Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.410
Filtrar
1.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276630

RESUMO

Thyroid transcription factor 1 (TTF1) is an important cancer-related biomarker for clinical diagnosis, especially for carcinomas of lung and thyroid origin. Herein, a novel label-free electrochemical immunosensor was prepared for TTF1 detection based on nanohybrids of ribbon-like tungsten disulfide-reduced graphene oxide (WS2-rGO) and gold nanoparticles (AuNPs). The proposed immunosensor employed H2O2 as the electrochemical probe because of the excellent peroxidase-like activity of ribbon-like WS2-rGO. The introduction of AuNPs not only enhanced the electrocatalytic activity of the immunosensor, but also provided immobilization sites for binding TTF1 antibodies. The electrochemical signals can be greatly amplified due to their excellent electrochemical performance, which realized the sensitive determination of TTF1 with a wide linear range of 0.025-50 ng mL-1 and a lower detection limit of 0.016 ng mL-1 (S/N = 3). Moreover, the immunosensor exhibited high selectivity, good reproducibility, and robust stability, as well as the ability to detect TTF1 in human serum with satisfactory results. These observed properties of the immunosensor enhance its potential practicability in clinical applications. This method can also be used for the detection of other tumor biomarkers by using the corresponding antigen-antibody complex.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Sulfetos , Compostos de Tungstênio , Humanos , Ouro/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Fator Nuclear 1 de Tireoide , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Imunoensaio/métodos , Grafite/química , Biomarcadores Tumorais , Limite de Detecção
2.
Endocrine ; 83(2): 519-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775725

RESUMO

PURPOSE: Thyroid transcription factor-1 (TTF-1) assessed by immunohistochemistry (IHC) is a specific biomarker for lung adenocarcinoma, and is commonly used to confirm the pulmonary origin of neuroendocrine tumours (NET). The majority of the available data suggest that TTF-1 is favourable prognostic biomarker for lung adenocarcinomas, whereas its role is more conflicting for lung NET. The main aim of this multicenter retrospective study was to investigate the potentially relevant associations between TTF-1 biomarker and clinical and pathological features of the study population, as well as determine TTF-1 prognostic effect on the clinical outcome of the patients. METHODS: A multicentre retrospective study was conducted on 155 surgically-removed lung NET, with available IHC TTF-1 assessment. RESULTS: Median age was 59.5 years (range 13-86), 97 patients (62.6%) were females, 31 cases (20%) were atypical carcinoids, 4 (2.6%) had TNM stage IV. Mitotic count ≥2 per 10 high-power field was found in 35 (22.6%) subjects, whereas necrosis was detected in 20 patients (12.9%). TTF-1 was positive in 78 cases (50.3%). The median overall survival was 46.9 months (range 0.6-323) and the median progression-free survival was 39.1 months (range 0.6-323). Statistically significant associations were found between (1) TTF-1 positivity and female sex (p = 0.007); and among (2) TTF-1 positivity and the absence of necrosis (p = 0.018). CONCLUSIONS: This study highlights that TTF-1 positivity differs according to sex in lung NET, with a more common TTF-1 positive staining in female. Moreover, TTF-1 positivity correlated with the absence of necrosis. These data suggest that TTF-1 could potentially represent a gender-related biomarker for lung NET.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Neuroendócrino , Neoplasias Pulmonares , Tumores Neuroendócrinos , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Tumores Neuroendócrinos/metabolismo , Estudos Retrospectivos , Glândula Tireoide/patologia , Biomarcadores Tumorais/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Pulmão/metabolismo , Necrose
3.
Eur J Cancer ; 197: 113474, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100920

