Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.558
Filtrar
1.
Nat Commun ; 15(1): 2210, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472229

RESUMO

The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.


Assuntos
Proteínas Quinases , Transdução de Sinais , Proteínas Quinases/metabolismo , Fosforilação , Proteína de Replicação A/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Dano ao DNA , DNA de Cadeia Simples , Reparo do DNA
2.
PLoS Biol ; 22(3): e3002552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502677

RESUMO

Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.


Assuntos
Replicação do DNA , DNA de Cadeia Simples , Humanos , DNA de Cadeia Simples/genética , Replicação do DNA/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Ligação Proteica , Ubiquitinação , Dano ao DNA , Instabilidade Genômica , DNA Helicases/genética , DNA Helicases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Commun ; 15(1): 978, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302450

RESUMO

Besides the well-characterized protein network involved in the replication stress response, several regulatory RNAs have been shown to play a role in this critical process. However, it has remained elusive whether they act locally at the stressed forks. Here, by investigating the RNAs localizing on chromatin upon replication stress induced by hydroxyurea, we identified a set of lncRNAs upregulated in S-phase and controlled by stress transcription factors. Among them, we demonstrate that the previously uncharacterized lncRNA lncREST (long non-coding RNA REplication STress) is transcriptionally controlled by p53 and localizes at stressed replication forks. LncREST-depleted cells experience sustained replication fork progression and accumulate un-signaled DNA damage. Under replication stress, lncREST interacts with the protein NCL and assists in engaging its interaction with RPA. The loss of lncREST is associated with a reduced NCL-RPA interaction and decreased RPA on chromatin, leading to defective replication stress signaling and accumulation of mitotic defects, resulting in apoptosis and a reduction in tumorigenic potential of cancer cells. These findings uncover the function of a lncRNA in favoring the recruitment of replication proteins to sites of DNA replication.


Assuntos
Cromatina , RNA Longo não Codificante , Cromatina/genética , Replicação do DNA/genética , RNA Longo não Codificante/genética , Proteína de Replicação A/metabolismo , Fase S/genética , Dano ao DNA
4.
Genes (Basel) ; 15(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397158

RESUMO

Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA , Proteína de Replicação A , Humanos , DNA/metabolismo , Reparo do DNA/genética , DNA de Cadeia Simples , Fosforilação , Proteína de Replicação A/metabolismo
5.
Methods ; 223: 95-105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301751

RESUMO

DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.


Assuntos
DNA , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , DNA/genética , DNA de Cadeia Simples/genética , Aminoácidos , Bioensaio , Corantes
6.
J Mol Biol ; 436(6): 168491, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360091

RESUMO

Replication Protein A (RPA) is asingle strandedDNA(ssDNA)binding protein that coordinates diverse DNA metabolic processes including DNA replication, repair, and recombination. RPA is a heterotrimeric protein with six functional oligosaccharide/oligonucleotide (OB) domains and flexible linkers. Flexibility enables RPA to adopt multiple configurations andis thought to modulate its function. Here, usingsingle moleculeconfocal fluorescencemicroscopy combinedwith optical tweezers and coarse-grained molecular dynamics simulations, we investigated the diffusional migration of single RPA molecules on ssDNA undertension.The diffusioncoefficientDis the highest (20,000nucleotides2/s) at 3pNtension and in 100 mMKCl and markedly decreases whentensionor salt concentrationincreases. We attribute the tension effect to intersegmental transfer which is hindered by DNA stretching and the salt effect to an increase in binding site size and interaction energy of RPA-ssDNA. Our integrative study allowed us to estimate the size and frequency of intersegmental transfer events that occur through transient bridging of distant sites on DNA by multiple binding sites on RPA. Interestingly, deletion of RPA trimeric core still allowed significant ssDNA binding although the reduced contact area made RPA 15-fold more mobile. Finally, we characterized the effect of RPA crowding on RPA migration. These findings reveal how the high affinity RPA-ssDNA interactions are remodeled to yield access, a key step in several DNA metabolic processes.


Assuntos
DNA de Cadeia Simples , Proteína de Replicação A , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Ligação Proteica/genética , Proteína de Replicação A/química , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo
7.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203759

RESUMO

Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA-ssDNA and RPA-protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling. The recruitment of nucleases and DNA exchange factors to sites of double-strand breaks are also an important RPA function to ensure effective DNA recombination to correct these DNA lesions. Due to its high affinity to ssDNA, RPA's removal from ssDNA is of central importance to allow these metabolic pathways to proceed, and processes to exchange RPA against downstream factors are established in all eukaryotes. These faceted and multi-layered functions of RPA as well as its role in a variety of human diseases will be discussed.


