Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
J Biol Chem ; 300(2): 105605, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159857

RESUMO

Prolidase (PEPD) is the only hydrolase that cleaves the dipeptides containing C-terminal proline or hydroxyproline-the rate-limiting step in collagen biosynthesis. However, the molecular regulation of prolidase expression remains largely unknown. In this study, we have identified overlapping binding sites for the transcription factors Krüppel-like factor 6 (KLF6) and Specificity protein 1 (Sp1) in the PEPD promoter and demonstrate that KLF6/Sp1 transcriptionally regulate prolidase expression. By cloning the PEPD promoter into a luciferase reporter and through site-directed deletion, we pinpointed the minimal sequences required for KLF6 and Sp1-mediated PEPD promoter-driven transcription. Interestingly, Sp1 inhibition abrogated KLF6-mediated PEPD promoter activity, suggesting that Sp1 is required for the basal expression of prolidase. We further studied the regulation of PEPD by KLF6 and Sp1 during transforming growth factor ß1 (TGF-ß1) signaling, since both KLF6 and Sp1 are key players in TGF-ß1 mediated collagen biosynthesis. Mouse and human fibroblasts exposed to TGF-ß1 resulted in the induction of PEPD transcription and prolidase expression. Inhibition of TGF-ß1 signaling abrogated PEPD promoter-driven transcriptional activity of KLF6 and Sp1. Knock-down of KLF6 as well as Sp1 inhibition also reduced prolidase expression. Chromatin immunoprecipitation assay supported direct binding of KLF6 and Sp1 to the PEPD promoter and this binding was enriched by TGF-ß1 treatment. Finally, immunofluorescence studies showed that KLF6 co-operates with Sp1 in the nucleus to activate prolidase expression and enhance collagen biosynthesis. Collectively, our results identify functional elements of the PEPD promoter for KLF6 and Sp1-mediated transcriptional activation and describe the molecular mechanism of prolidase expression.


Assuntos
Dipeptidases , Fator 6 Semelhante a Kruppel , Transdução de Sinais , Fator de Transcrição Sp1 , Animais , Humanos , Camundongos , Colágeno/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
2.
Pol J Pathol ; 74(3): 194-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955538

RESUMO

Cutaneous carcinoma is one of the most common neoplasm tumors in the West. Its incidence rate is one of the fastest growing tumors in China. The Krüppel-like factor 6 (KLF6) is a latent tumor suppressor. Decreased KLF6 is related to the occurrence and progression of many cancers in human. Our previous studies have demonstrated that KLF6 was down-regulation in cutaneous malignant melanoma (CMM), and was significant correlated with ulcer, lymph node metastasis and clinical stage, suggesting that KLF6 loss is expected to become a biological indicator of poor prognosis in CMM patients. In this research, we would further study the features of KLF6 in the malignant progression of CMM. The expression of KLF6 was up-regulated by lentivirus infection containing KLF6, and short hairpin RNA (shRNA) was used for knockdown of KLF6 in CMM cells. Western blot, RT-qpcr, CCK8 assay, transwell migration assays, wound healing assay and flow cytometry were used to test the role of KLF6 in the CMM. We found that reduced expression of KLF6 significantly enhanced proliferation, migration and invasion. Moreover, KLF6 induced CMM cell apoptosis and G1 cycle arrest. The decreased KLF6 expression is expected to be a biological indicator of poor prognosis in CMM patients.


Assuntos
Biomarcadores Ambientais , Melanoma , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Melanoma/genética , Melanoma/patologia
3.
Autoimmunity ; 56(1): 2282939, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975481

RESUMO

The pathogenesis of rheumatoid arthritis (RA) is heavily impacted by the inflammation and activation of fibroblast-like synoviocytes (FLS). The objective of this investigation is to clarify the involvement of exosomes derived from FLS stimulated by tumour necrosis factor α (TNF-α) in angiogenesis and the underlying mechanisms. FLS cells were obtained from synovial fluid of RA patients and exosomes were obtained from FLS cell supernatant with TNF-α stimulation by ultracentrifugation. Exosomes were subsequently analysed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. The functional effects of exosomes with TNF-α stimulation on human umbilical vein endothelial cells (HUVEC) migration, invasion, and angiogenesis was evaluated using wound scratch healing test, transwell invasion assay, and tube formation assay. DNA nanoball-seq (DNBSEQ) sequencing platform was utilised to analysis different expression miRNA from exosomes, miRNA and mRNA from HUVEC. The expression level of miR-200a-3p was determined through quantitative real-time polymerase chain reaction (qRT-PCR). The quantification of KLF6 and VEGFA expression levels were performed by qRT-PCR and western blot analysis. The validation of the association between miR-200a-3p and KLF6 was established through a fluorescence enzyme reporting assay. In comparison to exosome induced by PBS, exosome induced by TNF-α exhibited a substantial exacerbation of invasion, migration, and angiogenesis in HUVEC. 4 miRNAs in exosomes and HUVEC cells, namely miR-1246, miR-200a-3p, miR-30a-3p, and miR-99b-3p was obtained. MiR-200a-3p maintained high consistency with the sequencing results. We obtained 5 gene symbols, and KLF6 was chose for further investigation. The expression of miR-200a-3p in exosomes induced by TNF-α and in HUVEC treated with these exosomes demonstrated a significantly increase. Additionally, HUVEC cells displayed a notable decrease in KLF6 expression and a significant elevation in VEGFA expression. This was further confirmed by the fluorescence enzyme report assay, which provided evidence of the direct targeting of KLF6 by miR-200a-3p. Exosomes induced by TNF-α have the ability to enhance the migration, invasion, and angiogenesis of HUVEC cells via the miR-200a-3p/KLF6/VEGFA axis.