RESUMO

OBJECTIVES: Thyroid transcription factor 1 (TTF-1) is a well-established independent prognostic factor in lung adenocarcinoma (LUAD), irrespective of stage. This study aims to determine if TTF-1's prognostic impact is solely based on histomorphological differentiation (tumor grading) or if it independently relates to a biologically more aggressive phenotype. We analyzed a large bi-centric LUAD cohort to accurately assess TTF-1's prognostic value in relation to tumor grade. PATIENTS AND METHODS: We studied 447 patients with resected LUAD from major German lung cancer centers (Berlin and Cologne), correlating TTF-1 status and grading with clinical, pathologic, and molecular data, alongside patient outcomes. TTF-1's impact was evaluated through univariate and multivariate Cox regression. Causal graph analysis was used to identify and account for potential confounders, improving the statistical estimation of TTF-1's predictive power for clinical outcomes. RESULTS: Univariate analysis revealed TTF-1 positivity associated with significantly longer disease-free survival (DFS) (median log HR -0.83; p = 0.018). Higher tumor grade showed a non-significant association with shorter DFS (median log HR 0.30; p = 0,62 for G1 to G2 and 0.68; p = 0,34 for G2 to G3). In multivariate analysis, TTF-1 positivity resulted in a significantly longer DFS (median log HR -0.65; p = 0.05) independent of all other parameters, including grading. Adjusting for potential confounders as indicated by the causal graph confirmed the superiority of TTF-1 over tumor grading in prognostics power. CONCLUSIONS: TTF-1 status predicts relapse and survival in LUAD independently of tumor grading. The prognostic power of tumor grading is limited to TTF-1-positive patients, and the effect size of TTF-1 surpasses that of tumor grading. We recommend including TTF1 status as a prognostic factor in the diagnostic guidelines of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Fator Nuclear 1 de Tireoide/genética , Gradação de Tumores , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/patologia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Prognóstico
4.
J Cell Physiol ; 238(12): 2867-2878, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850660

RESUMO

The melanocortin 4 receptor (MC4R) is a G protein-coupled transporter that mediates the regulation of thyroid hormones and leptin on energy balance and food intake. However, the mechanisms of transcriptional regulation of Mc4r by thyroid hormone and leptin in fish have been rarely reported. The messenger RNA expression of Mc4r gene was significantly higher in brain than those in other tissues of mandarin fish. We analyzed the structure and function of a 2029 bp sequence of Mc4r promoter. Meanwhile, overexpression of NKX2.1 and incubation with leptin significantly increased Mc4r promoter activity, but triiodothyronine showed the opposite effect. In addition, mutations in the NKX2.1 binding site abolished not only the activation of Mc4r promoter activity by leptin but also the inhibitory effect of thyroid hormones on Mc4r promoter activity. In summary, these results suggested that thyroid hormones and leptin might regulate the transcriptional expression of Mc4r through NKX2.1.


Assuntos
Peixes , Genes Homeobox , Leptina , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Leptina/genética , Leptina/farmacologia , Regiões Promotoras Genéticas/genética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Hormônios Tireóideos , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Humanos , Células HEK293
5.
Clin Lung Cancer ; 24(6): 568-572, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169628

RESUMO

INTRODUCTION: Pemetrexed-based immunochemotherapy represents an established standard of care as first line treatment for non-oncogenic driven metastatic non-small cell lung adenocarcinoma (NSCLC/ADC). However, retrospective analyses revealed better outcomes for pemetrexed-free regimens compared to pemetrexed-containing regimens in patients with thyroid transcription factor 1 (TTF-1) negative NSCLC/ADC. The multicenter, phase II, randomized, open-label ANTELOPE trial evaluates whether atezolizumab, carboplatin and nab-paclitaxel is superior to pembrolizumab, cis-/carboplatin and pemetrexed in TTF-1 negative NSCLC/ADC. METHODS: Eligible participants are ≥18 years of age, with histologically or cytologically confirmed, treatment-naïve stage IV TTF-1 negative NSCLC/ADC without actionable genomic alterations or PD-L1-overexpression (TPS ≥50%) and will be randomized in a 1:1 fashion to pemetrexed-free (group A) vs. pemetrexed-based (group B) immunochemotherapy. The primary endpoint of this trial is overall survival (OS). RESULTS: Enrollment will start in Q2 2023 at 30 sites in Germany with a planned inclusion of 136 participants. CONCLUSION: ANTELOPE will provide efficacy outcomes of the current standard-of-care for the specific subset of TTF-1 negative NSCLC/ADC in a head-to-head comparison of approved immunochemotherapy regimens.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma de Pulmão/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Pemetrexede/uso terapêutico , Platina/uso terapêutico , Estudos Retrospectivos , Fator Nuclear 1 de Tireoide
6.
Br J Cancer ; 128(10): 1862-1878, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36932191

