Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1862(12): 183308, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305263

RESUMO

Drosophila melanogaster express vesicular transporters for the storage of neurotransmitters acetylcholine, biogenic amines, GABA, and glutamate. The large array of powerful molecular-genetic tools available in Drosophila enhances the use of this model organism for studying transporter function and regulation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Acetilcolina/metabolismo , Animais , Ácido Glutâmico/metabolismo , Células Fotorreceptoras/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Neurotox Res ; 37(3): 724-731, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31828739

RESUMO

We studied dopamine levels in three compartments of the dopaminergic synapse, including the presynaptic neuron cytosol, dopamine storage vesicles, and the synaptic gap. By considering three transport pathways (dopamine transporter (DAT), vesicular transporter (VT), and exocytosis), four simulated scenarios were investigated: homeostasis, application of cocaine, methamphetamine, and reserpine. Recent experiments show that upon cocaine administration, the Drosophila melanogaster DAT permeation rate constant is decreased by 55% and we adopted this value for the human DAT. Amphetamine and methamphetamine block DAT and VT, while reserpine blocks VT; however, their decreased permeation rate constants are not available. A system of three differential equations of dopamine levels as a function of time was developed respectively for the synaptic compartments and was solved numerically. Per computational inference, the cytosol dopamine concentration was noted to increase in the case of methamphetamine and reserpine, but was practically unchanged in the case of the cocaine administration. Accordingly, our study suggests that amphetamines and other substances that block VT, but not cocaine or substances that only block DAT, may be etiologically important in the cytosolic dopamine mediation of neurodegeneration in Parkinson disease/Parkinsonism.


Assuntos
Anfetamina/toxicidade , Cocaína/toxicidade , Dopamina/metabolismo , Modelos Neurológicos , Doença de Parkinson Secundária/metabolismo , Sinapses/efeitos dos fármacos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila melanogaster , Humanos , Metanfetamina , Reserpina/administração & dosagem , Sinapses/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
3.
J Neurogenet ; 30(3-4): 185-194, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27846759

RESUMO

The ability to image and manipulate specific cell populations in Drosophila enables the investigation of how neural circuits develop and coordinate appropriate motor behaviors. Gal4 lines give genetic access to many types of neurons, but the expression patterns of these reagents are often complex. Here, we present the generation and expression patterns of LexA lines based on the vesicular neurotransmitter transporters and Hox transcription factors. Intersections between these LexA lines and existing Gal4 collections provide a strategy for rationally subdividing complex expression patterns based on neurotransmitter or segmental identity.


Assuntos
Animais Geneticamente Modificados , Drosophila/genética , Neurônios , Animais , Proteínas de Drosophila/genética , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Neurotransmissores/genética
4.
Biol Pharm Bull ; 39(4): 564-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27040629

RESUMO

Vesicular nucleotide transporter (VNUT) is a membrane protein that is responsible for vesicular storage and subsequent vesicular release of nucleotides, such as ATP, and plays an essential role in purinergic chemical transmission. In the present study, we investigated whether VNUT is present in the rodent retina to define the site(s) of vesicular ATP release. In the mouse retina, reverse transcription polymerase chain reaction (RT-PCR) and immunological analyses using specific anti-VNUT antibodies indicated that VNUT is expressed as a polypeptide with an apparent molecular mass of 59 kDa. VNUT is widely distributed throughout the inner and outer retinal layers, particularly in the outer segment of photoreceptors, outer plexiform layer, inner plexiform layer, and ganglion cell layer. VNUT is colocalized with vesicular glutamate transporter 1 and synaptophysin in photoreceptor cells, while it is colocalized with vesicular γ-aminobutyric acid (GABA) transporter in amacrine cells and bipolar cells. VNUT is also present in astrocytes and Müller cells. The retina from VNUT knockout (VNUT(-/-)) mice showed the loss of VNUT immunoreactivity. The retinal membrane fraction took up radiolabeled ATP in diisothiocyanate stilbene disulfonic acid (DIDS)-, an inhibitor of VNUT, and bafilomycin A1-, a vacuolar adenosine triphosphatase (ATPase) inhibitor, in a sensitive manner, while membranes from VNUT(-/-) mice showed the loss of DIDS-sensitive ATP uptake. Taken together, these results indicate that functional VNUT is expressed in the rodent retina and suggest that ATP is released from photoreceptor cells, bipolar cells, amacrine cells, and astrocytes as well as Müller cells to initiate purinergic chemical transmission.