Assuntos
Artrite Reumatoide , Exossomos , MicroRNAs , Sinoviócitos , Humanos , Artrite Reumatoide/metabolismo , Proliferação de Células , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Fator 6 Semelhante a Kruppel/metabolismo , Fator 6 Semelhante a Kruppel/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
4.
Technol Health Care ; 31(6): 2251-2265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545272

RESUMO

BACKGROUND: MicroRNAs (miRNAs) exert certain functions in the development of several cancers and can be a potential hallmark for cancer diagnosis and prognosis. MiR-191-5p has been proven to have high expression in breast cancer (BC), while its biological role and potential regulatory mechanisms in BC remain an open issue. OBJECTIVE: Bioinformatics was utilized to assay miR-191-5p level in BC tissues and predict its downstream target gene as well as the enriched signaling pathways of the target gene. METHODS: qRT-PCR was carried out to assay miR-191-5p and KLF6 levels in BC cells as well as miR-191-5p level in blood-derived exosomes from BC patients. Western blot was to examine the expression of proteins linked with cell adhesion, epithelial-mesenchymal transition (EMT), and exosome markers. A dual luciferase reporter assay was utilized to verify the interaction between miR-191-5p and KLF6. Abilities of cell phenotypes of BC cells were detected by CCK8, Transwell, and cell adhesion assay, separately. RESULTS: Upregulated miR-191-5p expression and downregulated KLF6 expression were observed in BC cells. There was a targeting relationship between miR-191-5p and KLF6. MiR-191-5p negatively regulated KLF6 to promote EMT and malignant progression of BC cells. Additionally, we described a dramatically high level of miR-191-5p in the blood exosomes of BC patients. CONCLUSION: MiR-191-5p advances the EMT of BC by targeting KLF6, indicating that miR-191-5p and KLF6 may be new biomarkers for BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Movimento Celular , Proliferação de Células/genética , Fator 6 Semelhante a Kruppel/genética
5.
Science ; 381(6658): eade6289, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561850

RESUMO

Skin color, one of the most diverse human traits, is determined by the quantity, type, and distribution of melanin. In this study, we leveraged the light-scattering properties of melanin to conduct a genome-wide screen for regulators of melanogenesis. We identified 169 functionally diverse genes that converge on melanosome biogenesis, endosomal transport, and gene regulation, of which 135 represented previously unknown associations with pigmentation. In agreement with their melanin-promoting function, the majority of screen hits were up-regulated in melanocytes from darkly pigmented individuals. We further unraveled functions of KLF6 as a transcription factor that regulates melanosome maturation and pigmentation in vivo, and of the endosomal trafficking protein COMMD3 in modulating melanosomal pH. Our study reveals a plethora of melanin-promoting genes, with broad implications for human variation, cell biology, and medicine.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fator 6 Semelhante a Kruppel , Melaninas , Melanócitos , Melanossomas , Pigmentação da Pele , Humanos , Melaninas/biossíntese , Melaninas/genética , Melanócitos/metabolismo , Melanossomas/metabolismo , Pigmentação da Pele/genética , Estudo de Associação Genômica Ampla , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Endossomos/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral
6.
J Lipid Res ; 64(8): 100411, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437844

RESUMO

The transcription factor SREBP2 is the main regulator of cholesterol homeostasis and is central to the mechanism of action of lipid-lowering drugs, such as statins, which are responsible for the largest overall reduction in cardiovascular risk and mortality in humans with atherosclerotic disease. Recently, SREBP2 has been implicated in leukocyte innate and adaptive immune responses by upregulation of cholesterol flux or direct transcriptional activation of pro-inflammatory genes. Here, we investigate the role of SREBP2 in endothelial cells (ECs), since ECs are at the interface of circulating lipids with tissues and crucial to the pathogenesis of cardiovascular disease. Loss of SREBF2 inhibits the production of pro-inflammatory chemokines but amplifies type I interferon response genes in response to inflammatory stimulus. Furthermore, SREBP2 regulates chemokine expression not through enhancement of endogenous cholesterol synthesis or lipoprotein uptake but partially through direct transcriptional activation. Chromatin immunoprecipitation sequencing of endogenous SREBP2 reveals that SREBP2 bound to the promoter regions of two nonclassical sterol responsive genes involved in immune modulation, BHLHE40 and KLF6. SREBP2 upregulation of KLF6 was responsible for the downstream amplification of chemokine expression, highlighting a novel relationship between cholesterol homeostasis and inflammatory phenotypes in ECs.


