Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.197
Filtrar
2.
Med Sci Monit ; 30: e942819, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38389296

RESUMO

BACKGROUND Serum creatinine, the criterion standard in assessment of renal function, is not reliable for the neonatal period because of its dependence on renal immaturity and maternal creatinine levels. Thus, it is important to study other biomarkers of renal function in neonates. The present study aimed to measure the urinary concentration of renal biomarkers: calbindin, clusterin, GST-pi (glutathione-S-transferase-alpha), KIM-1 (kidney injury molecule 1), MCP-1 (monocyte chemoattractant protein-1), and B2M (beta 2-microglobulin) in healthy term neonates. MATERIAL AND METHODS In the study, we included 80 healthy term neonates - 40 females and 40 males. We collected the neonates' urine on their first day of life. Urinary concentrations of calbindin, clusterin, KIM-1, MCP-1, and B2M were assessed using an immunoassay for kidney toxicology research. Because dilution of the urine affects the concentrations of urinary biomarkers, we normalized them to the concentration of urinary creatinine (Cr) and present them as biomarker/Cr ratios. RESULTS We obtained the following values of the assessed biomarker/Cr ratios (median [Q1-Q3]): calbindin/Cr.: 197.04 (56.25-595.17), KIM-1/Cr: 0.09 (0.04-0.18), MCP-1/Cr: 0.05 (0.02-0.14), B2M/Cr: 126.12 (19.03-342.48), GST-pi/Cr in boys: 1.28 (0.46-3.77), GST-pi/Cr in girls: 8.66 (2.51-27.82), clusterin/Cr: 4.55 (1.79-12.97) ng/mg Cr. CONCLUSIONS We showed the urinary levels of calbindin, clusterin, GST-pi, KIM-1, MCP-1, B2M in white, West Slavic, healthy term neonates. We found that in there is an association between female sex and a higher urinary GST-pi excretion, but urinary excretion of calbindin, clusterin, KIM-1, MCP-1, and B2M is sex-independent. The urinary levels of the assessed biomarkers do not depend on the method of delivery.


Assuntos
Clusterina , Rim , Masculino , Recém-Nascido , Humanos , Feminino , Creatinina , Fatores Sexuais , Biomarcadores , Calbindinas
3.
Front Immunol ; 15: 1330095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333209

RESUMO

Introduction: The complement system is part of innate immunity and is comprised of an intricate network of proteins that are vital for host defense and host homeostasis. A distinct mechanism by which complement defends against invading pathogens is through the membrane attack complex (MAC), a lytic structure that forms on target surfaces. The MAC is made up of several complement components, and one indispensable component of the MAC is C7. The role of C7 in MAC assembly is well documented, however, inherent characteristics of C7 are yet to be investigated. Methods: To shed light on the molecular characteristics of C7, we examined the properties of serum-purified C7 acquired using polyclonal and novel monoclonal antibodies. The properties of serum­purified C7 were investigated through a series of proteolytic analyses, encompassing Western blot and mass spectrometry. The nature of C7 protein-protein interactions were further examined by a novel enzyme-linked immunosorbent assay (ELISA), as well as size­exclusion chromatography. Results: Protein analyses showcased an association between C7 and clusterin, an inhibitory complement regulator. The distinct association between C7 and clusterin was also demonstrated in serum-purified clusterin. Further assessment revealed that a complex between C7 and clusterin (C7-CLU) was detected. The C7-CLU complex was also identified in healthy serum and plasma donors, highlighting the presence of the complex in circulation. Discussion: Clusterin is known to dissociate the MAC structure by binding to polymerized C9, nevertheless, here we show clusterin binding to the native form of a terminal complement protein in vivo. The presented data reveal that C7 exhibits characteristics beyond that of MAC assembly, instigating further investigation of the effector role that the C7-CLU complex plays in the complement cascade.


