AQP2) expression.


Assuntos
Síndrome Nefrótica , Ratos , Animais , Síndrome Nefrótica/metabolismo , Puromicina Aminonucleosídeo/toxicidade , Sódio/urina , Trocador 3 de Sódio-Hidrogênio/metabolismo , Aquaporina 2/metabolismo , Canais Epiteliais de Sódio , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membro 3 da Família 12 de Carreador de Soluto , Água/metabolismo
13.
Int J Mol Sci ; 24(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37834431

RESUMO

Na+/H+ exchangers (NHEs) are known to be important regulators of pH in multiple intracellular compartments of eukaryotic cells. Sperm function is especially dependent on changes in pH and thus it has been postulated that NHEs play important roles in regulating the intracellular pH of these cells. For example, in order to achieve fertilization, mature sperm must maintain a basal pH in the male reproductive tract and then alkalize in response to specific signals in the female reproductive tract during the capacitation process. Eight NHE isoforms are expressed in mammalian testis/sperm: NHE1, NHE3, NHE5, NHE8, NHA1, NHA2, NHE10, and NHE11. These NHE isoforms are expressed at varying times during spermatogenesis and localize to different subcellular structures in developing and mature sperm where they contribute to multiple aspects of sperm physiology and male fertility including proper sperm development/morphogenesis, motility, capacitation, and the acrosome reaction. Previous work has provided evidence for NHE3, NHE8, NHA1, NHA2, and NHE10 being critical for male fertility in mice and NHE10 has recently been shown to be essential for male fertility in humans. In this article we review what is known about each NHE isoform expressed in mammalian sperm and discuss the physiological significance of each NHE isoform with respect to male fertility.


Assuntos
Sêmen , Trocadores de Sódio-Hidrogênio , Humanos , Masculino , Feminino , Camundongos , Animais , Trocadores de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio , Espermatozoides , Isoformas de Proteínas/genética , Fertilidade/fisiologia , Mamíferos
14.
Neurogastroenterol Motil ; 35(11): e14658, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37668173

RESUMO

BACKGROUND: Tenapanor, a first-in-class, minimally systemic inhibitor of intestinal sodium/hydrogen exchanger isoform 3 (NHE3), is approved for the treatment of irritable bowel syndrome with constipation (IBS-C) in adults based on two randomized, placebo-controlled, phase III studies (T3MPO-1 [NCT02621892], T3MPO-2 [NCT02686138]). The open-label T3MPO-3 extension study (NCT02727751) enrolled patients who completed these studies to investigate long-term safety and tolerability of tenapanor. METHODS: Patients who completed T3MPO-1 (16 weeks) or T3MPO-2 (26 weeks) were eligible for enrollment in T3MPO-3. Patients in T3MPO-3 received open-label tenapanor 50 mg twice a day for up to an additional 39 (T3MPO-1) or 26 (T3MPO-2) weeks. Treatment-emergent adverse events (TEAEs) were evaluated in the entire T3MPO-3 safety population and in patients who received a total of ≥52 weeks of tenapanor. KEY RESULTS: A total of 312 patients were enrolled in T3MPO-3; 90 received ≥52 weeks of tenapanor. TEAEs were reported in 117 (37.5%) patients in the safety population and in 52 (57.8%) patients who received ≥52 weeks of tenapanor. Diarrhea was the most common TEAE, occurring in 10.6% of the safety population and in 11.1% of patients who received ≥52 weeks of tenapanor. Most cases were mild or moderate in severity, with only two severe cases reported in the safety population. No deaths occurred during the T3MPO-3 study. CONCLUSIONS: Tenapanor was tolerable over ≥52 weeks of treatment and showed similar safety to that seen in shorter studies. Combined results of the T3MPO studies indicate that tenapanor is a valuable new treatment option for patients with IBS-C.