Assuntos
Citocinas , Células Endoteliais , Humanos , Ativação Transcricional , Células Endoteliais/metabolismo , Citocinas/metabolismo , Colesterol/metabolismo , Fatores de Transcrição/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo
7.
Ecotoxicol Environ Saf ; 263: 115265, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478567

RESUMO

Nicotine contributes to the causation of atherosclerosis, which the prominent cellular components are macrophages. Long non-coding RNAs (lncRNAs) play an important role in regulating cell functions such as cell proliferation, differentiation and programmed death. However, the function and mechanism of lncRNAs in nicotine-induced macrophage pyroptosis has not been reported. We screened the deferentially expressed lncRNAs of human carotid artery plaque (GSE97210) and verified them in nicotine-induced pyroptosis of macrophages. Results showed only LINC01272 was up-regulated in a dose-dependent manner in macrophages. The immunofluorescence staining result confirmed that interfering LINC01272 inhibited nicotine-induced macrophage pyroptosis. Through bioinformatics analysis, dual luciferase reporter gene assay and qPCR, we identified miR-515 was significantly negatively correlated with the expression of LINC01272, and KLF6 is the target gene of miR-515. Furthermore, our results demonstrated that LINC01272/miR-515/KLF6 axis meditated nicotine-induced macrophage pyroptosis. In addition, in human peripheral blood mononuclear cells of smoking populations, the expression of GSDMD-N, NLRP3, LINC01272 and KLF6 was significantly increased, while the level of miR-515 was reduced. This study confirmed that nicotine increases the expression of LINC01272 to competitively bind with miR-515 in macrophages, reducing the inhibitory effect of miR-515 on its target gene KLF6, which ultimately induces macrophage pyroptosis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose/genética , Nicotina/toxicidade , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Leucócitos Mononucleares , Macrófagos/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo
8.
Cell Death Dis ; 14(7): 393, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391422

RESUMO

Hepatic ischemia-reperfusion (I/R) injury, a common clinical complication of liver transplantation, gravely affects patient prognosis. Krüppel-like factors (KLFs) constitute a family of C2/H2 zinc finger DNA-binding proteins. KLF6, a member of the KLF protein family, plays crucial roles in proliferation, metabolism, inflammation, and injury responses; however, its role in HIR is largely remains unknown. After I/R injury, we found that KLF6 expression in mice and hepatocytes was significantly upregulated. Mice were then subjected to I/R following injection of shKLF6- and KLF6-overexpressing adenovirus through the tail vein. KLF6 deficiency markedly exacerbated liver damage, cell apoptosis, and activation of hepatic inflammatory responses, whereas hepatic overexpression of KLF6 in mice produced the opposite results. In addition, we knocked out or overexpressed KLF6 in AML12 cells before exposing them to a hypoxia-reoxygenation challenge. KLF6 knockout decreased cell viability and increased hepatocyte inflammation, apoptosis, and ROS, whereas KLF6 overexpression had the opposite effects. Mechanistically, KLF6 inhibited the overactivation of autophagy at the initial stage, and the regulatory effect of KLF6 on I/R injury was autophagy-dependent. CHIP-qPCR and luciferase reporter gene assays confirmed that KLF6 bound to the promoter region of Beclin1 and inhibited its transcription. Additionally, KLF6 activated the mTOR/ULK1 pathway. Finally, we performed a retrospective analysis of the clinical data of liver transplantation patients and identified significant associations between KLF6 expression and liver function following liver transplantation. In conclusion, KLF6 inhibited the overactivation of autophagy via transcriptional regulation of Beclin1 and activation of the mTOR/ULK1 pathway, thereby protecting the liver from I/R injury. KLF6 is expected to serve as a biomarker for estimating the severity of I/R injury following liver transplantation.


Assuntos
Inflamação , Fator 6 Semelhante a Kruppel , Fígado , Animais , Camundongos , Autofagia/genética , Proteína Beclina-1 , Estudos Retrospectivos
9.
Transl Vis Sci Technol ; 12(5): 9, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159192

RESUMO

Purpose: The purpose of this study was to identify novel abnormally expressed microRNAs (miRNAs) and their downstream target in diabetic cataract (DC). Methods: General feature, fasting blood glucose, glycosylated hemoglobin, and type A1c (HbA1c) expression level of patients were collected. DC capsular tissues were obtained from patients and the lens cells (HLE-B3) exposed to different concentrations of glucose were used to simulate the model in vitro. Both mimic and inhibitor of miR-22-3p were transferred into HLE-B3 to up- and downregulate miR-22-3p expression, respectively. The cellular apoptosis was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence. The downstream target gene of miR-22-3p was identified by dual luciferase reporter. Results: In DC capsules and HLE-B3 under hyperglycemia, miR-22-3p showed a significant downward trend. The expression of BAX was upregulated and the BCL-2 was downregulated following high glucose. The expression of BAX was significantly down- or upregulated in HLE-B3 cells following transfection of mimic or inhibitor of miR-22-3p, respectively. Conversely, BCL-2 was significantly increased or decreased. Dual luciferase reporter assay showed that miR-22-3p directly targeted Krüppel Like Factor 6 (KLF6) to regulate cell apoptosis. In addition, the expression of KLF6 were significantly up- or downregulated following transfection of inhibitor or mimic of miR-22-3p. Conclusions: This study suggested that miR-22-3p could inhibit lens apoptosis by targeting KLF6 directly under high glucose condition. The miR-22-3p/KLF6 signal axis may provide novel insights into the pathogenesis of DC. Translational Relevance: Differential expression of miR-22-3p may account for the pathogenesis of DC and lead to a new therapeutic strategy for DC.