Assuntos
Retina/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/genética
5.
Annu Rev Pharmacol Toxicol ; 56: 385-402, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26514205

RESUMO

Vesicular neurotransmitter transporters are responsible for the accumulation of neurotransmitters in secretory vesicles and play essential roles in chemical transmission. The SLC17 family contributes to sequestration of anionic neurotransmitters such as glutamate, aspartate, and nucleotides. Identification and subsequent cellular and molecular biological studies of SLC17 transporters unveiled the principles underlying the actions of these transporters. Recent progress in reconstitution methods in combination with postgenomic approaches has advanced studies on neurotransmitter transporters. This review summarizes the molecular properties of SLC17-type transporters and recent findings regarding the novel SLC18 transporter.


Assuntos
Transporte Biológico/fisiologia , Interações Medicamentosas/fisiologia , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Animais , Humanos
6.
Curr Top Membr ; 73: 149-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24745982

RESUMO

Secondary transporters driven by a V-type H⁺-ATPase accumulate nonpeptide neurotransmitters into synaptic vesicles. Distinct transporter families are involved depending on the neurotransmitter. Monoamines and acetylcholine on the one hand, and glutamate and ATP on the other hand, are accumulated by SLC18 and SLC17 transporters, respectively, which belong to the major facilitator superfamily (MFS). GABA and glycine accumulate through a common SLC32 transporter from the amino acid/polyamine/organocation (APC) superfamily. Although crystallographic structures are not yet available for any vesicular transporter, homology modeling studies of MFS-type vesicular transporters based on distantly related bacterial structures recently provided significant advances, such as the characterization of substrate-binding pockets or the identification of spatial clusters acting as hinge points during the alternating-access cycle. However, several basic issues, such as the ion stoichiometry of vesicular amino acid transporters, remain unsettled.


Assuntos
Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Animais , Transporte Biológico , Cloretos/metabolismo , Humanos , Ligantes , Proteínas Vesiculares de Transporte de Neurotransmissores/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Neurotransmissores/química , Proteínas Vesiculares de Transporte de Neurotransmissores/classificação
7.
Neurochem Int ; 73: 71-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24704795

RESUMO

The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Transporte de Neurotransmissores/genética , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Proteínas de Transporte de Neurotransmissores/efeitos dos fármacos , Proteínas de Transporte de Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/genética , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
8.
J Inherit Metab Dis ; 37(4): 619-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24696406

RESUMO

The monoamine neurotransmitter disorders are increasingly recognized as an expanding group of inherited neurometabolic syndromes caused by disturbances in the synthesis, transport and metabolism of the biogenic amines, including the catecholamines (dopamine, norepinephrine, and epinephrine) and serotonin. Disturbances in monoamine metabolism lead to neurological syndromes that frequently mimic other conditions, such as hypoxic ischemic encephalopathy, cerebral palsy, parkinsonism-dystonia syndromes, primary genetic dystonia and paroxysmal disorders. As a consequence, neurotransmitter disorders are frequently misdiagnosed. Early and accurate diagnosis of these neurotransmitter disorders is important, as many are highly amenable to, and some even cured by, therapeutic intervention. In this review, we highlight recent advances in the field, particularly the recent extensive characterization of known neurotransmitter disorders and identification of novel neurotransmitter disorders. We also provide an overview of current and future research in the field focused on developing novel treatment strategies.