Assuntos
Síndrome do Intestino Irritável , Adulto , Humanos , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/induzido quimicamente , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Isoquinolinas/efeitos adversos , Sulfonamidas/efeitos adversos , Trocador 3 de Sódio-Hidrogênio
15.
J Hypertens ; 41(11): 1831-1843, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37682076

RESUMO

BACKGROUND: Kidney angiotensin (Ang) II is produced mainly from liver-derived, glomerular-filtered angiotensinogen (AGT). Podocyte injury has been reported to increase the kidney Ang II content and induce Na + retention depending on the function of megalin, a proximal tubular endocytosis receptor. However, how megalin regulates the renal content and action of Ang II remains elusive. METHODS: We used a mass spectrometry-based, parallel reaction-monitoring assay to quantitate Ang II in plasma, urine, and kidney homogenate of kidney-specific conditional megalin knockout (MegKO) and control (Ctl) mice. We also evaluated the pathophysiological changes in both mouse genotypes under the basal condition and under the condition of increased glomerular filtration of AGT induced by administration of recombinant mouse AGT (rec-mAGT). RESULTS: Under the basal condition, plasma and kidney Ang II levels were comparable in the two mouse groups. Ang II was detected abundantly in fresh spot urine in conditional MegKO mice. Megalin was also found to mediate the uptake of intravenously administered fluorescent Ang II by PTECs. Administration of rec-mAGT increased kidney Ang II, exerted renal extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, activated proximal tubular Na + -H + exchanger 3 (NHE3), and decreased urinary Na + excretion in Ctl mice, whereas these changes were suppressed but urinary Ang II was increased in conditional MegKO mice. CONCLUSION: Increased glomerular filtration of AGT is likely to augment Ang II production in the proximal tubular lumen. Thus, megalin-dependent Ang II uptake should be involved in the ERK1/2 signaling that activates proximal tubular NHE3 in vivo , thereby causing Na + retention.


Assuntos
Angiotensina II , Angiotensinogênio , Animais , Camundongos , Angiotensina II/farmacologia , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Túbulos Renais Proximais , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo
16.
Gastroenterology ; 165(4): 986-998.e11, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429363

RESUMO

BACKGROUND & AIMS: Acute diarrheal diseases are the second most common cause of infant mortality in developing countries. This is contributed to by lack of effective drug therapy that shortens the duration or lessens the volume of diarrhea. The epithelial brush border sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) accounts for a major component of intestinal Na+ absorption and is inhibited in most diarrheas. Because increased intestinal Na+ absorption can rehydrate patients with diarrhea, NHE3 has been suggested as a potential druggable target for drug therapy for diarrhea. METHODS: A peptide (sodium-hydrogen exchanger 3 stimulatory peptide [N3SP]) was synthesized to mimic the part of the NHE3 C-terminus that forms a multiprotein complex that inhibits NHE3 activity. The effect of N3SP on NHE3 activity was evaluated in NHE3-transfected fibroblasts null for other plasma membrane NHEs, a human colon cancer cell line that models intestinal absorptive enterocytes (Caco-2/BBe), human enteroids, and mouse intestine in vitro and in vivo. N3SP was delivered into cells via a hydrophobic fluorescent maleimide or nanoparticles. RESULTS: N3SP uptake stimulated NHE3 activity at nmol/L concentrations under basal conditions and partially reversed the reduced NHE3 activity caused by elevated adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, and Ca2+ in cell lines and in in vitro mouse intestine. N3SP also stimulated intestinal fluid absorption in the mouse small intestine in vivo and prevented cholera toxin-, Escherichia coli heat-stable enterotoxin-, and cluster of differentiation 3 inflammation-induced fluid secretion in a live mouse intestinal loop model. CONCLUSIONS: These findings suggest pharmacologic stimulation of NHE3 activity as an efficacious approach for the treatment of moderate/severe diarrheal diseases.


Assuntos
Enterotoxinas , Trocadores de Sódio-Hidrogênio , Camundongos , Animais , Humanos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Células CACO-2 , Trocadores de Sódio-Hidrogênio/metabolismo , Enterócitos/metabolismo , Sódio/metabolismo , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Diarreia/induzido quimicamente , Peptídeos/efeitos adversos , Microvilosidades/metabolismo
17.
Eur J Heart Fail ; 25(9): 1537-1543, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37403655