Assuntos
Catarata , Diabetes Mellitus , MicroRNAs , Humanos , Fator 6 Semelhante a Kruppel/genética , Proteína X Associada a bcl-2 , Apoptose/genética , Células Epiteliais , Catarata/genética , Proteínas Proto-Oncogênicas c-bcl-2 , MicroRNAs/genética , Glucose/toxicidade , Diabetes Mellitus/genética
10.
Artigo em Chinês | MEDLINE | ID: mdl-36861147

RESUMO

Objective To explore the effect of microRNA-22-3p (miR-22-3p) regulating the expression of Kruppel-like factor 6 (KLF6) on the cardiomyocyte-like differentiation of bone marrow mesenchymal stem cell (BMSC). Methods Rat BMSC was isolated and cultured,and the third-generation BMSC was divided into a control group,a 5-azacytidine(5-AZA)group,a mimics-NC group,a miR-22-3p mimics group,a miR-22-3p mimics+pcDNA group,and a miR-22-3p mimics+pcDNA-KLF6 group.Real-time fluorescent quantitative PCR (qRT-PCR) was carried out to determine the expression of miR-22-3p and KLF6 in cells.Immunofluorescence staining was employed to detect the expression of Desmin,cardiac troponin T (cTnT),and connexin 43 (Cx43).Western blotting was employed to determine the protein levels of cTnT,Cx43,Desmin,and KLF6,and flow cytometry to detect the apoptosis of BMSC.The targeting relationship between miR-22-3p and KLF6 was analyzed by dual luciferase reporter gene assay. Results Compared with the control group,5-AZA up-regulated the expression of miR-22-3p (q=7.971,P<0.001),Desmin (q=7.876,P<0.001),cTnT (q=10.272,P<0.001),and Cx43 (q=6.256,P<0.001),increased the apoptosis rate of BMSC (q=12.708,P<0.001),and down-regulated the mRNA (q=20.850,P<0.001) and protein (q=11.080,P<0.001) levels of KLF6.Compared with the 5-AZA group and the mimics-NC group,miR-22-3p mimics up-regulated the expression of miR-22-3p (q=3.591,P<0.001;q=11.650,P<0.001),Desmin (q=5.975,P<0.001;q=13.579,P<0.001),cTnT (q=7.133,P<0.001;q=17.548,P<0.001),and Cx43 (q=4.571,P=0.037;q=11.068,P<0.001),and down-regulated the mRNA (q=7.384,P<0.001;q=28.234,P<0.001) and protein (q=4.594,P=0.036;q=15.945,P<0.001) levels of KLF6.The apoptosis rate of miR-22-3p mimics group was lower than that of 5-AZA group (q=8.216,P<0.001).Compared with the miR-22-3p mimics+pcDNA group,miR-22-3p mimics+pcDNA-KLF6 up-regulated the mRNA(q=23.891,P<0.001) and protein(q=13.378,P<0.001)levels of KLF6,down-regulated the expression of Desmin (q=9.505,P<0.001),cTnT (q=10.985,P<0.001),and Cx43 (q=8.301,P<0.001),and increased the apoptosis rate (q=4.713,P=0.029).The dual luciferase reporter gene experiment demonstrated that KLF6 was a potential target gene of miR-22-3p. Conclusion MiR-22-3p promotes cardiomyocyte-like differentiation of BMSC by inhibiting the expression of KLF6.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Animais , Ratos , Miócitos Cardíacos , Fator 6 Semelhante a Kruppel , Conexina 43 , Desmina , Diferenciação Celular , Azacitidina/farmacologia , RNA Mensageiro
11.
Apoptosis ; 28(7-8): 997-1011, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37000316