Assuntos
Monoaminas Biogênicas , Encefalopatias Metabólicas Congênitas/terapia , Neurotransmissores/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Descarboxilases de Aminoácido-L-Aromático/deficiência , Monoaminas Biogênicas/metabolismo , Encefalopatias Metabólicas Congênitas/diagnóstico , Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Distonia/diagnóstico , Distonia/terapia , Distúrbios Distônicos/congênito , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/terapia , Humanos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/terapia , Neurotransmissores/metabolismo , Transtornos Psicomotores/diagnóstico , Transtornos Psicomotores/terapia , Síndrome , Proteínas Vesiculares de Transporte de Neurotransmissores/deficiência , Proteínas Vesiculares de Transporte de Neurotransmissores/genética
9.
Acta Neuropathol ; 125(2): 215-29, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22961619

RESUMO

Perineuronal matrix is an extracellular protein scaffold to shape neuronal responsiveness and survival. Whilst perineuronal nets engulf the somatodendritic axis of neurons, axonal coats are focal extracellular protein aggregates surrounding individual synapses. Here, we addressed the chemical identity and subcellular localization of both perineuronal and perisynaptic matrices in the human hippocampus, whose neuronal circuitry is progressively compromised in Alzheimer's disease. We hypothesized that (1) the cellular expression sites of chondroitin sulphate proteoglycan-containing extracellular matrix associate with specific neuronal identities, reflecting network dynamics, and (2) the regional distribution and molecular composition of axonal coats must withstand Alzheimer's disease-related modifications to protect functional synapses. We show by epitope-specific antibodies that the perineuronal protomap of the human hippocampus is distinct from other mammals since pyramidal cells but not calretinin(+) and calbindin(+) interneurons, neurochemically classified as novel neuronal subtypes, lack perineuronal nets. We find that cartilage link protein-1 and brevican-containing matrices form isolated perisynaptic coats, engulfing both inhibitory and excitatory terminals in the dentate gyrus and entorhinal cortex. Ultrastructural analysis revealed that presynaptic neurons contribute components of perisynaptic coats via axonal transport. We demonstrate, by combining biochemical profiling and neuroanatomy in Alzheimer's patients and transgenic (APdE9) mice, the preserved turnover and distribution of axonal coats around functional synapses along dendrite segments containing hyperphosphorylated tau and in amyloid-ß-laden hippocampal microdomains. We conclude that the presynapse-driven formation of axonal coats is a candidate mechanism to maintain synapse integrity under neurodegenerative conditions.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/química , Sinapses/metabolismo , Agrecanas/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/genética , Animais , Axônios/metabolismo , Western Blotting , Mapeamento Encefálico , Brevicam/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Estudos de Coortes , Dendritos/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Proteoglicanas/metabolismo , Sinapses/patologia , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Proteínas tau/metabolismo
10.
Neural Plast ; 2012: 203536, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22811938

RESUMO

Brain-derived neurotrophic factor (BDNF) is well known as a survival factor during brain development as well as a regulator of adult synaptic plasticity. One potential mechanism to initiate BDNF actions is through its modulation of quantal presynaptic transmitter release. In response to local BDNF application to CA1 pyramidal neurons, the frequency of miniature excitatory postsynaptic currents (mEPSC) increased significantly within 30 seconds; mEPSC amplitude and kinetics were unchanged. This effect was mediated via TrkB receptor activation and required both full intracellular Ca(2+) stores as well as extracellular Ca(2+). Consistent with a role of Ca(2+)-permeable plasma membrane channels of the TRPC family, the inhibitor SKF96365 prevented the BDNF-induced increase in mEPSC frequency. Furthermore, labeling presynaptic terminals with amphipathic styryl dyes and then monitoring their post-BDNF destaining in slice cultures by multiphoton excitation microscopy revealed that the increase in frequency of mEPSCs reflects vesicular fusion events. Indeed, BDNF application to CA3-CA1 synapses in TTX rapidly enhanced FM1-43 or FM2-10 destaining with a time course that paralleled the phase of increased mEPSC frequency. We conclude that BDNF increases mEPSC frequency by boosting vesicular fusion through a presynaptic, Ca(2+)-dependent mechanism involving TrkB receptors, Ca(2+) stores, and TRPC channels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cálcio/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Imidazóis/farmacologia , Cinética , Microscopia de Fluorescência , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor trkB/efeitos dos fármacos , Estimulação Química , Tetrodotoxina/farmacologia
11.
J Neurochem ; 121(2): 252-62, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22296263