RESUMO

BACKGROUND: One-third of cancers activate endogenous synthesis of serine/glycine, and can become addicted to this pathway to sustain proliferation and survival. Mechanisms driving this metabolic rewiring remain largely unknown. METHODS: NKX2-1 overexpressing and NKX2-1 knockdown/knockout T-cell leukaemia and lung cancer cell line models were established to study metabolic rewiring using ChIP-qPCR, immunoblotting, mass spectrometry, and proliferation and invasion assays. Findings and therapeutic relevance were validated in mouse models and confirmed in patient datasets. RESULTS: Exploring T-cell leukaemia, lung cancer and neuroendocrine prostate cancer patient datasets highlighted the transcription factor NKX2-1 as putative driver of serine/glycine metabolism. We demonstrate that transcription factor NKX2-1 binds and transcriptionally upregulates serine/glycine synthesis enzyme genes, enabling NKX2-1 expressing cells to proliferate and invade in serine/glycine-depleted conditions. NKX2-1 driven serine/glycine synthesis generates nucleotides and redox molecules, and is associated with an altered cellular lipidome and methylome. Accordingly, NKX2-1 tumour-bearing mice display enhanced tumour aggressiveness associated with systemic metabolic rewiring. Therapeutically, NKX2-1-expressing cancer cells are more sensitive to serine/glycine conversion inhibition by repurposed anti-depressant sertraline, and to etoposide chemotherapy. CONCLUSION: Collectively, we identify NKX2-1 as a novel transcriptional regulator of serine/glycine synthesis addiction across cancers, revealing a therapeutic vulnerability of NKX2-1-driven cancers. Transcription factor NKX2-1 fuels cancer cell proliferation and survival by hyperactivating serine/glycine synthesis, highlighting this pathway as a novel therapeutic target in NKX2-1-positive cancers.


Assuntos
Neoplasias Pulmonares , Serina , Animais , Humanos , Camundongos , Linhagem Celular , Linhagem Celular Tumoral , Glicina , Neoplasias Pulmonares/patologia , Serina/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Sci Rep ; 13(1): 1945, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732655

RESUMO

Brain metastases (BMs) are common in lung adenocarcinomas (ACs). Thyroid transcription factor 1 (TTF-1) is important in the diagnosis of AC. This study aimed to examine the relationship between TTF-1 and BM for the first time in literature. The data of 137 patients with AC that developed BM between 2009 and 2020 were retrospectively analyzed. A total of 137 patients, 120 (87.6%) male, and 17 (12.4%) female were examined. Their mean age was 59.78 ± 0.82 years. The Eastern Cooperative Oncology Group (ECOG) performance score was 0-1 (< 2) for 39 (28.5%) patients and 2-4 (≤ 2) for 98 (71.5%). TTF-1 was positive in 100 (73%) patients and negative in 37 (27%). More than five BMs were present in 102 (74.4%) patients and less than five in 35 (25.6%). All the patients received whole-brain radiotherapy. None of the patients was suitable for surgery or radiosurgery. The median survival time was 6.4 [95% confidence interval (CI), 5.67-7.1] months. The survival time was 7 (95% CI, 5.91-8.09) months for the TTF-1 (+) patients and 5.8 (95% CI, 4.1-7.5) months for the TTF-1 (-) patients. In the univariate analysis, there was a significant relationship between survival time and age (p = 0.047), TTF-1 (p = 0.024), and ECOG performance score (p = 0.002). The multivariance analysis revealed a significant relationship between survival and TTF-1 (p = 0.034) and ECOG score (p = 0.007). We found a correlation between survival time and ECOG performance score and TTF-1. TTF-1 can be used as a biomarker to monitor prognosis in the follow-up and treatment of patients with AC that develop BM.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Fator Nuclear 1 de Tireoide , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Adenocarcinoma de Pulmão/patologia , Prognóstico , Neoplasias Encefálicas/secundário
8.
Lung Cancer ; 176: 121-131, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634573

RESUMO

TTF-1-expressing non-small cell lung cancer (NSCLC) is one of the most prevalent lung cancer types worldwide. However, theparadoxical activity of TTF-1 in both lung carcinogenesis and tumor suppression is believed to be context-dependentwhich calls for a deeper understanding about the pathological expression of TTF-1. In addition, the expression circuitry of TTF-1-target genes in NSCLC has not been well examined which necessitates to revisit the involvement of TTF-1- in a multitude of oncologic pathways. We used RNA-seq and clinical data of patients from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), including ChIP-seq data from different NSCLC cell lines, and mapped the proteome of NSCLC tumor. Our analysis showed significant variability in TTF-1 expression among NSCLC,and further clarified that this variability is orchestrated at the transcriptional level. We also found that high TTF-1 expression could negatively influence the survival outcomes of stage 1 LUAD which may be attributed to growth factor receptor-driven activation of mitogenic and angiogenic pathways. Mechanistically, TTF-1 may also control the genes associated with pathways involved in acquired TKI drug resistance or response to immune checkpoint inhibitors. Lastly, proteome-based biomarker discovery in stage 1 LUAD showed that TTF-1 positivity is potentially associated with the upregulation of several oncogenes which includes interferon proteins, MUC1, STAT3, and EIF2AK2. Collectively, this study highlights the potential involvement of TTF-1 in cell proliferation, immune evasion, and angiogenesis in early-stage NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fator Nuclear 1 de Tireoide , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteínas Nucleares/genética , Proteoma , Fator Nuclear 1 de Tireoide/genética
9.
J Neurosurg ; 138(3): 663-673, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35962961