RESUMO

BACKGROUND: Human umbilical cord mesenchymal stem cells (hUCMSCs)-derived exosomes carrying microRNAs (miRNAs) have promising therapeutic potential in various disorders, including premature ovarian failure (POF). Previous evidence has revealed the low plasma level of miR-22-3p in POF patients. Nevertheless, exosomal miR-22-3p specific functions underlying POF progression are unclarified. METHODS: A cisplatin induced POF mouse model and in vitro murine ovarian granulosa cell (mOGC) model were established. Exosomes derived from miR-22-3p-overexpressed hUCMSCs (Exos-miR-22-3p) were isolated. CCK-8 assay and flow cytometry were utilized for measuring mOGC cell viability and apoptosis. RT-qPCR and western blotting were utilized for determining RNA and protein levels. The binding ability between exosomal miR-22-3p and Kruppel-like factor 6 (KLF6) was verified using luciferase reporter assay. Hematoxylin-eosin staining, ELISA, and TUNEL staining were performed for examining the alteration of ovarian function in POF mice. RESULTS: Exos-miR-22-3p enhanced mOGC viability and attenuated mOGC apoptosis under cisplatin treatment. miR-22-3p targeted KLF6 in mOGCs. Overexpressing KLF6 reversed the above effects of Exos-miR-22-3p. Exos-miR-22-3p ameliorated cisplatin-triggered ovarian injury in POF mice. Exos-miR-22-3p repressed ATF4-ATF3-CHOP pathway in POF mice and cisplatin-treated mOGCs. CONCLUSION: Exosomal miR-22-3p from hUCMSCs alleviates OGC apoptosis and improves ovarian function in POF mouse models by targeting KLF6 and ATF4-ATF3-CHOP pathway.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , Feminino , Humanos , Camundongos , Animais , Insuficiência Ovariana Primária/metabolismo , Cisplatino/farmacologia , Exossomos/genética , Exossomos/metabolismo , Fator 6 Semelhante a Kruppel/metabolismo , Apoptose , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Células da Granulosa/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/farmacologia , Fator 4 Ativador da Transcrição/metabolismo
12.
Biochem Genet ; 61(1): 101-115, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35761154

RESUMO

The incidence of laryngeal carcinoma accounts for 1 to 5% of systemic malignancies and ranks second among head and neck malignancies. Screening more effective targets are meaningful for the treatment of laryngeal carcinoma. The purpose was to research the action of miR-21-5p in the occurrence of laryngeal carcinoma. Genecards combined with g:profiler was used for cluster analysis to predict gene-related miRNAs. Q-PCR assay was performed for measuring the level of miR-21-5p and Kruppel-like factor 6 (KLF6). miR-21-5p-mimic, miR-21-5p-inhibitor and sh-KLF6 were transfected using LipofectamineTM 2000. Both CCK-8 and EdU experiments were undertaken to detect cell proliferation ability. Western blot was used to detect apoptosis and epithelial-mesenchymal transition (EMT) related proteins. Wound healing assay and transwell assay were undertaken for migration and invasion, respectively. Three online software (ENCORI, miRWalk, and miRDB) were applied to screen the downstream of miR-21-5p. At the same time, a dual-luciferase reporter experiment was processed to verify the binding. Finally, a rescue experiment was applied to reveal the mediating role of miR-21-5p and KLF6. MiR-21-5p expressed highly in laryngeal carcinoma tissues and cell lines. Knockdown of miR-21-5p reduced the EMT, while enhancing apoptosis of laryngeal carcinoma cell lines. MiR-21-5p targeted KLF6 with negative relationships. The rescue assay results confirmed that sh-KLF6 rescued the action of miR-21-5p knockdown in developing laryngeal carcinoma cells. MiR-21-5p promotes the occurrence and development of laryngeal cancer by targeting KLF6. This finding may provide new insights into miRNA as a biomarker for diagnosing and treating laryngeal carcinoma in the future.


Assuntos
Carcinoma , Neoplasias Laríngeas , MicroRNAs , Humanos , Linhagem Celular Tumoral , Neoplasias Laríngeas/genética , Transição Epitelial-Mesenquimal/genética , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , MicroRNAs/metabolismo , Apoptose/genética , Carcinoma/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
13.
J Egypt Natl Canc Inst ; 34(1): 57, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464752

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most important cancers in the world, and its prevalence varies depending on the geographical area. Genetically, tumor regeneration in CRC as a multi-step process involves activating mutations in protocogenes and losing the function of tumor suppressor genes as well as DNA repair and recovery genes. Occur in this way, our goal was to investigate the expression of KLF6 genes as a tumor suppressor and MUTYH involved in the DNA repair process in colorectal cancer. METHODS: This research was conducted during the years 2019-2018 in Razi Hospital, Rasht. The subjects included 30 tumoral and 30 non-tumoral tissues of colorectal cancer and 20 healthy controls. The real-time PCR method was used to investigate the gene expression. For data analysis by SPSS, parametric statistical tests ANOVA and T test and regression analysis were used and p value values less than 0.05 were considered significant. RESULTS: The expression of KLF6 gene in tumoral tissues showed a significant decrease compared to non-tumoral tissues (P = 0.04). Also, the expression of MUTYH gene in tumor tissue showed a significant decrease compared to non-tumoral (P = 0.02) and this decrease in MUTYH gene expression had a significant relationship with increasing tumor stage (P = 0.01). CONCLUSION: These findings suggest that decreased expression of KLF6 and MUTYH genes in the study population has a significant relationship with colorectal cancer and can be considered as tumor marker in diagnostic purpose.