Assuntos
Clusterina , Complemento C7 , Complemento C7/metabolismo , Proteínas do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Ativação do Complemento
4.
Cancer Metastasis Rev ; 43(1): 379-391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319453

RESUMO

Intra-tumoural heterogeneity and cancer cell plasticity in colorectal cancer (CRC) have been key challenges to effective treatment for patients. It has been suggested that a subpopulation of LGR5-expressing cancer stem cells (CSCs) is responsible for driving tumour relapse and therapy resistance in CRC. However, studies have revealed that the LGR5+ve CSC population is highly sensitive to chemotherapy. It has been hypothesised that another subset of tumour cells can phenotypically revert to a stem-like state in response to chemotherapy treatment which replenishes the LGR5+ve CSC population and maintains tumour growth. Recently, a unique stem cell population marked by enriched clusterin (CLU) expression and termed the revival stem cell (RevSC) was identified in the regenerating murine intestine. This CLU-expressing cell population is quiescent during homeostasis but has the ability to survive and regenerate other stem cells upon injury. More recently, the CLU+ve signature has been implicated in several adverse outcomes in CRC, including chemotherapy resistance and poor patient survival; however, the mechanism behind this remains undetermined. In this review, we discuss recent insights on CLU in CRC and its roles in enhancing the plasticity of cells and further consider the implications of CLU as a prospective target for therapeutic intervention.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Clusterina/metabolismo , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia
5.
PLoS One ; 19(2): e0298133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363768

RESUMO

Alterations in von Willebrand factor (VWF) have an important role in human health and disease. Deficiency of VWF is associated with symptoms of bleeding and excesses of VWF are associated with thrombotic outcomes. Understanding the mechanisms that drive VWF regulation can lead to a better understanding of modulation of VWF levels in humans. We identified clusterin (CLU) as a potential candidate regulator of VWF based on a single cell RNA sequencing (scRNA-seq) analysis in control endothelial cells (ECs) and von Willebrand disease (VWD) endothelial colony-forming-cells (ECFCs). We found that patients with deficiencies of VWF (von Willebrand disease, VWD) had decreased CLU expression and ECs with low VWF expression also had low CLU expression. Based on these findings, we sought to evaluate the role of CLU in the regulation of VWF, specifically as it relates to VWD. As CLU is primarily thought to be a golgi protein involved in protein chaperoning, we hypothesized that knockdown of CLU would lead to decreases in VWF and alterations in Weibel-Palade bodies (WPBs). We used both siRNA- and CRISPR-Cas9-based approaches to modulate CLU in human umbilical vein endothelial cells (HUVECs) and evaluated VWF protein levels, VWF mRNA copy number, and WPB quantity and size. We demonstrated that siRNA-based knockdown of CLU resulted in decreases in VWF content in cellular lysates and supernatants, but no significant change in WPB quantity or size. A CRISPR-Cas9-based knockdown of CLU demonstrated similar findings of decreases in intracellular VWF content but no significant change in WPB quantity or size. Our data suggests that CLU knockdown is associated with decreases in cellular VWF content but does not affect VWF mRNA levels or WPB quantity or size.


Assuntos
Clusterina , Fator de von Willebrand , Humanos , Células Cultivadas , Clusterina/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Doenças de von Willebrand , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Corpos de Weibel-Palade/metabolismo
6.
Eur J Med Res ; 29(1): 31, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184629