RESUMO

OBJECTIVE: Stereotactic radiosurgery (SRS), combined with contemporary targeted therapies and immunotherapies, has improved the overall survival of patients with lung adenocarcinoma (ADC). Given that histological subtypes reflect prognosis in patients with primary ADC, it is important to integrate pathological biomarkers to predict clinical outcomes after SRS in patients with brain metastases from lung ADC. Therefore, the authors investigated the prognostic relevance of various biomarkers of primary lung ADC for clinical outcomes after SRS. METHODS: A total of 95 patients with 136 brain metastases (1-4 oligometastases) who were treated with Gamma Knife radiosurgery between January 2017 and December 2020 were included. The Kaplan-Meier method and univariate and multivariate analyses using Cox proportional hazard regression models were used to identify prognostic factors for local control, survival, and distant brain control. RESULTS: Multivariate analysis revealed thyroid transcription factor 1 as an independent prognostic factor for local control (HR 0.098, 95% CI 0.014-0.698, p = 0.0203) and napsin A as a significant predictor of overall survival after SRS (HR 0.080, 95% CI 0.017-0.386, p < 0.01). In a subset analysis of epidermal growth factor receptor (EGFR) mutation, patients with EGFR exon 19 mutations showed better distant brain control than those with EGFR exon 21 mutations (p < 0.01). CONCLUSIONS: Pathological biomarkers of primary cancer should be considered to predict clinical outcomes after SRS in patients with lung ADC. Use of such biomarkers may help to provide personalized treatment to each patient, improving clinical outcomes after SRS.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , Radiocirurgia , Humanos , Radiocirurgia/métodos , Neoplasias Pulmonares/patologia , Fator Nuclear 1 de Tireoide , Seguimentos , Estudos Retrospectivos , Adenocarcinoma de Pulmão/cirurgia , Neoplasias Encefálicas/cirurgia , Receptores ErbB
10.
Histopathology ; 82(2): 242-253, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36130728

RESUMO

Thyroid transcription factor 1 (TTF1) and p40 are widely-utilized diagnostic markers of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), respectively. Diffuse coexpression of TTF1 and p40 has been described in only rare case reports. In a multi-institutional study, we collected the largest cohort of these unusual tumours to-date (n = 14), with the goal of elucidating their clinicopathological and genomic characteristics. Lung tumours with diffuse coexpression (labelling 50-100% tumour cells) of TTF1 clone 8G7G3/1 and p40 clone BC28 were identified. Detailed clinicopathological and immunohistochemical parameters were analyzed. Eight tumours were analyzed by next-generation sequencing (NGS) and the results were compared to those in > 9 K LUAD and > 1 K LUSC. All tumours with diffuse TTF1/p40 coexpression were poorly differentiated non-small cell lung carcinomas (NSCLC), 42% of which had basaloid features. Some tumours exhibited focal keratinization (14%), napsin A and/or mucicarmine labelling (46%) or both squamous and glandular features (7%). NGS revealed a uniquely high rate of FGFR1 amplifications (70%) compared to either LUAD (0.7%, P < 0.0001) or LUSC (11%, P = 0.001). LUAD-type targetable driver alterations were identified in 38% of cases (one EGFR, two KRAS G12C). The tumours were clinically aggressive, exhibiting metastatic disease in most patients. Lung carcinomas with diffuse TTF1/p40 coexpression represent poorly differentiated NSCLCs with frequent basaloid features, but some show evidence of focal squamous, glandular or dual differentiation with a distinctly high rate of FGFR1 amplifications. The presence of targetable LUAD-type alterations (EGFR, KRAS G12C) emphasizes the importance of molecular testing in these tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Fator Nuclear 1 de Tireoide , Carcinoma Pulmonar de Células não Pequenas/genética , Genômica , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
11.
Histopathology ; 82(5): 672-683, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36527228