RESUMO

Both acetazolamide and sodium-glucose cotransporter 2 (SGLT2) inhibitors block sodium reabsorption in the proximal renal tubule primarily through inhibition of sodium-hydrogen exchanger isoform 3 (NHE3), but neither SGLT2 inhibitors nor acetazolamide produce a sustained natriuresis due to compensatory upregulation of sodium reabsorption at distal nephron sites. Nevertheless, acetazolamide and SGLT2 inhibitors have been used as adjunctive therapy to loop diuretics in states where NHE3 is upregulated, e.g. acute heart failure. Two randomized controlled trials have been carried out with acetazolamide in acute heart failure (DIURESIS-CHF and ADVOR). In ADVOR, acetazolamide improved physical signs of fluid retention, but this finding could not be explained by the modest observed diuretic effect. Acetazolamide did not produce a natriuresis in the DIURESIS-CHF trial, and in ADVOR, immediate effects on symptoms and body weight were not reported, and the drug had no effect on morbidity or mortality after 90 days. Three randomized controlled trials have been carried out with empagliflozin (EMPAG-HF, EMPA-RESPONSE-AHF and EMPULSE) in acute heart failure. The EMPULSE trial did not report effects on diuresis or in changes in physical signs of congestion during the first week of treatment, but in EMPAG-HF and EMPA-RESPONSE-AHF, empagliflozin had no effect of dyspnoea, urinary sodium excretion or body weight during the first 4 days. In the EMPULSE trial, empagliflozin improved health status at 15 days and reduced the risk of worsening heart failure events at 90 days, but these effects are similar in magnitude and time course to the early statistical significance on the risk of heart failure hospitalizations achieved within 14-30 days in the major trials of SGLT2 inhibitors in patients with chronic heart failure. Neurohormonal inhibitors produce this early effect in the absence of a diuresis. Additionally, in numerous randomized controlled trials, in-hospital diuretic intensification has not reduced the risk of major heart failure events, even when treatment is sustained. These findings, taken collectively, suggest that any immediate diuretic effects of acetazolamide and SGLT2 inhibitors in acute heart failure are not likely to influence the short- or long-term clinical course of patients.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Acetazolamida/uso terapêutico , Trocador 3 de Sódio-Hidrogênio , Diuréticos/uso terapêutico , Sódio , Peso Corporal , Glucose , Diabetes Mellitus Tipo 2/tratamento farmacológico
18.
Am J Physiol Endocrinol Metab ; 325(3): E214-E226, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467022

RESUMO

Gastrointestinal (GI) complications, including diarrhea, constipation, and gastroparesis, are common in patients with diabetes. Dysregulation of the Na+/H+ exchanger NHE3 in the intestine is linked to diarrhea and constipation, and recent studies showed that NHE3 expression is reduced in type 1 diabetes and metformin causes diarrhea in the db/db mouse model of type 2 diabetes (T2D) via inhibition of NHE3. In this study, we investigated whether NHE3 expression is altered in type 2 diabetic intestine and the underlying mechanism that dysregulates NHE3. NHE3 expression in the brush border membrane (BBM) of the intestine of diabetic mice and humans was decreased. Protein kinase C (PKC) activation is associated with pathologies of diabetes, and immunofluorescence (IF) analysis revealed increased BBM PKCα abundance. Inhibition of PKCα increased NHE3 BBM abundance and NHE3-mediated intestinal fluid absorption in db/db mice. Previous studies have shown that Lactobacillus acidophilus (LA) stimulates intestinal ion transporters. LA increased NHE3 BBM expression and mitigated metformin-mediated inhibition of NHE3 in vitro and in vivo. To understand the underlying mechanism of LA-mediated stimulation of NHE3, we used Caco-2bbe cells overexpressing PKCα that mimic the elevated state of PKCα in T2D. LA diminished PKCα BBM expression, increased phosphorylation of ezrin, and the interaction of NHE3 with NHE regulatory factor 2 (NHERF2). In addition, inhibition of PKCι blocked phosphorylation of ezrin and activation of NHE3 by LA. These findings demonstrate that NHE3 is downregulated in T2D, and LA restores NHE3 expression via regulation of PKCα, PKCι, and ezrin.NEW & NOTEWORTHY We used mouse models of type 2 diabetes (T2D) and human patient-derived samples to show that Na+/H+ exchanger 3 (NHE3) expression is decreased in T2D. We show that protein kinase C-α (PKCα) is activated in diabetes and inhibition of PKCα increased NHE3 expression and mitigates diarrhea. We show that Lactobacillus acidophilus (LA) stimulates NHE3 via inhibition of PKCα and phosphorylation of ezrin.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Animais , Humanos , Camundongos , Constipação Intestinal , Diarreia/metabolismo , Lactobacillus acidophilus/metabolismo , Metformina/farmacologia , Proteína Quinase C-alfa/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo
19.
Am J Physiol Renal Physiol ; 325(2): F224-F234, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318989