RESUMO

Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study, we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine caused by phasic firing - that is, the measurement of dopamine 'transients'. These FSCV measurements revealed for the first time that spontaneous dopamine transients constitute a major component of extracellular dopamine levels in the NAc. A series of experiments were designed to probe regulation of extracellular dopamine. Lidocaine was infused into the ventral tegmental area, the site of dopamine cell bodies, to arrest neuronal firing. While there was virtually no instantaneous change in dopamine concentration, longer sampling revealed a decrease in dopamine transients and a time-averaged decrease in the extracellular level. Dopamine transporter inhibition using intravenous GBR12909 injections increased extracellular dopamine levels changing both frequency and size of dopamine transients in the NAc. To further unmask the mechanics governing extracellular dopamine levels we used intravenous injection of the vesicular monoamine transporter (VMAT2) inhibitor, tetrabenazine, to deplete dopamine storage and increase cytoplasmic dopamine in the nerve terminals. Tetrabenazine almost abolished phasic dopamine release but increased extracellular dopamine to ∼500 nM, presumably by inducing reverse transport by dopamine transporter (DAT). Taken together, data presented here show that average extracellular dopamine in the NAc is low (20-30 nM) and largely arises from phasic dopamine transients.


Assuntos
Dopamina/metabolismo , Espaço Extracelular/metabolismo , Núcleo Accumbens/metabolismo , Anestésicos Locais/administração & dosagem , Anestésicos Locais/farmacologia , Animais , Dopamina/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Fenômenos Eletrofisiológicos , Lidocaína/administração & dosagem , Lidocaína/farmacologia , Masculino , Microdiálise , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Tetrabenazina/farmacologia , Área Tegmentar Ventral , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
12.
Annu Rev Physiol ; 74: 225-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22054239

RESUMO

Neurotransmitter identity is a defining feature of all neurons because it constrains the type of information they convey, but many neurons release multiple transmitters. Although the physiological role for corelease has remained poorly understood, the vesicular uptake of one transmitter can regulate filling with the other by influencing expression of the H(+) electrochemical driving force. In addition, the sorting of vesicular neurotransmitter transporters and other synaptic vesicle proteins into different vesicle pools suggests the potential for distinct modes of release. Corelease thus serves multiple roles in synaptic transmission.


Assuntos
Neurotransmissores/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/metabolismo , Animais , Ânions/metabolismo , Monoaminas Biogênicas/fisiologia , Cátions/metabolismo , Cloretos/metabolismo , Cloretos/fisiologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Neurotransmissores/metabolismo , Prótons , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
J Biol Chem ; 286(50): 42881-7, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22052906

RESUMO

The vesicular nucleotide transporter (VNUT) is a secretory vesicle protein that is responsible for the vesicular storage and subsequent exocytosis of ATP (Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., and Moriyama, Y. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 5683-5686). Because VNUT actively transports ATP in a membrane potential (Δψ)-dependent manner irrespective of divalent cations such as Mg(2+) and Ca(2+), VNUT recognizes free ATP as a transport substrate. However, whether or not VNUT transports chelating complexes with divalent cations remains unknown. Here, we show that proteoliposomes containing purified VNUT actively took up Mg(2+) when ATP was present, as detected by atomic absorption spectroscopy. The VNUT-containing proteoliposomes also took up radioactive Ca(2+) upon imposing Δψ (positive-inside) but not ΔpH. The Δψ-driven Ca(2+) uptake required ATP and a millimolar concentration of Cl(-), which was inhibited by Evans blue, a specific inhibitor of SLC17-type transporters. VNUT in which Arg-119 was specifically mutated to alanine, the counterpart of the essential amino acid residue of the SLC17 family, lost the ability to take up both ATP and Ca(2+). Ca(2+) uptake was also inhibited in the presence of various divalent cations such as Mg(2+). Kinetic analysis indicated that Ca(2+) or Mg(2+) did not affect the apparent affinity for ATP. RNAi of the VNUT gene in PC12 cells decreased the vesicular Mg(2+) concentration to 67.7%. These results indicate that VNUT transports both nucleotides and divalent cations probably as chelating complexes and suggest that VNUT functions as a divalent cation importer in secretory vesicles under physiological conditions.