Assuntos
Proteínas de Ligação a DNA , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , Proteínas de Ligação a DNA/genética , Replicação do DNA , Transdução de Sinais , Reparo do DNA , DNA de Cadeia Simples/genética , Endonucleases
8.
Nucleic Acids Res ; 52(2): 784-800, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000394

RESUMO

Activation-induced cytidine deaminase (AID) interacts with replication protein A (RPA), the major ssDNA-binding protein, to promote deamination of cytosine to uracil in transcribed immunoglobulin (Ig) genes. Uracil-DNA glycosylase (UNG) acts in concert with AID during Ig diversification. In addition, UNG preserves genome integrity by base-excision repair (BER) in the overall genome. How UNG is regulated to support both mutagenic processing and error-free repair remains unknown. UNG is expressed as two isoforms, UNG1 and UNG2, which both contain an RPA-binding helix that facilitates uracil excision from RPA-coated ssDNA. However, the impact of this interaction in antibody diversification and genome maintenance has not been investigated. Here, we generated B-cell clones with targeted mutations in the UNG RPA-binding motif, and analysed class switch recombination (CSR), mutation frequency (5' Ig Sµ), and genomic uracil in clones representing seven Ung genotypes. We show that the UNG:RPA interaction plays a crucial role in both CSR and repair of AID-induced uracil at the Ig loci. By contrast, the interaction had no significant impact on total genomic uracil levels. Thus, RPA coordinates UNG during CSR and pre-replicative repair of mutagenic uracil in ssDNA but is not essential in post-replicative and canonical BER of uracil in dsDNA.


Assuntos
Proteína de Replicação A , Uracila-DNA Glicosidase , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Reparo do DNA/genética , DNA de Cadeia Simples/genética , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , Imunoglobulinas/genética , Mutagênicos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Uracila/metabolismo , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Humanos , Animais , Camundongos
9.
Nucleic Acids Res ; 52(3): 1450-1470, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153196

RESUMO

The regulator of telomere elongation helicase 1 (RTEL1) plays roles in telomere DNA maintenance, DNA repair, and genome stability by dismantling D-loops and unwinding G-quadruplex structures. RTEL1 comprises a helicase domain, two tandem harmonin homology domains 1&2 (HHD1 and HHD2), and a Zn2+-binding RING domain. In vitro D-loop disassembly by RTEL1 is enhanced in the presence of replication protein A (RPA). However, the mechanism of RTEL1 recruitment at non-telomeric D-loops remains unknown. In this study, we have unravelled a direct physical interaction between RTEL1 and RPA. Under DNA damage conditions, we showed that RTEL1 and RPA colocalise in the cell. Coimmunoprecipitation showed that RTEL1 and RPA interact, and the deletion of HHDs of RTEL1 significantly reduced this interaction. NMR chemical shift perturbations (CSPs) showed that RPA uses its 32C domain to interact with the HHD2 of RTEL1. Interestingly, HHD2 also interacted with DNA in the in vitro experiments. HHD2 structure was determined using X-ray crystallography, and NMR CSPs mapping revealed that both RPA 32C and DNA competitively bind to HHD2 on an overlapping surface. These results establish novel roles of accessory HHDs in RTEL1's functions and provide mechanistic insights into the RPA-mediated recruitment of RTEL1 to DNA repair sites.


Assuntos
DNA Helicases , Proteína de Replicação A , Telômero , DNA/genética , Reparo do DNA , Replicação do DNA , Proteína de Replicação A/metabolismo , Telômero/metabolismo , Humanos , DNA Helicases/química , DNA Helicases/metabolismo
10.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081641

RESUMO

Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.