RESUMO

The impact of chronic dietary K+ loading on proximal tubule (PT) function was measured using free-flow micropuncture along with measurements of overall kidney function, including urine volume, glomerular filtration rate, and absolute and fractional Na+ and K+ excretion in the rat. Feeding animals a diet with 5% KCl [high K+ (HK)] for 7 days reduced glomerular filtration rate by 29%, increased urine volume by 77%, and increased absolute K+ excretion by 202% compared with rats on a 1% KCl [control K+ (CK)] diet. HK did not change absolute Na+ excretion but significantly increased fraction excretion of Na+ (1.40% vs. 0.64%), indicating that fractional Na+ absorption is reduced by HK. PT reabsorption was assessed using free-flow micropuncture in anesthetized animals. At 80% of the accessible length of the PT, measurements of inulin concentration indicated volume reabsorption of 73% and 54% in CK and HK, respectively. At the same site, fractional PT Na+ reabsorption was 66% in CK animals and 37% in HK animals. Fractional PT K+ reabsorption was 66% in CK and 37% in HK. To assess the role of Na+/H+ exchanger isoform 3 (NHE3) in mediating these changes, we measured NHE3 protein expression in total kidney microsomes as well as surface membranes using Western blots. We found no significant changes in protein in either cell fraction. Expression of the Ser552 phosphorylated form of NHE3 was also similar in CK and HK animals. Reduction in PT transport may facilitate K+ excretion and help balance Na+ excretion by shifting Na+ reabsorption from K+-reabsorbing to K+-secreting nephron segments.NEW & NOTEWORTHY In rats fed a diet rich in K+, proximal tubules reabsorbed less fluid, Na+, and K+ compared with those in animals on a control diet. Glomerular filtration rates also decreased, probably due to glomerulotubular feedback. These reductions may help to maintain balance of the two ions simultaneously by shifting Na+ reabsorption to K+-secreting nephron segments.


Assuntos
Túbulos Renais Proximais , Néfrons , Ratos , Animais , Trocador 3 de Sódio-Hidrogênio/metabolismo , Túbulos Renais Proximais/metabolismo , Néfrons/metabolismo , Rim/metabolismo , Sódio/metabolismo , Taxa de Filtração Glomerular
20.
Gut Microbes ; 15(1): 2225841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350393

RESUMO

BACKGROUND & AIM: Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea and pseudomembranous colitis. Two protein toxins, TcdA and TcdB, produced by C. difficile are the major determinants of disease. However, the pathophysiological causes of diarrhea during CDI are not well understood. Here, we investigated the effects of C. difficile toxins on paracellular permeability and apical ion transporters in the context of an acute physiological infection. METHODS: We studied intestinal permeability and apical membrane transporters in female C57BL/6J mice. Üssing chambers were used to measure paracellular permeability and ion transporter function across the intestinal tract. Infected intestinal tissues were analyzed by immunofluorescence microscopy and RNA-sequencing to uncover mechanisms of transporter dysregulation. RESULTS: Intestinal permeability was increased through the size-selective leak pathway in vivo during acute CDI in a 2-day-post infection model. Chloride secretory activity was reduced in the cecum and distal colon during infection by decreased CaCC and CFTR function, respectively. SGLT1 activity was significantly reduced in the cecum and colon, accompanied by ablated SGLT1 expression in colonocytes and increased luminal glucose concentrations. SGLT1 and DRA expression was ablated by either TcdA or TcdB during acute infection, but NHE3 was decreased in a TcdB-dependent manner. The localization of key proteins that link filamentous actin to the ion transporters in the apical plasma membrane was unchanged. However, Sglt1, Nhe3, and Dra were drastically reduced at the transcript level, implicating downregulation of ion transporters in the mechanism of diarrhea during CDI. CONCLUSIONS: CDI increases intestinal permeability and decreases apical abundance of NHE3, SGLT1, and DRA. This combination likely leads to dysfunctional water and solute absorption in the large bowel, causing osmotic diarrhea. These findings provide insights into the pathophysiological mechanisms underlying diarrhea and may open novel avenues for attenuating CDI-associated diarrhea.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Animais , Feminino , Camundongos , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Diarreia , Regulação para Baixo , Camundongos Endogâmicos C57BL , Permeabilidade , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...