Assuntos
Neoplasias Colorretais , DNA Glicosilases , Fator 6 Semelhante a Kruppel , Margens de Excisão , Humanos , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Expressão Gênica , Fator 6 Semelhante a Kruppel/genética , DNA Glicosilases/genética
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1508-1514, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36208257

RESUMO

OBJECTIVE: To investigate the effect of SPARC gene overexpression on the chemotherapeutic sensitivity of AML-MDS cell line SKM-1 to Ara-C and to further explore its mechanism. METHODS: Subjects were divided into 6 groups: SKM-1 cells (Control), Negative control (LV-NC), SPARC overexpression (LV-SPARC), SKM-1 cells+30 ng/ml Ara-C (30 ng/ml Ara-C), LV-NC+30 ng/ml Ara-C and LV-SPARC+30 ng/ml Ara-C. Cell activity was detected by CCK-8 assay, cell cycle distribution and apoptosis were detected by flow cytometry, mRNA expression levels of SPARC, CPBP and MLKL were detected by RT-qPCR, and the expression levels of related protein were detected by Western blot. RESULTS: After co-treatment with SPARC overexpression and Ara-C, the cell viability decreased and apoptosis increased significantly, with obvious up-regulation of Bax and down-regulation of BCL-2 (P<0.05). Compared with the control group, the cell cycle of LV-SPARC+30 ng/ml Ara-C group was significantly arrested in S phase with obvious down-regulation of CDK2 and up-regulation of p27KIP1 (P<0.05). Compared with LV-SPARC group and 30 ng/ml Ara-C group, the mRNA and protein expression levels of CPBP and MLKL (p-MLKL) were significantly elevated in LV-SPARC+30 ng/ml Ara-C group (P<0.05). In addition, after co-treatment with SPARC overexpression and Ara-C, the protein expression level of p-AKT decreased and the protein expression level of p53 increased (P<0.05). CONCLUSION: SPARC overexpression enhanced the sensitivity of SKM-1 cells to Ara-C and promoted cell cycle arrest and apoptosis, the mechanism of which may be related to the regulation of CPBP/MLKL pathway.


Assuntos
Citarabina , Proteína Supressora de Tumor p53 , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Fator 6 Semelhante a Kruppel/metabolismo , Osteonectina/farmacologia , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
15.
Acta Biochim Pol ; 69(4): 767-772, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272155

RESUMO

PURPOSE: The phenotypic transformation of human brain vascular smooth muscle cells (HBVSMC) is widely involved in the appearance and progression of intracranial aneurysms (IA). Aneurysm (IA) Circular RNA circ_FOXO3 functions pivotally in vascular diseases and tumors, but its regulatory role as well as its molecular mechanism in IA is still uncertain. This research was to explore how circ_FOXO3 works and its mechanism in vitro model of HBVSMC IA induced by H2O2. METHODS: Thirty-eight patients with IA and their normal tissues were clinically collected. Examination of endothelin-1, vascular hematoma factor, circ_FOXO3, microRNA (miR)-122-5p and KLF6 and the correlation of circ_FOXO3 with clinical case information were ensured. Establishment of an in vitro IA model was through HBVSMC induced by H2O2 and transfection with circ_FOXO3, miR-122-5p and KLF6 related plasmids was to figure out their roles in cell growth. The relationship among circ_FOXO3, miR-122-5p with KLF6 was detected. RESULTS: Up-regulated circ_FOXO3 and KLF6 and reduced miR-122-5p were in IA tissues; Circ_FOXO3 was associated with smoking history, Hunt-Hess grading and endothelial injury degree. Repressive circ_FOXO3 or KLF6 and strengthening miR-122-5p facilitated H2O2-induced proliferation and repressed HBVSMC apoptosis, while elevation of circ_FOXO3 or depressive miR-122-5p was opposite. circ_FOXO3 bound to miR-122-5p, whose target was KLF6, which participated in controlling IA by mediating the circ_FOXO3/miR-122-5p axis. CONCLUSION: In summary, the findings suggest that circ_FOXO3 suppresses H2O2-induced proliferation of HBVSMC but promotes apoptosis via modulation of miR-122-5p/KLF6 axis. Targeted therapy of circ_FOXO3/miR-122-5p/KLF6 axis is supposed to be a promising treatment approach for IA patients.


Assuntos
Aneurisma Intracraniano , MicroRNAs , Humanos , Peróxido de Hidrogênio , Adsorção , Encéfalo , Apoptose/genética , Proliferação de Células/genética , MicroRNAs/genética , Fator 6 Semelhante a Kruppel/genética , Proteína Forkhead Box O3
16.
Genes (Basel) ; 13(10)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36292712