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive deterioration of upper and lower motor neurons. A definitive diagnostic test or biomarker for ALS is currently unavailable, leading to a diagnostic delay following the onset of initial symptoms. Our study focused on cerebrospinal fluid (CSF) concentrations of clusterin, tau protein, phosphorylated tau protein, and beta-amyloid1-42 in ALS patients and a control group. METHODS: Our study involved 54 ALS patients and 58 control subjects. Among the ALS patients, 14 presented with bulbar-onset ALS, and 40 with limb-onset ALS. We quantified biomarker levels using enzyme-linked immunosorbent assay (ELISA) and compared the results using the Mann-Whitney U-test. RESULTS: Significant elevations in neurodegenerative markers, including tau protein (p < 0.0001), phosphorylated tau protein (p < 0.0001), and clusterin (p = 0.038), were observed in ALS patients compared to controls. Elevated levels of tau protein and phosphorylated tau protein were also noted in both bulbar and limb-onset ALS patients. However, no significant difference was observed for beta-amyloid1-42. ROC analysis identified tau protein (AUC = 0.767) and p-tau protein (AUC = 0.719) as statistically significant predictors for ALS. CONCLUSION: Our study demonstrates that neurodegenerative marker levels indicate an ongoing neurodegenerative process in ALS. Nonetheless, the progression of ALS cannot be predicted solely based on these markers. The discovery of a specific biomarker could potentially complement existing diagnostic criteria for ALS.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/diagnóstico , Clusterina , Diagnóstico Tardio , Proteínas tau , Biomarcadores
7.
Neuroscience ; 540: 38-47, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242280

RESUMO

Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We found that MPTP administration induced prolonged pole-climbing time, shortened traction time and rotarod time, significantly decreased TH protein expression in the SN tissue of mice. In contrast, sCLU -treated mice took less time to climb the pole and had an extended traction time and rotating rod time. Meanwhile, sCLU intervention induced increased expression of the TH protein in the SN of mice. These results indicated that sCLU intervention could reduce the loss of dopamine neurons in the SN area and alleviate dyskinesia in mice. Furthermore, MPTP led to suppressed viability, enhanced apoptosis, an increased Bax/Bcl-2 ratio, and cleaved caspase-3 in the SN of mice, and these effects were abrogated by sCLU intervention. In addition, MPTP increased the levels of P62 protein, decreased Beclin1 protein, decreased the ratio of LC3B-II/LC3B-I, and decreased the numbers of autophagosomes and autophagolysosomes in the SN tissues of mice. These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Apoptose , Autofagia , Clusterina/metabolismo , Clusterina/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Br J Pharmacol ; 181(5): 670-680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37696768

RESUMO

BACKGROUND AND PURPOSE: Vancomycin is one of the most common clinical antibiotics, yet acute kidney injury is a major limiting factor. Common combinations of antibiotics with vancomycin have been reported to worsen and improve vancomycin-induced kidney injury. We aimed to study the impact of flucloxacillin and imipenem-cilastatin on kidney injury when combined with vancomycin in our translational rat model. EXPERIMENTAL APPROACH: Male Sprague-Dawley rats received allometrically scaled (1) vancomycin, (2) flucloxacillin, (3) vancomycin + flucloxacillin, (4) vancomycin + imipenem-cilastatin or (5) saline for 4 days. Kidney injury was evaluated via drug accumulation and urinary biomarkers including urinary output, kidney injury molecule-1 (KIM-1), clusterin and osteopontin. Relationships between vancomycin accumulation in the kidney and urinary kidney injury biomarkers were explored. KEY RESULTS: Urinary output increased every study day for vancomycin + flucloxacillin, but after the first dose only in the vancomycin group. In the vancomycin + flucloxacillin group, urinary KIM-1 increased on all days compared with vancomycin. In the vancomycin + imipenem-cilastatin group, urinary KIM-1 was decreased on Days 1 and 2 compared with vancomycin. Similar trends were observed for clusterin. More vancomycin accumulated in the kidney with vancomycin + flucloxacillin compared with vancomycin and vancomycin + imipenem-cilastatin. The accumulation of vancomycin in the kidney tissue correlated with increasing urinary KIM-1. CONCLUSIONS AND IMPLICATIONS: Vancomycin + flucloxacillin caused more kidney injury compared with vancomycin alone and vancomycin + imipenem-cilastatin in a translational rat model. The combination of vancomycin + imipenem-cilastatin was nephroprotective.