Assuntos
Rad51 Recombinase , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Rad51 Recombinase/genética , DNA de Cadeia Simples/genética , Reparo do DNA/genética , Recombinação Homóloga/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo
11.
J Transl Med ; 21(1): 738, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858134

RESUMO

BACKGROUND: Autophagy is involved in nasopharyngeal carcinoma (NPC) radioresistance. Replication protein A 1 (RPA1) and RPA3, substrates of the RPA complex, are potential therapeutic targets for reversing NPC radioresistance. Nevertheless, the role of RPA in autophagy is not adequately understood. This investigation was performed to reveal the cytotoxic mechanism of a pharmacologic RPA inhibitor (RPAi) in NPC cells and the underlying mechanism by which RPAi-mediated autophagy regulates NPC radiosensitivity. METHODS AND RESULTS: We characterized a potent RPAi (HAMNO) that was substantially correlated with radiosensitivity enhancement and proliferative inhibition of in vivo and in NPC cell lines in vitro. We show that the RPAi induced autophagy at multiple levels by inducing autophagic flux, AMPK/mTOR pathway activation, and autophagy-related gene transcription by decreasing glycolytic function. We hypothesized that RPA inhibition impaired glycolysis and increased NPC dependence on autophagy. We further demonstrated that combining autophagy inhibition with chloroquine (CQ) treatment or genetic inhibition of the autophagy regulator ATG5 and RPAi treatment was more effective than either approach alone in enhancing the antitumor response of NPC to radiation. CONCLUSIONS: Our study suggests that HAMNO is a potent RPAi that enhances radiosensitivity and induces autophagy in NPC cell lines by decreasing glycolytic function and activating autophagy-related genes. We suggest a novel treatment strategy in which pharmacological inhibitors that simultaneously disrupt RPA and autophagic processes improve NPC responsiveness to radiation.


Assuntos
Antineoplásicos , Autofagia , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Tolerância a Radiação , Proteína de Replicação A , Humanos , Antineoplásicos/uso terapêutico , Apoptose , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Proteína de Replicação A/antagonistas & inibidores , Proteína de Replicação A/genética , Proteína 5 Relacionada à Autofagia/genética
12.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834389

RESUMO

Replication protein A (RPA) is the major single-stranded DNA (ssDNA) binding protein that is essential for DNA replication and processing of DNA double-strand breaks (DSBs) by homology-directed repair pathways. Recently, small molecule inhibitors have been developed targeting the RPA70 subunit and preventing RPA interactions with ssDNA and various DNA repair proteins. The rationale of this development is the potential utility of such compounds as cancer therapeutics, owing to their ability to inhibit DNA replication that sustains tumor growth. Among these compounds, (1Z)-1-[(2-hydroxyanilino) methylidene] naphthalen-2-one (HAMNO) has been more extensively studied and its efficacy against tumor growth was shown to arise from the associated DNA replication stress. Here, we study the effects of HAMNO on cells exposed to ionizing radiation (IR), focusing on the effects on the DNA damage response and the processing of DSBs and explore its potential as a radiosensitizer. We show that HAMNO by itself slows down the progression of cells through the cell cycle by dramatically decreasing DNA synthesis. Notably, HAMNO also attenuates the progression of G2-phase cells into mitosis by a mechanism that remains to be elucidated. Furthermore, HAMNO increases the fraction of chromatin-bound RPA in S-phase but not in G2-phase cells and suppresses DSB repair by homologous recombination. Despite these marked effects on the cell cycle and the DNA damage response, radiosensitization could neither be detected in exponentially growing cultures, nor in cultures enriched in G2-phase cells. Our results complement existing data on RPA inhibitors, specifically HAMNO, and suggest that their antitumor activity by replication stress induction may not extend to radiosensitization. However, it may render cells more vulnerable to other forms of DNA damaging agents through synthetically lethal interactions, which requires further investigation.


Assuntos
Neoplasias , Proteína de Replicação A , Humanos , Proteína de Replicação A/metabolismo , Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Reparo do DNA , Dano ao DNA , DNA , Mitose , DNA de Cadeia Simples
13.
J Assist Reprod Genet ; 40(11): 2739-2750, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831348

RESUMO

PURPOSE: To investigate the expression and underlying mechanism of RPA2 in endometrium of patients with repeated implantation failure (RIF). METHODS: In this study, we retrieved the expression profiles from GEO databases and filtered the differentially expressed genes between RIF and the fertile control group. Ultimately, RPA2 was confirmed as a target gene. RPA2 expression in endometrial tissues of RIF patients, the control group, and different phases was detected by RT-qPCR, immunohistochemistry, and Western blotting. The role of RPA2 in endometrial decidualization was performed by in vitro decidualization inducing by 8-Br-cAMP and MPA. Furthermore, RT-qPCR was used to detect changes in the decidual biomarkers after transfection of RPA2 overexpression vector in human endometrium stromal cell (HESC). RESULTS: RPA2 was significantly upregulated in the mid-secretory endometrium of patients with RIF. As a proliferation-related gene, RPA2 was obviously higher expressed at proliferative phase during the normal menstrual cycles. Moreover, the downregulation of RPA2 was discovered during decidualization of HESC. Furthermore, RPA2 overexpression impaired decidualization by inhibiting the expression of prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1). CONCLUSIONS: Our finding indicated that aberrant upregulation of RPA2 attenuated decidualization of HESC in RIF women and provided new potential therapeutic targets.