RESUMO

AIMS: A distinct subset of lung adenocarcinomas (LADs), arising from a series of peripheral lung cells defined as the terminal respiratory unit (TRU), is characterised by thyroid transcription factor 1 (TTF-1) expression. The clinical relevance of transcription factors (TFs) other than TTF-1 remains unknown in LAD and was explored in the present study. METHODS AND RESULTS: Seventy-one LAD samples were subjected to high-throughput transcriptome screening of LAD using cap analysis gene expression (CAGE) sequencing data; CAGE provides genome-wide expression levels of the transcription start sites (TSSs). In total, 1083 invasive LAD samples were subjected to immunohistochemical examination for paired box 9 (PAX9) and TTF-1 expression levels. PAX9 is an endoderm development-associated TF that most strongly and inversely correlates with the expression of TTF-1 TSS subsets. Immunohistochemically, PAX9 expression was restricted to the nuclei of ciliated epithelial and basal cells in the bronchi and bronchioles and the nuclei of epithelial cells of the bronchial glands; moreover, PAX9 expression was observed in 304 LADs (28%). PAX9-positive LADs were significantly associated with heavy smoking, non-lepidic subtype, EGFR wild-type tumours and PD-L1 expression (all P < 0.0001). All these characteristics were opposite to those of TRU-type LADs with TTF-1 expression. PAX9 expression was an independent prognostic factor for decreased overall survival (P = 0.022). CONCLUSIONS: Our results revealed that PAX9 expression defines an aggressive subset of LADs preferentially occurring in smokers that may arise from bronchial or bronchiolar cells.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Fumantes , Adenocarcinoma/patologia , Proteínas Nucleares/metabolismo , Fator Nuclear 1 de Tireoide
12.
Gastric Cancer ; 26(1): 44-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094595

RESUMO

BACKGROUND: Gastric adenocarcinoma of fundic-gland type (GA-FG) is a gastric malignancy with little relation to Helicobacter pylori. Clinical characteristics of GA-FG have been established, but molecular mechanisms leading to tumorigenesis have not yet been elucidated. METHODS: We subjected three GA-FG tumors-normal mucosa pairs to microarray analysis. Network analysis was performed for the top 30 up-regulated gene transcripts, followed by immunohistochemical staining to confirm the gene expression analysis results. AGS and NUGC4 cells were transfected with the gene-encoding NK2 homeobox 1/thyroid transcription factor 1 (NKX2-1/TTF-1) to evaluate transcriptional changes in its target genes. RESULTS: Comprehensive gene expression analysis identified 1410 up-regulated and 1395 down-regulated gene probes with ≥ two-fold difference in expression. Among the top 30 up-regulated genes in GA-FG, we identified transcription factor NKX2-1/TTF-1, a master regulator of lung/thyroid differentiation, together with surfactant protein B (SFTPB), SFTPC, and secretoglobin family 3A member 2(SCGB3A2), which are regulated by NKX2-1/TTF-1. Immunohistochemical analysis of 16 GA-FG specimens demonstrated significantly higher NKX2-1/TTF-1 and SFTPB levels, as compared to that in adjacent normal mucosa (P < 0.05), while SCGB3A2 levels did not differ (P = 0.341). Transduction of NKX2-1/TTF-1 into AGS and NUGC4 cells induced transactivation of SFTPB and SFTPC, indicating that NKX2-1/TTF-1 can function as normally in gastric cells as it can in the lung cells. CONCLUSIONS: Our first transcriptome analysis of GA-FG indicates significant expression of NKX2-1/TTF1 in GA-FG. Immunohistochemistry and cell biology show ectopic expression and normal transactivation ability of NKX2-1/TTF-1, suggesting that it plays an essential role in GA-FG development.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Fator Nuclear 1 de Tireoide/genética , Genes Homeobox , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Perfilação da Expressão Gênica
13.
Cells ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497134