Assuntos
Floxacilina , Vancomicina , Ratos , Masculino , Animais , Combinação Imipenem e Cilastatina , Vancomicina/farmacologia , Clusterina , Ratos Sprague-Dawley , Antibacterianos , Rim , Biomarcadores , Combinação de Medicamentos
9.
Anticancer Drugs ; 35(3): 227-236, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085677

RESUMO

Ferroptosis is a novel form of cell death, which is distinguished from apoptosis and necrosis, and characterized by accumulation of lipid-based reactive oxygen species (ROS) in an iron-dependent manner. Erastin, a small molecule, was widely reported to trigger ferroptosis in various kinds of cancer cells, including pancreatic cancer cells by inducing ROS accumulation. However, how erastin treatment exerts cytotoxicity is not still fully understood. In this study, the effects of erastin in causing pancreatic cancer cell death via inducing ferroptosis and apoptosis are investigated. As expected, erastin treatment caused ROS accumulation, increase in iron concentration and non-apoptotic cell death, which is different from that of induced by apoptosis inducer, staurosporine. Interestingly, erastin treatment caused the upregulation of clusterin, which contributes to the regulation of malignant behaviors of pancreatic cancer, including preventing apoptosis and inducing chemoresistance. Without erastin treatment, overexpressed clusterin significantly promoted cell proliferation, which is consistent with its cytoprotective roles. After erastin treatment, overexpressed clusterin decreased erastin-induced ROS accumulation and cell death. By measuring iron concentration, reduced glutathione (GSH) and glutathione peroxidase 4 (GPX4), it is revealed that clusterin caused resistance to erastin-induced ferroptosis potentially via maintaining the enzymatic activity of GPX4, without disturbing GSH amount. Thus, ferroptosis inducer, erastin, may crosstalk with apoptotic cell death via regulating clusterin, indicating a more complex regulatory network between ferroptosis and apoptosis.


Assuntos
Adenocarcinoma , Clusterina , Ferroptose , Neoplasias Pancreáticas , Piperazinas , Humanos , Adenocarcinoma/tratamento farmacológico , Clusterina/metabolismo , Ferroptose/efeitos dos fármacos , Ferro/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Piperazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
10.
Oncoimmunology ; 13(1): 2294564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38125724

RESUMO

Dendritic cells (DCs) play a key role in the induction of the adaptive immune response. They capture antigens in peripheral tissues and prime naïve T lymphocytes, triggering the adaptive immune response. In the course of inflammatory processes DCs face stressful conditions including hypoxia, low pH and high concentrations of reactive oxygen species (ROS), among others. How DCs survive under these adverse conditions remain poorly understood. Clusterin is a protein highly expressed by tumors and usually associated with bad prognosis. It promotes cancer cell survival by different mechanisms such as apoptosis inhibition and promotion of autophagy. Here, we show that, upon maturation, human monocyte-derived DCs (MoDCs) up-regulate clusterin expression. Clusterin protects MoDCs from ROS-mediated toxicity, enhancing DC survival and promoting their ability to induce T cell activation. In line with these results, we found that clusterin is expressed by a population of mature LAMP3+ DCs, called mregDCs, but not by immature DCs in human cancer. The expression of clusterin by intratumoral DCs was shown to be associated with a transcriptomic profile indicative of cellular response to stress. These results uncover an important role for clusterin in DC physiology.


Assuntos
Clusterina , Neoplasias , Humanos , Morte Celular , Clusterina/genética , Clusterina/metabolismo , Células Dendríticas , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T
11.
J Neuroinflammation ; 20(1): 298, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093257