Assuntos
Cátions Bivalentes/metabolismo , Nucleotídeos/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Cinética , Magnésio/metabolismo , Camundongos , Células PC12 , Ratos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/genética
14.
Schizophr Res ; 130(1-3): 250-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21689907

RESUMO

Synapsin II is a synaptic vesicle-associated phosphoprotein that has been implicated in the pathophysiology of schizophrenia. Studies have demonstrated reductions in synapsin II mRNA and protein in medial prefrontal cortical post-mortem samples from patients with schizophrenia, genetic associations between synapsin II and schizophrenia, and synapsin II protein regulation by dopamine receptor activation. Collectively, this research indicates a relationship between synapsin II dysregulation and schizophrenia; however, it remains unknown whether perturbations in synapsin II play a role in the pathophysiology of this disease. The aim of this project was to evaluate animals with selective knock-down of synapsin II in the medial prefrontal cortex. After continuous infusion of synapsin II antisense sequences, animals were examined for the presence of schizophrenic-like behavioral phenotypes and assessed on the response to clinically relevant antipsychotic drugs. Our results indicate that rats with selective reductions in medial prefrontal cortical synapsin II demonstrate deficits in sensorimotor gating (prepulse inhibition), reduced social behavior, and hyperlocomotion, which are corrected by the atypical antipsychotic drug olanzapine. Additionally, synapsin II knock-down disrupts serial search efficiency. These behavioral changes are accompanied by reductions in vesicular neurotransmitter transporter protein concentrations for glutamate (VGLUT1 and VGLUT2) and GABA (VGAT), without affecting dopamine (VMAT2). These results implicate a causal role for decreased synapsin II in the medial prefrontal cortex in the pathophysiology of schizophrenia and the mechanisms of aberrant prefrontal cortical circuitry, and suggest that synapsin II may potentially serve as a novel therapeutic target for this disorder.


Assuntos
Sintomas Comportamentais/etiologia , Córtex Pré-Frontal/metabolismo , Esquizofrenia/complicações , Esquizofrenia/patologia , Sinapsinas/metabolismo , Animais , Antipsicóticos/uso terapêutico , Modelos Animais de Doenças , Interações Medicamentosas , Inibição Psicológica , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/efeitos adversos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/fisiologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Filtro Sensorial/efeitos dos fármacos , Comportamento Social , Sinapsinas/química , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
15.
Biochemistry ; 50(25): 5558-65, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21612282

RESUMO

Glutamate plays essential roles in chemical transmission as a major excitatory neurotransmitter. The accumulation of glutamate in secretory vesicles is mediated by vesicular glutamate transporters (VGLUTs) that together with the driving electrochemical gradient of proteins influence the subsequent quantum release of glutamate and the function of higher-order neurons. The vesicular content of glutamate is well correlated with membrane potential (Δψ), which suggests that Δψ determines the vesicular glutamate concentration. The transport of glutamate into secretory vesicles is highly dependent on Cl(-). This anion stimulates glutamate transport but is inhibitory at higher concentrations. Accumulating evidence indicates that Cl(-) regulates glutamate transport through control of VGLUT activity and the H(+) electrochemical gradient. Recently, a comprehensive study demonstrated that Cl(-) regulation of VGLUT is competitively inhibited by metabolic intermediates such as ketone bodies. It also showed that ketone bodies are effective in controlling epilepsy. These results suggest a correlation between metabolic state and higher-order brain function. We propose a novel function for Cl(-) as a fundamental regulator for signal transmission.


Assuntos
Metabolismo Energético , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/química , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Transporte Proteico , Transdução de Sinais , Proteínas Vesiculares de Transporte de Glutamato/química , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/fisiologia , Proteínas Vesiculares de Transporte de Neurotransmissores/fisiologia
16.
Fly (Austin) ; 4(4): 302-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20855951