RESUMO

A developmental niche vacancy in host embryos is necessary for stem cell complementation-based organ regeneration (SCOG). Thyroid transcription factor 1 (TTF-1) is a tissue-specific transcription factor that regulates the embryonic development and differentiation of the thyroid and, more importantly, lungs; thus, it has been considered as a master gene to knockout in order to develop a lung vacancy host. TTF-1 knockout mice were originally produced by inserting a stop codon in Exon 3 of the gene (E3stop) through embryonic stem cell-based homologous recombination. The main problems of utilizing E3stop host embryos for lung SCOG are that these animals all have a tracheoesophageal fistula (TEF), which cannot be corrected by donor stem cells, and most of them have monolateral sac-like lungs. To improve the mouse model towards achieving SCOG-based lung generation, in this project, we used the CRISPR/Cas9 tool to remove Exon 2 of the gene by zygote microinjection and successfully produced TTF-1 knockout (E2del) mice. Similar to E3stop, E2del mice are birth-lethal due to retarded lung development with sac-like lungs and only a rudimentary bronchial tree, increased basal cells but without alveolar type II cells and blood vessels, and abnormal thyroid development. Unlike E3stop, 57% of the E2del embryos presented type I tracheal agenesis (TA, a kind of human congenital malformation) with a shortened trachea and clear separations of the trachea and esophagus, while the remaining 43% had TEF. Furthermore, all the E2del mice had bilateral sac-like lungs. Both TA and bilateral sac-like lungs are preferred in SCOG. Our work presents a new strategy for producing SCOG host embryos that may be useful for lung regeneration.


Assuntos
Sistemas CRISPR-Cas , Fator Nuclear 1 de Tireoide , Fístula Traqueoesofágica , Animais , Feminino , Humanos , Camundongos , Gravidez , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Pulmão , Camundongos Knockout , Fator Nuclear 1 de Tireoide/genética
14.
J Zhejiang Univ Sci B ; 23(11): 915-930, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379611

RESUMO

Targeted gene therapy has become a promising approach for lung cancer treatment. In our previous work, we reported that the targeted expression of microRNA-7 (miR-7) operated by thyroid transcription factor-1 (TTF-1) promoter inhibited the growth of human lung cancer cells in vitro and in vivo; however, the intervention efficiency needed to be further improved. In this study, we identified the core promoter of TTF-1 (from -1299 bp to -871 bp) by 5' deletion assay and screened out the putative transcription factors nuclear factor-1 (NF-1) and activator protein-1 (AP-1). Further analysis revealed that the expression level of NF-1, but not AP-1, was positively connected with the activation of TTF-1 core promoter in human non-small-cell lung cancer (NSCLC) cells. Moreover, the silencing of NF-1 could reduce the expression level of miR-7 operated by TTF-1 core promoter. Of note, we optimized four distinct sequences to form additional NF-1-binding sites (TGGCA) in the sequence of TTF-1 core promoter (termed as optTTF-1 promoter), and verified the binding efficiency of NF-1 on the optTTF-1 promoter by electrophoretic mobility shift assay (EMSA). As expected, the optTTF-1 promoter could more effectively drive miR-7 expression and inhibit the growth of human NSCLC cells in vitro, accompanied by a reduced transduction of NADH dehydrogenase (ubiquinone) 1α subcomplex 4 (NDUFA4)/protein kinase B (Akt) pathway. Consistently, optTTF-1 promoter-driven miR-7 expression could also effectively abrogate the growth and metastasis of tumor cells in a murine xenograft model of human NSCLC. Finally, no significant changes were detected in the biological indicators or the histology of some important tissues and organs, including heart, liver, and spleen. On the whole, our study revealed that the optimized TTF-1 promoter could more effectively operate miR-7 to influence the growth of human NSCLC cells, providing a new basis for the development of microRNA-based targeting gene therapy against clinical lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Fator Nuclear 1 de Tireoide/genética , Fatores de Transcrição/metabolismo
15.
Mol Metab ; 66: 101636, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375792

RESUMO

OBJECTIVE: Thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is predominantly expressed in discrete areas of the hypothalamus, which acts as the central unit for the regulation of whole-body energy homeostasis. Current study designed to identify the roles of TTF-1 on the responsiveness of the hypothalamic circuit activity to circulating leptin and the development of obesity linked to the insensitivity of leptin. METHODS: We generated conditional knock-out mice by crossing TTF-1flox/flox mice with leptin receptor (ObRb)Cre or proopiomelanocortin (POMC)Cre transgenic mice to interrogate the contributions of TTF-1 in leptin signaling and activity. Changes of food intake, body weight and energy expenditure were evaluated in standard or high fat diet-treated transgenic mice by using an indirect calorimetry instrument. Molecular mechanism was elucidated with immunohistochemistry, immunoblotting, quantitative PCR, and promoter assays. RESULTS: The selective deletion of TTF-1 gene expression in cells expressing the ObRb or POMC enhanced the anorexigenic effects of leptin as well as the leptin-induced phosphorylation of STAT3. We further determined that TTF-1 inhibited the transcriptional activity of the ObRb gene. In line with these findings, the selective deletion of the TTF-1 gene in ObRb-positive cells led to protective effects against diet-induced obesity via the amelioration of leptin resistance. CONCLUSIONS: Collectively, these results suggest that hypothalamic TTF-1 participates in the development of obesity as a molecular component involved in the regulation of cellular leptin signaling and activity. Thus, TTF-1 may represent a therapeutic target for the treatment, prevention, and control of obesity.