RESUMO

BACKGROUND: Brain innate immune activation is associated with Alzheimer's disease (AD), but degrees of activation may vary between disease stages. Thus, brain innate immune activation must be assessed in longitudinal clinical studies that include biomarker negative healthy controls and cases with established AD pathology. Here, we employ longitudinally sampled cerebrospinal fluid (CSF) core AD, immune activation and glial biomarkers to investigate early (predementia stage) innate immune activation levels and biomarker profiles. METHODS: We included non-demented cases from a longitudinal observational cohort study, with CSF samples available at baseline (n = 535) and follow-up (n = 213), between 1 and 6 years from baseline (mean 2.8 years). We measured Aß42/40 ratio, p-tau181, and total-tau to determine Ab (A+), tau-tangle pathology (T+), and neurodegeneration (N+), respectively. We classified individuals into these groups: A-/T-/N-, A+/T-/N-, A+/T+ or N+, or A-/T+ or N+. Using linear and mixed linear regression, we compared levels of CSF sTREM2, YKL-40, clusterin, fractalkine, MCP-1, IL-6, IL-1, IL-18, and IFN-γ both cross-sectionally and longitudinally between groups. A post hoc analysis was also performed to assess biomarker differences between cognitively healthy and impaired individuals in the A+/T+ or N+ group. RESULTS: Cross-sectionally, CSF sTREM2, YKL-40, clusterin and fractalkine were higher only in groups with tau pathology, independent of amyloidosis (p < 0.001, A+/T+ or N+ and A-/T+ or N+, compared to A-/T-/N-). No significant group differences were observed for the cytokines CSF MCP-1, IL-6, IL-10, IL18 or IFN-γ. Longitudinally, CSF YKL-40, fractalkine and IFN-γ were all significantly lower in stable A+/T-/N- cases (all p < 0.05). CSF sTREM2, YKL-40, clusterin, fractalkine (p < 0.001) and MCP-1 (p < 0.05) were all higher in T or N+, with or without amyloidosis at baseline, but remained stable over time. High CSF sTREM2 was associated with preserved cognitive function within the A+/T+ or N+ group, relative to the cognitively impaired with the same A/T/N biomarker profile (p < 0.01). CONCLUSIONS: Immune hypoactivation and reduced neuron-microglia communication are observed in isolated amyloidosis while activation and increased fractalkine accompanies tau pathology in predementia AD. Glial hypo- and hyperactivation through the predementia AD continuum suggests altered glial interaction with Ab and tau pathology, and may necessitate differential treatments, depending on the stage and patient-specific activation patterns.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Doença de Alzheimer/patologia , Proteína 1 Semelhante à Quitinase-3 , Quimiocina CX3CL1 , Clusterina , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Interleucina-6 , Biomarcadores/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
12.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834086

RESUMO

Colorectal cancer is the third most diagnosed cancer, behind only breast and lung cancer. In terms of overall mortality, it ranks second due to, among other factors, problems with screening programs, which means that one of the factors that directly impacts survival and treatment success is early detection of the disease. Clusterin (CLU) is a molecular chaperone that has been linked to tumorigenesis, cancer progression and resistance to anticancer treatments, which has made it a promising drug target. However, it is still necessary to continue this line of research and to adjust the situations in which its use is more favorable. The aim of this paper is to review the current genetic knowledge on the role of CLU in tumorigenesis and cancer progression in general, and discuss its possible use as a therapeutic target in colorectal cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Humanos , Clusterina/genética , Clusterina/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Colorretais/genética , Carcinogênese
13.
Pathol Res Pract ; 251: 154892, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898038

RESUMO

Endometriotic cells exhibit a notable degree of invasiveness and some characteristics of tissue remodeling underlying lesion formation. In this regard, do matrix metalloproteinases 14 (MMP14) and other related genes such as SPARC-like protein 1 (SPARCL1), caveolin 2 (CAV2), and clusterin (CLU) exert any significant influence in the processes of endometriosis development and pathophysiology is not apparent. We aim to assess whether these genes could serve as potential diagnostic biomarkers in endometriosis. Microarray-based gene expression analysis was performed on total RNA extracted from endometriotic tissue samples treated with and without gonadotropin-releasing hormone agonist (GnRHa). The GnRHa untreated patients were considered the control group. The validation of genes was performed using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis showed significant downregulation in the expression of MMP14 (p = 0.024), CAV2 (p = 0.017), and upregulation of CLU (p = 0.005) in endometriosis patients treated with GnRHa. SPARCL1 did not show any significant (p = 0.30) change in the expression compared to the control group. These data have the potential to contribute to the comprehension of the molecular pathways implicated in the remodeling of the extracellular matrix, which is a vital step for the physiology of the endometrium. Based on the result, it is concluded that changes in the expression of MMP14, CAV2, and CLU post-treatment imply their role in the pathophysiology of endometriosis and may serve as a potential diagnostic biomarker of endometriosis in response to GnRHa treatment in patients with ovarian endometrioma.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/patologia , Clusterina/genética , Clusterina/metabolismo , Caveolina 2/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Endométrio/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/genética
14.
Sci Rep ; 13(1): 18428, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891219