Assuntos
Decídua , Endométrio , Humanos , Feminino , Decídua/metabolismo , Endométrio/metabolismo , Fertilidade , Biomarcadores/metabolismo , Imuno-Histoquímica , Células Estromais/metabolismo , Implantação do Embrião/genética , Proteína de Replicação A/metabolismo
14.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37827155

RESUMO

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Assuntos
Proteína de Replicação A , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Camundongos , DNA/genética , Reparo de Erro de Pareamento de DNA , Doença de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Proteína de Replicação A/metabolismo
15.
Nucleic Acids Res ; 51(19): 10506-10518, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37739410

RESUMO

Replication protein A (RPA) binds single-stranded DNA (ssDNA) and serves critical functions in eukaryotic DNA replication, the DNA damage response, and DNA repair. During DNA replication, RPA is required for extended origin DNA unwinding and DNA synthesis. To determine the requirements for RPA during these processes, we tested ssDNA-binding proteins (SSBs) from different domains of life in reconstituted Saccharomyces cerevisiae origin unwinding and DNA replication reactions. Interestingly, Escherichia coli SSB, but not T4 bacteriophage Gp32, fully substitutes for RPA in promoting origin DNA unwinding. Using RPA mutants, we demonstrated that specific ssDNA-binding properties of RPA are required for origin unwinding but that its protein-interaction domains are dispensable. In contrast, we found that each of these auxiliary RPA domains have distinct functions at the eukaryotic replication fork. The Rfa1 OB-F domain negatively regulates lagging-strand synthesis, while the Rfa2 winged-helix domain stimulates nascent strand initiation. Together, our findings reveal a requirement for specific modes of ssDNA binding in the transition to extensive origin DNA unwinding and identify RPA domains that differentially impact replication fork function.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Proteína de Replicação A , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Bacteriófago T4/metabolismo
16.
Elife ; 122023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668474

RESUMO

The heterotrimeric Replication protein A (RPA) is the ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein and participates in nearly all aspects of DNA metabolism, especially DNA damage response. The N-terminal OB domain of the RPA70 subunit (RPA70N) is a major protein-protein interaction element for RPA and binds to more than 20 partner proteins. Previous crystallography studies of RPA70N with p53, DNA2 and PrimPol fragments revealed that RPA70N binds to amphipathic peptides that mimic ssDNA. NMR chemical-shift studies also provided valuable information on the interaction of RPA70N residues with target sequences. However, it is still unclear how RPA70N recognizes and distinguishes such a diverse group of target proteins. Here, we present high-resolution crystal structures of RPA70N in complex with peptides from eight DNA damage response proteins. The structures show that, in addition to the ssDNA mimicry mode of interaction, RPA70N employs multiple ways to bind its partners. Our results advance the mechanistic understanding of RPA70N-mediated recruitment of DNA damage response proteins.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , Proteína de Replicação A , Humanos , Cristalografia , Dano ao DNA , DNA Primase , DNA Polimerase Dirigida por DNA , Eucariotos , Enzimas Multifuncionais
17.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1864-1873, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37559455

RESUMO

DNA double-strand break (DSB) repair by homologous recombination (HR) is crucial for the maintenance of genome stability and integrity. In this study, we aim to identify novel RNA binding proteins (RBPs) involved in HR repair because little is known about RBP function in HR. For this purpose, we carry out pulldown assays using a synthetic ssDNA/dsDNA structure coated with replication protein A (RPA) to mimic resected DNA, a crucial intermediate in HR-mediated DSB repair. Using this approach, we identify RNA-binding motif protein 14 (RBM14) as a potential binding partner. We further show that RBM14 interacts with an essential HR repair factor, CtIP. RBM14 is crucial for CtIP recruitment to DSB sites and for subsequent RPA coating and RAD51 replacement, facilitating efficient HR repair. Moreover, inhibition of RBM14 expression sensitizes cancer cells to X-ray irradiation. Together, our results demonstrate that RBM14 promotes DNA end resection to ensure HR repair and may serve as a potential target for cancer therapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Reparo do DNA , Recombinação Homóloga , Proteína de Replicação A/genética , DNA/genética , Reparo do DNA por Junção de Extremidades
18.
Nucleic Acids Res ; 51(17): 9227-9247, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37560909