RESUMO

MicroRNAs (miRNAs) are non-coding RNAs that regulate the expression of their target genes involved in many cellular functions at the post-transcriptional level. Previously, bta-miR-148a showed significantly high expression in bovine mammary epithelial cells (BMECs) of Chinese Holstein cows producing high milk fat compared to those with low milk fat content. Here, we investigated the role of bta-miR-148a through targeting Krüppel-like factor 6 (KLF6) and further analyzed the role of KLF6 in regulating fat metabolism through targeting PPARA, AMPK/mTOR/PPARG, and other fat marker genes in BMECs of Chinese Holstein. The bioinformatics analysis showed that the 3' UTR of KLF6 mRNA possesses the binding sites for bta-miR-148a, which was further verified through dual-luciferase reporter assay. The BMECs were transfected with bta-miR-148a-mimic, inhibitor, and shNC, and the expression of KLF6 was found to be negatively regulated by bta-miR-148a. Moreover, the contents of triglyceride (TG), and cholesterol (CHO) in BMECs transfected with bta-miR-148a-mimic were significantly lower than the contents in BMECs transfected with bta-miR-148a-shNC. Meanwhile, the TG and CHO contents were significantly increased in BMECs transfected with bta-miR-148a-inhibitor than in BMECs transfected with bta-miR-148a-shNC. In addition, the TG and CHO contents were significantly decreased in BMECs upon the down-regulation of KLF6 through transfection with pb7sk-KLF6-siRNA1 compared to the control group. Contrarily, when KLF6 was overexpressed in BMECs through transfection with pBI-CMV3-KLF6, the TG and CHO contents were significantly increased compared to the control group. Whereas, the qPCR and Western blot evaluation of PPARA, AMPK/mTOR/PPARG, and other fat marker genes revealed that all of the genes were considerably down-regulated in the KLF6-KO-BMECs compared to the normal BMECs. Taking advantage of deploying new molecular markers and regulators for increasing the production of better-quality milk with tailored fat contents would be the hallmark in dairy sector. Hence, bta-miR-148a and KLF6 are potential candidates for increased milk synthesis and the production of valuable milk components in dairy cattle through marker-assisted selection in molecular breeding. Furthermore, this study hints at the extrapolation of a myriad of functions of other KLF family members in milk fat synthesis.


Assuntos
MicroRNAs , Leite , Feminino , Bovinos , Animais , Leite/metabolismo , Glândulas Mamárias Animais/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Regiões 3' não Traduzidas , PPAR gama/genética , Proteínas Quinases Ativadas por AMP/genética , Células Epiteliais/metabolismo , MicroRNAs/metabolismo , Triglicerídeos/metabolismo , RNA Mensageiro/genética , PPAR alfa/genética , Colesterol/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Allergol Immunopathol (Madr) ; 50(5): 138-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36086974

RESUMO

BACKGROUND: The development of acute lung injury (ALI) into a severe stage leads to acute respiratory distress syndrome (ARDS). The morbidity and mortality of ALI and ARDS are very high. Objective: This study is aimed to explore the effect of Krüppel-like factor 6 (KLF6) on lipopolysaccharide (LPS)-induced type II alveolar epithelial cells in ALI by interacting with cysteine-rich angiogenic inducer 61 (CYR61). MATERIAL AND METHODS: ALI mice model and LPS-induced type II alveolar epithelial cells were conducted to simulate ALI in vivo and in vitro. The messenger RNA (mRNA) and protein expression of KLF6 in lung tissues were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Pathological changes in lung tissues were observed by hematoxylin and eosin (H&E) staining. The viability and KLF6 expression of A549 cells treated with different concentrations of LPS were detected by cell counting kit-8 (CCK-8) assay, RT-qPCR, and Western blot analysis. After indicated treatment, the viability and apoptosis of A549 cells were analyzed by CCK-8 and TUNEL assays, and the inflammation factors of A549 cells were detected by Enzyme-linked-immunosorbent serologic assay, RT-qPCR, and Western blot analysis. The combination of KLF6 and CYR61 was determined by chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase reporter assay. RESULTS: KLF6 expression was increased in lung tissues of ALI mice and LPS-induced A549 cells. Interference with KLF6 improved the viability, reduced the inflammatory damage, and promoted the apoptosis of LPS-induced A549 cells. In addition, KLF6 could bind to CYR61. Interference with KLF6 could decrease CYR61 expression in LPS-induced A549 cells. LPS also enhanced the TLR4/MYD88 signaling pathway, which was reversed by KLF6 interference. The above phenomena in LPS-induced A549 cells transfected with Si-KLF6 could be reversed by overexpression of CYR61. CONCLUSION: Inhibition of KLF6 promoted the viability and reduced the inflammation and apoptosis of LPS-induced A549 cells, which was reversed by CYR61.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose , Inflamação/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Síndrome do Desconforto Respiratório/genética
18.
Placenta ; 127: 62-72, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35973366

RESUMO

INTRODUCTION: Placental extravillous trophoblasts play a crucial role in the establishment of a healthy pregnancy. Reactive oxygen species (ROS) may contribute to their differentiation and function as mediators in signaling processes or might cause oxidative stress resulting in trophoblast dysfunction. The krüppel-like transcription factor 6 (KLF6) regulates many genes involved in essential cell processes where ROS are also involved. However, whether KLF6 regulates ROS levels has not been previously investigated. MATERIALS AND METHODS: KLF6 was silenced by siRNAs in HTR8-SV/neo cells, an extravillous trophoblast model. Total and mitochondrial ROS levels, as well as mitochondrial membrane potential and apoptosis were analyzed by flow cytometry. The expression of genes and proteins of interest were analyzed by qRT-PCR and Western blot, respectively. Cell response to oxidative stress, proliferation, viability, morphology, and migration were evaluated. RESULTS: KLF6 downregulation led to an increase in ROS and NOX4 mRNA levels, accompanied by reduced cell proliferation and increased p21 protein expression. Catalase activity, 2-Cys peroxiredoxin protein levels, Nrf2 cytoplasmic localization and hemoxygenase 1 expression, as well as mitochondrial membrane potential and cell apoptosis were not altered suggesting that ROS increase is not associated with cellular damage. Instead, KLF6 silencing induced cytoskeleton modifications and increased cell migration in a ROS-dependent manner. DISCUSSION: Present data reveal a novel role of KLF6 on ROS balance and signaling demonstrating that KLF6 downregulation induces an increase in ROS levels that contribute to extravillous trophoblast cell migration.