RESUMO

Platelet-rich plasma (PRP) has gained significant attention in the field of regenerative medicine due to its potential therapeutic applications. However, few studies have reported the components, especially anti-ageing-related components, of PRP derived from umbilical cord blood (UCB). It is essential to understand the influence of age on the composition and efficacy of PRP to optimize its clinical use. The present study compared the concentrations of bioactive components in PRP from healthy female adults and UCB-derived PRP. PRP was obtained from blood samples from females in four age groups (12 per group): neonates (UCB donors) and adults aged 18-25, 26-45, and 46-65 years, respectively. The concentrations of epidermal growth factor, basic fibroblast growth factor-2 (FGF-2), insulin-like growth factor-1, platelet-derived growth factor-AA (PDGF-AA), PDGF-AB/BB, vascular endothelial growth factor A, RANTES, TIMP-1, TIMP-2, GDF11, and clusterin and activity of superoxide dismutase, catalase, and glutathione peroxidase (GPx) in the PRP samples were determined and compared among groups. Pairwise comparisons between the groups showed statistically significant differences in the concentrations of some bioactive components of PRP, such as FGF-2, PDGF-AB/BB, and clusterin, and GPx activity. UCB-derived PRP contains various active ingredients such as VEGF-A, CAT activity, and TIMP-2. Contrary to expectations, UCB-derived PRP did not show higher concentrations of the anti-ageing protein GDF11. Because UCB is a rich source of bioactive components with low immunogenicity, its use in PRP preparation is an important research direction for future studies.


Assuntos
Plasma Rico em Plaquetas , Fator A de Crescimento do Endotélio Vascular , Recém-Nascido , Humanos , Adulto , Feminino , Adolescente , Adulto Jovem , Clusterina , Inibidor Tecidual de Metaloproteinase-2 , Sangue Fetal , Fator 2 de Crescimento de Fibroblastos , Becaplermina , Proteínas Morfogenéticas Ósseas , Fatores de Diferenciação de Crescimento
15.
Am J Physiol Renal Physiol ; 325(6): F888-F898, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733876

RESUMO

Significant loss of kidney function is not easily identified by serum creatinine (sCr)-based measurements. In the presence of normal sCr, decreased kidney functional reserve (KFR) may identify a significant loss of function. We evaluated KFR in experimental subclinical chronic kidney disease (sCKD) before and after brief ischemia-reperfusion injury (IRI). Using fluorescein isothiocyanate-labeled sinistrin, glomerular filtration rate (GFR) was measured transcutaneously before and after adenine-induced sCKD, and 1 and 2 wk after brief IRI, and compared with urinary kidney damage biomarkers. sCKD reduced stimulated and unstimulated GFR by ∼20% while reducing KFR by 50%. IRI reduced unstimulated GFR for 14 days, but KFR remained relatively unchanged in sCKD and transiently increased in control kidneys at 7 days. sCr increased and creatinine clearance (CrCl) decreased only immediately after IRI; sCr and CrCl correlated poorly with measured GFR except on day 1 after IRI. Heterogeneity in sCr and CrCl resulted from variation in tubular creatinine secretion. The increase in damage biomarker concentrations persisted for up to 14 days after IRI, allowing retrospective detection of sCKD before AKI by urine clusterin/urine kidney injury molecule-1 with an area under the curve of 1.0. sCr and CrCl are unreliable unless sCr is acutely elevated. Measurement of KFR and urine damage biomarker excretion detected sCKD despite normal sCr and CrCl. After IRI, the urine clusterin-to-urine kidney injury molecule-1 ratio may identify prior sCKD.NEW & NOTEWORTHY Early kidney function loss is poorly identified by serum creatinine (sCr)-based measurements. Direct kidney functional reserve (KFR) measurement before kidney injury and elevated urinary biomarkers clusterin and kidney injury molecule-1 detect subclinical chronic kidney disease (sCKD) after kidney injury despite normal range sCr and creatinine clearance. Reliance on sCr masks underlying sCKD. Acute kidney injury risk evaluation requires direct glomerular filtration rate measurement and KFR, whereas kidney damage biomarkers facilitate identification of prior subclinical injury.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Creatinina , Clusterina , Estudos Retrospectivos , Rim , Injúria Renal Aguda/induzido quimicamente , Insuficiência Renal Crônica/diagnóstico , Taxa de Filtração Glomerular , Biomarcadores
16.
Sci Rep ; 13(1): 15405, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717073