Assuntos
Leptina , Pró-Opiomelanocortina , Fator Nuclear 1 de Tireoide , Animais , Camundongos , Hipotálamo/metabolismo , Leptina/genética , Leptina/metabolismo , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo
16.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36039869

RESUMO

Bud tip progenitors (BTPs) in the developing lung give rise to all epithelial cell types found in the airways and alveoli. This work aimed to develop an iPSC organoid model enriched with NKX2-1+ BTP-like cells. Building on previous studies, we optimized a directed differentiation paradigm to generate spheroids with more robust NKX2-1 expression. Spheroids were expanded into organoids that possessed NKX2-1+/CPM+ BTP-like cells, which increased in number over time. Single cell RNA-sequencing analysis revealed a high degree of transcriptional similarity between induced BTPs (iBTPs) and in vivo BTPs. Using FACS, iBTPs were purified and expanded as induced bud tip progenitor organoids (iBTOs), which maintained an enriched population of bud tip progenitors. When iBTOs were directed to differentiate into airway or alveolar cell types using well-established methods, they gave rise to organoids composed of organized airway or alveolar epithelium, respectively. Collectively, iBTOs are transcriptionally and functionally similar to in vivo BTPs, providing an important model for studying human lung development and differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Fator Nuclear 1 de Tireoide/metabolismo , Células Epiteliais Alveolares , Diferenciação Celular , Humanos , Pulmão , Organoides
17.
Physiol Int ; 109(2): 261-277, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895569

RESUMO

Congenital hypothyroidism (CH) occurs with a relatively alarming prevalence in infants, and if not diagnosed and treated in time, it can have devastating consequences for the development of the nervous system. CH is associated with genetic changes in several genes that encode transcription factors responsible for thyroid development, including mutations in the NK2 homeobox 1 (NKX2.1) gene, which encodes the thyroid transcription factor-1 (TTF-1). Although CH is frequently observed in pediatric populations, there is still a limited understanding of the genetic factors and molecular mechanisms contributing to this disease. The sequence of the NKX2.1 gene was investigated in 75 pediatric patients with CH by polymerase chain reaction (PCR), single-stranded conformation polymorphism (SSCP), and direct DNA sequencing. Four missense heterozygous variations were identified in exon 3 of the NKX2.1 gene, including three novel missense variations, namely c.708A>G, p.Gln202Arg; c.713T>G, p.Tyr204Asp; c.833T>G, p.Tyr244Asp, and a previously reported variant rs781133468 (c.772C>G, p.His223Gln). Importantly, these variations occur in highly conserved residues of the TTF-1 DNA-binding domain and were predicted by bioinformatics analysis to alter the protein structure, with a probable alteration in the protein function. These results indicate that nucleotide changes in the NKX2.1 gene may contribute to CH pathogenesis.


Assuntos
Hipotireoidismo Congênito , Fator Nuclear 1 de Tireoide , Criança , Biologia Computacional , Hipotireoidismo Congênito/genética , Humanos , Lactente , Irã (Geográfico) , Mutação , Fator Nuclear 1 de Tireoide/genética , Fatores de Transcrição/genética
18.
Am J Respir Crit Care Med ; 206(12): 1480-1494, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35848993