RESUMO

During exocytosis, classical and amino acid neurotransmitters are released from the lumen of synaptic vesicles to allow signaling at the synapse. The storage of neurotransmitters in synaptic vesicles and other types of secretory vesicles requires the activity of specific vesicular transporters. Glutamate and monoamines such as dopamine are packaged by VGLUTs and VMATs respectively. Changes in the localization of either protein have the potential to up- or down regulate neurotransmitter release, and some of the mechanisms for sorting these proteins to secretory vesicles have been investigated in cultured cells in vitro. We have used Drosophila molecular genetic techniques to study vesicular transporter trafficking in an intact organism and have identified a motif required for localizing Drosophila VMAT (DVMAT) to synaptic vesicles in vivo. In contrast to DVMAT, large deletions of Drosophila VGLUT (DVGLUT) show relatively modest deficits in localizing to synaptic vesicles, suggesting that DVMAT and DVGLUT may undergo different modes of trafficking at the synapse. Further in vivo studies of DVMAT trafficking mutants will allow us to determine how changes in the localization of vesicular transporters affect the nervous system as a whole and complex behaviors mediated by aminergic circuits.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Neurotransmissores/fisiologia , Animais , Transporte Biológico , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/genética , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
17.
Neuron ; 66(5): 710-23, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20547129

RESUMO

Presynaptic assembly requires the packaging of requisite proteins into vesicular cargoes in the cell soma, their long-distance microtubule-dependent transport down the axon, and, finally, their reconstitution into functional complexes at prespecified sites. Despite the identification of several molecules that contribute to these events, the regulatory mechanisms defining such discrete states remain elusive. We report the characterization of an Arf-like small G protein, ARL-8, required during this process. arl-8 mutants prematurely accumulate presynaptic cargoes within the proximal axon of several neuronal classes, with a corresponding failure to assemble presynapses distally. This proximal accumulation requires the activity of several molecules known to catalyze presynaptic assembly. Dynamic imaging studies reveal that arl-8 mutant vesicles exhibit an increased tendency to form immotile aggregates during transport. Together, these results suggest that arl-8 promotes a trafficking identity for presynaptic cargoes, facilitating their efficient transport by repressing premature self-association.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Transporte Axonal/fisiologia , Proteínas de Membrana/fisiologia , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Animais , Transporte Axonal/genética , Caenorhabditis elegans , Proteínas de Membrana/genética , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Transporte Proteico/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestrutura , Proteínas Vesiculares de Transporte de Neurotransmissores/genética , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
19.
Annu Rev Pharmacol Toxicol ; 48: 277-301, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17883368

RESUMO

Exocytotic release of neurotransmitters requires their accumulation inside preformed secretory vesicles. Distinct vesicular transport activities translocate classical transmitters into synaptic vesicles energized by a H+ electrochemical gradient (Delta(mu(H+))), with subtle but important differences in dependence on the electrical and chemical components. The vesicular transporters also interact with toxic compounds and drugs. They mediate neuroprotection by sequestering toxic compounds as well as neurotransmitters into vesicles, reducing their concentration in the cytosol where they may have detrimental effects. Both therapeutic agents and psychostimulants interfering with vesicular transport have yielded insight into the pathogenesis of psychiatric as well as neurodegenerative diseases. Thus, specific inhibitors have helped to characterize both the physiological role and mechanism of vesicular neurotransmitter transport.


Assuntos
Neurotransmissores/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Humanos , Transtornos Mentais/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/efeitos dos fármacos
20.
Handb Exp Pharmacol ; (184): 77-106, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18064412

RESUMO

Many neuropsychiatric disorders appear to involve a disturbance of chemical neurotransmission, and the mechanism of available therapeutic agents supports this impression. Postsynaptic receptors have received considerable attention as drug targets, but some of the most successful agents influence presynaptic processes, in particular neurotransmitter reuptake. The pharmacological potential of many other presynaptic elements, and in particular the machinery responsible for loading transmitter into vesicles, has received only limited attention. The similarity of vesicular transporters to bacterial drug resistance proteins and the increasing evidence for regulation of vesicle filling and recycling suggest that the pharmacological potential of vesicular transporters has been underestimated. In this review, we discuss the pharmacological effects of psychostimulants and therapeutic agents on transmitter release.


Assuntos
Proteínas de Transporte de Neurotransmissores/efeitos dos fármacos , Proteínas de Transporte de Neurotransmissores/metabolismo , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Animais , Canais de Cloreto/metabolismo , Humanos , Ionóforos/metabolismo , Neurotransmissores/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Neurotransmissores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...