RESUMO

Psoriasis, a chronic and systemic inflammatory disorder characterized by activation of the interleukin (IL)-23/IL-17 axis, may be associated with the intestinal microbiota through the so-called "gut-skin axis." Clusterin is a glycoprotein ubiquitously distributed in mammalian tissues; however, its role in psoriasis is unclear. Therefore, we evaluated the role of clusterin in psoriatic skin inflammation, systemic inflammation, and colitis using a murine model of IMQ-induced psoriasis. In IMQ-treated clusterin-knockout (clusterin-/-) mice, the expressions of inflammatory cytokines in clusterin-silenced human keratinocytes and intestinal microbial composition were analyzed. We also examined clusterin expression in the skin tissues of patients with psoriasis. IMQ-induced psoriatic skin inflammation is suppressed in clusterin-/- mice. Long-term administration of IMQ induced systemic inflammation and colitis; however, both were alleviated by the genetic deletion of clusterin. Genetic silencing of clusterin in human keratinocytes inhibited the production of inflammatory cytokines involved in the initiation and progression of psoriasis. The composition of the intestinal microbiota in IMQ-treated clusterin-/- and wild-type mice was different. Genetic deletion of clusterin suppressed the increase in the Firmicutes/Bacteroidetes (F/B) ratio. Skin tissues of patients with psoriasis showed high clusterin expression. In conclusion, inhibition of clusterin decreased psoriatic skin inflammation, systemic inflammation, colitis, and altered the F/B ratio in an IMQ-induced murine psoriasis model.


Assuntos
Colite , Dermatite , Microbioma Gastrointestinal , Psoríase , Humanos , Animais , Camundongos , Clusterina/genética , Psoríase/induzido quimicamente , Psoríase/genética , Colite/induzido quimicamente , Colite/genética , Inflamação , Bacteroidetes , Citocinas , Firmicutes , Mamíferos
17.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685987

RESUMO

Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.


Assuntos
Clusterina , Oftalmopatias , Neoplasias , Animais , Humanos , Masculino , Comunicação Celular , Clusterina/genética , Oftalmopatias/genética , Neoplasias/genética , Sêmen , Ovinos , Cicatrização
18.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686218

RESUMO

Dysregulation of clusterin (CLU) has been demonstrated in many cancers and has been proposed as a regulator of carcinogenesis. However, the roles of CLU in gliomas remain unclear. The expression of CLU was assessed using TIMER2.0, GEPIA2, and R package 4.2.1 software, leveraging data from TCGA and/or GTEx databases. Survival analysis and Cox regression were employed to investigate the prognostic significance of CLU. Immune infiltration was evaluated utilizing TIMER2.0, ESTIMATE, and CIBERSORT. The findings reveal the dysregulated expression of CLU in many cancers, with a marked increase observed in glioblastoma and lower-grade glioma (LGG). High CLU expression indicated worse survival outcomes and was an independent risk factor for the prognosis in LGG patients. CLU was involved in immune status as evidenced by its strong correlations with immune and stromal scores and the infiltration levels of multiple immune cells. Additionally, CLU was co-expressed with multiple immune-related genes, and high CLU expression was associated with the activation of immune-related pathways, such as binding to the antigen/immunoglobulin receptor and aiding the cytokine and cytokine receptor interaction. In conclusion, CLU appears to play crucial roles in tumor immunity within gliomas, highlighting its potential as a biomarker or target in glioma immunotherapy.