RESUMO

Malignant cancers must activate telomere maintenance mechanisms to achieve replicative immortality. Mutations in the human Protection of Telomeres 1 (POT1) gene are frequently detected in cancers with abnormally long telomeres, suggesting that the loss of POT1 function disrupts the regulation of telomere length homeostasis to promote telomere elongation. However, our understanding of the mechanisms leading to elongated telomeres remains incomplete. The mouse genome encodes two POT1 proteins, POT1a and POT1b possessing separation of hPOT1 functions. We performed serial transplantation of Pot1b-/- sarcomas to better understand the role of POT1b in regulating telomere length maintenance. While early-generation Pot1b-/- sarcomas initially possessed shortened telomeres, late-generation Pot1b-/- cells display markedly hyper-elongated telomeres that were recognized as damaged DNA by the Replication Protein A (RPA) complex. The RPA-ATR-dependent DNA damage response at telomeres promotes telomerase recruitment to facilitate telomere hyper-elongation. POT1b, but not POT1a, was able to unfold G-quadruplex present in hyper-elongated telomeres to repress the DNA damage response. Our findings demonstrate that the repression of the RPA-ATR DDR is conserved between POT1b and human POT1, suggesting that similar mechanisms may underly the phenotypes observed in human cancers harboring human POT1 mutations.


Assuntos
Sarcoma , Complexo Shelterina , Camundongos , Humanos , Animais , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Dano ao DNA , Proteína de Replicação A/metabolismo , Proteínas de Ligação a DNA/genética
19.
PLoS Genet ; 19(7): e1010856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463174

RESUMO

Premature telomere shortening is a known factor correlated to idiopathic pulmonary fibrosis (IPF) occurrence, which is a chronic, progressive, age-related disease with high mortality. The etiology of IPF is still unknown. Here, we found that UBQLN1 plays a key role in telomere length maintenance and is potentially relevant to IPF. UBQLN1 involves in DNA replication by interacting with RPA1 and shuttling it off from the replication fork. The deficiency of UBQLN1 retains RPA1 at replication fork, hinders replication and thus causes cell cycle arrest and genome instability. Especially at telomere regions of the genome, where more endogenous replication stress exists because of G rich sequences, UBQLN1 depletion leads to rapid telomere shortening in HeLa cells. It revealed that UBQLN1 depletion also shortens telomere length at mouse lung and accelerates mouse lung fibrosis. In addition, the UBQLN1 expression level in IPF patients is downregulated and correlated to poor prognosis. Altogether, these results uncover a new role of UBQLN1 in ensuring DNA replication and maintaining telomere stability, which may shed light on IPF pathogenesis and prevention.


Assuntos
Fibrose Pulmonar Idiopática , Encurtamento do Telômero , Humanos , Animais , Camundongos , Encurtamento do Telômero/genética , Células HeLa , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/patologia , Homeostase do Telômero , Telômero/genética , Proteína de Replicação A/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
20.
Nat Commun ; 14(1): 4390, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474515

RESUMO

Replication Protein A (RPA) is a broadly conserved complex comprised of the RPA1, 2 and 3 subunits. RPA protects the exposed single-stranded DNA (ssDNA) during DNA replication and repair. Using structural modeling, we discover an inhibitor, JC-229, that targets RPA1 in Trypanosoma brucei, the causative parasite of African trypanosomiasis. The inhibitor is highly toxic to T. brucei cells, while mildly toxic to human cells. JC-229 treatment mimics the effects of TbRPA1 depletion, including DNA replication inhibition and DNA damage accumulation. In-vitro ssDNA-binding assays demonstrate that JC-229 inhibits the activity of TbRPA1, but not the human ortholog. Indeed, despite the high sequence identity with T. cruzi and Leishmania RPA1, JC-229 only impacts the ssDNA-binding activity of TbRPA1. Site-directed mutagenesis confirms that the DNA-Binding Domain A (DBD-A) in TbRPA1 contains a JC-229 binding pocket. Residue Serine 105 determines specific binding and inhibition of TbRPA1 but not T. cruzi and Leishmania RPA1. Our data suggest a path toward developing and testing highly specific inhibitors for the treatment of African trypanosomiasis.


Assuntos
Doença de Chagas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Trypanosoma brucei brucei/genética , Proteína de Replicação A/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...