RESUMO

Rationale: The current molecular classification of small-cell lung cancer (SCLC) on the basis of the expression of four lineage transcription factors still leaves its major subtype SCLC-A as a heterogeneous group, necessitating more precise characterization of lineage subclasses. Objectives: To refine the current SCLC classification with epigenomic profiles and to identify features of the redefined SCLC subtypes. Methods: We performed unsupervised clustering of epigenomic profiles on 25 SCLC cell lines. Functional significance of NKX2-1 (NK2 homeobox 1) was evaluated by cell growth, apoptosis, and xenograft using clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-associated protein 9)-mediated deletion. NKX2-1-specific cistromic profiles were determined using chromatin immunoprecipitation followed by sequencing, and its functional transcriptional partners were determined using coimmunoprecipitation followed by mass spectrometry. Rb1flox/flox; Trp53flox/flox and Rb1flox/flox; Trp53flox/flox; Nkx2-1flox/flox mouse models were engineered to explore the function of Nkx2-1 in SCLC tumorigenesis. Epigenomic landscapes of six human SCLC specimens and 20 tumors from two mouse models were characterized. Measurements and Main Results: We identified two epigenomic subclusters of the major SCLC-A subtype: SCLC-Aα and SCLC-Aσ. SCLC-Aα was characterized by the presence of a super-enhancer at the NKX2-1 locus, which was observed in human SCLC specimens and a murine SCLC model. We found that NKX2-1, a dual lung and neural lineage factor, is uniquely relevant in SCLC-Aα. In addition, we found that maintenance of this neural identity in SCLC-Aα is mediated by collaborative transcriptional activity with another neuronal transcriptional factor, SOX1 (SRY-box transcription factor 1). Conclusions: We comprehensively describe additional epigenomic heterogeneity of the major SCLC-A subtype and define the SCLC-Aα subtype by the core regulatory circuitry of NKX2-1 and SOX1 super-enhancers and their functional collaborations to maintain neuronal linage state.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição SOXB1 , Carcinoma de Pequenas Células do Pulmão , Fator Nuclear 1 de Tireoide , Animais , Humanos , Camundongos , Transformação Celular Neoplásica , Pulmão , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator Nuclear 1 de Tireoide/genética
19.
Dev Cell ; 57(15): 1866-1882.e10, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835117

RESUMO

Changes in cellular identity (also known as histologic transformation or lineage plasticity) can drive malignant progression and resistance to therapy in many cancers, including lung adenocarcinoma (LUAD). The lineage-specifying transcription factors FoxA1 and FoxA2 (FoxA1/2) control identity in NKX2-1/TTF1-negative LUAD. However, their role in NKX2-1-positive LUAD has not been systematically investigated. We find that Foxa1/2 knockout severely impairs tumorigenesis in KRAS-driven genetically engineered mouse models and human cell lines. Loss of FoxA1/2 leads to the collapse of a dual-identity state, marked by co-expression of pulmonary and gastrointestinal transcriptional programs, which has been implicated in LUAD progression. Mechanistically, FoxA1/2 loss leads to aberrant NKX2-1 activity and genomic localization, which in turn actively inhibits tumorigenesis and drives alternative cellular identity programs that are associated with non-proliferative states. This work demonstrates that FoxA1/2 expression is a lineage-specific vulnerability in NKX2-1-positive LUAD and identifies mechanisms of response and resistance to targeting FoxA1/2 in this disease.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão/genética , Animais , Transformação Celular Neoplásica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Fator Nuclear 1 de Tireoide
20.
Thorac Cancer ; 13(16): 2309-2317, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35808895

RESUMO

BACKGROUND: We aimed to identify the relationship between thyroid transcription factor-1 (TTF-1) expression of lung adenocarcinoma and the efficacy of immune-checkpoint inhibitor (ICI) therapy. METHODS: This retrospective multicenter study comprised patients with advanced lung adenocarcinoma treated with ICI monotherapy. We collected clinical medical records including data on TTF-1 expression and analyzed the relationship between TTF-1 expression and programmed death-ligand 1 tumor proportion score (PD-L1 TPS), objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). RESULTS: In total, 108 patients with lung adenocarcinoma were analyzed. The rate of TPS ≥1% and ≥50% in patients with positive TTF-1 expression was significantly higher than that in patients with negative TTF-1 expression (88% vs. 60%, p < 0.001; 65% vs. 24%, p < 0.001). The ORR was significantly higher in TTF-1 positive patients than in TTF-1-negative patients (38% vs. 8%, p = 0.003). Among patients with TPS ≥50% and 1%-49%, the ORR in TTF-1 positive and negative patients was 48% (26/54) versus 17% (1/6) (p = 0.21), and 32% (6/19) versus 11% (1/9) (p = 0.37), respectively. The ORR for patients with TPS <1% was 0% in both the TTF-1 negative and positive cases. The median PFS and OS was significantly longer in TTF-1-positive patients than in TTF-1-negative patients (5.4 vs. 1.6 months, p < 0.001; 18.2 vs. 8.0 months, p = 0.041). Multivariate analysis revealed that TTF-1-negative status was an independent unfavorable prognostic factor for PFS. CONCLUSION: Patients with TTF-1-positive status receiving ICI monotherapy showed better outcomes than those with TTF-1-negative lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Antígeno B7-H1/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/patologia , Intervalo Livre de Progressão , Estudos Retrospectivos , Glândula Tireoide/patologia , Fator Nuclear 1 de Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...