Assuntos
Glioblastoma , Glioma , Humanos , Carcinogênese , Clusterina/genética , Glioma/genética , Prognóstico
19.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194980, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652361

RESUMO

Pseudoexfoliation (PEX) is a multifactorial age-related disease characterized by the deposition of extracellular fibrillar aggregates in the anterior ocular tissues. This study aims to identify the genetic and epigenetic contribution of clusterin (CLU) in PEX pathology. CLU is a molecular chaperone upregulated in PEX and genetically associated with the disease. Sequencing of a 2.9 kb region encompassing the previously associated rs2279590 in 250 control and 313 PEX [(207 pseudoexfoliation syndrome (PEXS) and 106 pseudoexfoliation glaucoma (PEXG)] individuals identified three single nucleotide polymorphisms (SNPs), rs9331942, rs9331949 and rs9331950, in the 3'-UTR of CLU of which rs9331942 and rs9331949 were found to be significantly associated with PEXS and PEXG as risk factors. Following in silico analysis, in vitro luciferase reporter assays in human embryonic kidney cells revealed that risk alleles at rs9331942 and rs9331949 bind to miR-223 and miR-1283, respectively, suggesting differential regulation of clusterin in the presence of risk alleles at the SNPs. Further, through bisulfite sequencing, we also identified that CLU promoter is hypomethylated in DNA from blood and lens capsules of PEX patients compared to controls that correlated with decreased expression of DNA methyltransferase 1 (DNMT1). Promoter demethylation of CLU using DNMT inhibitor, 5'-aza-dC, in human lens epithelial cells increased CLU expression. Chromatin immunoprecipitation assays showed that the demethylated CLU promoter provides increased access to the transcription factor, Sp1, which might lead to enhanced expression of CLU. In conclusion, this study highlights the different molecular mechanisms of clusterin regulation in pseudoexfoliation pathology.


Assuntos
Clusterina , Metilação de DNA , Síndrome de Exfoliação , Glaucoma , Humanos , Clusterina/genética , Clusterina/metabolismo , Síndrome de Exfoliação/genética , Síndrome de Exfoliação/metabolismo , Síndrome de Exfoliação/patologia , Glaucoma/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Polimorfismo Genético , Regiões Promotoras Genéticas
20.
Cell Rep ; 42(8): 112994, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37611586

RESUMO

SORL1 is implicated in the pathogenesis of Alzheimer's disease (AD) through genetic studies. To interrogate the roles of SORL1 in human brain cells, SORL1-null induced pluripotent stem cells (iPSCs) were differentiated to neuron, astrocyte, microglial, and endothelial cell fates. Loss of SORL1 leads to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. SORL1 loss induces a neuron-specific reduction in apolipoprotein E (APOE) and clusterin (CLU) and altered lipid profiles. Analyses of iPSCs derived from a large cohort reveal a neuron-specific association between SORL1, APOE, and CLU levels, a finding validated in postmortem brain. Enhancement of retromer-mediated trafficking rescues tau phenotypes observed in SORL1-null neurons but does not rescue APOE levels. Pathway analyses implicate transforming growth factor ß (TGF-ß)/SMAD signaling in SORL1 function, and modulating SMAD signaling in neurons alters APOE RNA levels in a SORL1-dependent manner. Taken together, these data provide a mechanistic link between strong genetic risk factors for AD.


Assuntos
Doença de Alzheimer , Clusterina , Humanos , Clusterina/genética , Doença de Alzheimer/genética , Neurônios , Processos de Crescimento Celular , Apolipoproteínas E/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...