Assuntos
Placenta , Trofoblastos , Regulação para Baixo , Feminino , Humanos , Fator 6 Semelhante a Kruppel/metabolismo , Placenta/metabolismo , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Trofoblastos/metabolismo
19.
Stem Cell Res Ther ; 13(1): 330, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858897

RESUMO

BACKGROUND: Despite emerging evidence on the therapeutic potential of mesenchymal stem cells (MSCs) for liver fibrosis, the underlying mechanisms remain unclear. At present, MSC-derived exosomes (MSC-EXOs) are widely accepted as crucial messengers for intercellular communication. This study aimed to explore the therapeutic effects of MSC-EXOs on liver fibrosis and identify the mechanisms underlying the action of MSC-EXOs. METHODS: Carbon tetrachloride was used to induce a liver fibrosis model, which was intravenously administered with MSCs or MSC-EXOs to assess treatment efficacy. The resulting histopathology, fibrosis degree, inflammation and macrophage polarization were analyzed. RAW264.7 and BMDM cells were used to explore the regulatory effects of MSC-EXOs on macrophage polarization. Then, the critical miRNA mediating the therapeutic effects of MSC-EXOs was screened via RNA sequencing and validated experimentally. Furthermore, the target mRNA and downstream signaling pathways were elucidated by luciferase reporter assay, bioinformatics analysis and western blot. RESULTS: MSCs alleviated liver fibrosis largely depended on their secreted exosomes, which were visualized to circulate into liver after transplantation. In addition, MSC-EXOs were found to modulate macrophage phenotype to regulate inflammatory microenvironment in liver and repair the injury. Mechanically, RNA-sequencing illustrates that miR-148a, enriched in the MSC-EXOs, targets Kruppel-like factor 6 (KLF6) to suppress pro-inflammatory macrophages and promote anti-inflammatory macrophages by inhibiting the STAT3 pathway. Administration of miR-148a-enriched MSC-EXOs or miR-148a agomir shows potent ameliorative effects on liver fibrosis. CONCLUSIONS: These findings suggest that MSC-EXOs protect against liver fibrosis via delivering miR-148a that regulates intrahepatic macrophage functions through KLF6/STAT3 signaling and provide a potential therapeutic target for liver fibrosis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Exossomos/metabolismo , Humanos , Fator 6 Semelhante a Kruppel/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/terapia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
20.
Cell Death Dis ; 13(6): 535, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672285

RESUMO

Recent studies have investigated the ability of extracellular vesicles (EVs) in regulating neighboring cells by transferring signaling molecules, such as microRNAs (miRs) in renal fibrosis. EVs released by bone marrow mesenchymal stem cells (BMSCs) contain miR-181d, which may represent a potential therapy for renal fibrosis. miR-181d has been speculated to regulate Krüppel-like factor 6 (KLF6), which activates the nuclear factor-kappa B (NF-κB) signaling pathway. Luciferase assays were performed to confirm the relationship between miR-181d and KLF6. Gain- and loss-of-function studies in vivo and in vitro were performed to assess the effect of BMSC-derived EVs (BMSC-EVs), which contained miR-181d, on KLF6, NF-κB, and renal fibrosis. Transforming growth factor-ß (TGF-ß)-induced renal tubular epithelial HK-2 cells were treated with EVs derived from BMSCs followed by evaluation of collagen type IV α1 (Col4α1), Collagen I and α-smooth muscle actin (α-SMA) as indicators of the extent of renal fibrosis. Renal fibrosis was induced in rats by unilateral ureteral obstruction (UUO) followed by the subsequent analysis of fibrotic markers. BMSC-EVs had higher miR-181d expression. Overexpression of miR-181d correlated with a decrease in KLF6 expression as well as the levels of IκBα phosphorylation, α-SMA, Col4α1, TGF-ßR1 and collagen I in HK-2 cells. In vivo, treatment with miR-181d-containing BMSC-derived EVs was able to restrict the progression of fibrosis in UUO-induced rats. Together, BMSC-EVs suppress fibrosis in vitro and in vivo by delivering miR-181d to neighboring cells, where it targets KLF6 and inhibits the NF-κB signaling pathway.


Assuntos
Vesículas Extracelulares , Nefropatias , Células-Tronco Mesenquimais , MicroRNAs , Obstrução Ureteral , Animais , Colágeno Tipo I/metabolismo , Vesículas Extracelulares/metabolismo , Fibrose , Nefropatias/genética , Nefropatias/metabolismo , Fator 6 Semelhante a Kruppel/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Ratos , Transdução de Sinais , Obstrução Ureteral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...