Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.437
Filtrar
1.
Pestic Biochem Physiol ; 199: 105777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458684

RESUMO

The fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance. The mechanism for practical resistance involved disruptive mutations in an ATP binding cassette transporter subfamily C2 gene (SfABCC2), which serves as a functional Cry1F receptor in the midgut cells of susceptible S. frugiperda. The SfABCC2 protein contains two transmembrane domains (TMD1 and TMD2), each with a cytosolic nucleotide (ATP) binding domain (NBD1 and NBD2, respectively). Previous reports have demonstrated that disruptive mutations in TMD2 were linked with resistance to Cry1F, yet whether the complete SfABCC2 structure is needed for receptor functionality or if a single TMD-NBD protein can serve as functional Cry1F receptor remains unknown. In the present study, we separately expressed TMD1 and TMD2 with their corresponding NBDs in cultured insect cells and tested their Cry1F receptor functionality. Our results show that the complete SfABCC2 structure is required for Cry1F receptor functionality. Moreover, binding competition assays revealed that Cry1F specifically bound to SfABCC2, whereas neither SfTMD1-NBD1 nor SfTMD2-NBD2 exhibited any significant binding. These results provide insights into the molecular mechanism of Cry1F recognition by SfABCC2 in S. frugiperda, which could facilitate the development of more effective insecticidal proteins.


Assuntos
Bacillus thuringiensis , Endotoxinas , Animais , Spodoptera , Endotoxinas/genética , Resistência a Inseticidas/genética , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacillus thuringiensis/metabolismo , Zea mays , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética
2.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429983

RESUMO

The insecticidal crystal proteins produced by Bacillus thuringiensis during sporulation are active ingredients against lepidopteran, dipteran, and coleopteran insects. Several methods have been reported for their quantification, such as crystal counting, ELISA, and SDS-PAGE/densitometry. One of the major tasks in industrial processes is the analysis of raw material dependency and costs. Thus, the crystal protein quantification method is expected to be compatible with the presence of complex and inexpensive culture medium components. This work presents a revalidated elution-based method for the quantification of insecticidal crystal proteins produced by the native strain B. thuringiensis RT. To quantify proteins, a calibration curve was generated by varying the amount of BSA loaded into SDS-PAGE gels. First, SDS-PAGE was performed for quality control of the bioinsecticide. Then, the stained protein band was excised from 10% polyacrylamide gel and the protein-associated dye was eluted with an alcoholic solution of SDS (3% SDS in 50% isopropanol) during 45 min at 95°C. This protocol was a sensitive procedure to quantify proteins in the range of 2.0-10.0 µg. As proof of concept, proteins of samples obtained from a complex fermented broth were separated by SDS-PAGE. Then, Cry1 and Cry2 proteins were properly quantified.


Assuntos
Bacillus thuringiensis , Inseticidas , Inseticidas/análise , Endotoxinas/análise , Endotoxinas/química , Resíduos/análise , Toxinas de Bacillus thuringiensis/análise , Proteínas de Bactérias/química , Proteínas Hemolisinas , Eletroforese em Gel de Poliacrilamida
3.
Proc Natl Acad Sci U S A ; 121(13): e2319838121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513093

RESUMO

The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North American Helicoverpa zea collected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wild H. zea that survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposed H. zea to sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.


Assuntos
Bacillus thuringiensis , Endotoxinas , Animais , Larva/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Bacillus thuringiensis/genética , Polinização , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Controle Biológico de Vetores/métodos , Resistência a Inseticidas/genética , Genômica , Sementes/metabolismo , Zea mays/genética
4.
Placenta ; 148: 59-68, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38401207

RESUMO

INTRODUCTION: Almost 80% of urinary tract infections during pregnancy are caused by uropathogenic strains of Escherichia coli. Alpha-hemolysin, toxin secreted by them, has a fundamental role in this pathology development. Considering that urinary tract infections are related with premature rupture of fetal membranes, we proposed to evaluate the effects that alpha-hemolysin induces on human-fetal-membranes. METHODS: Thirteen fetal membranes obtained from elective cesarean sections (>37 weeks) were mounted in a transwell-device generating two independent chambers. To mimic an ascendant-urinary-tract infection, membranes were incubated with different concentrations of pure alpha-hemolysin from the choriodecidual side during 24h. Extensive histological analyses were performed and transepithelial electrical-resistance were determined. Cell viability, metalloproteinase activity and cyclooxygenase-2- gene expression was estimated by lactate-dehydrogenase-release assay, zymography and RT-qPCR, respectively. Finally, four fetal membranes were treated with hemolysin preincubated with polyclonal anti-hemolysin antibodies. Cell viability and metalloproteinase activity were monitored. RESULTS: After 24 h of treatment, fetal membranes evidenced a structural damage and a decrease in membrane resistance that progressed as the concentration of alpha hemolysin increased. While the amniotic-epithelial-layer remained practically unaffected, the chorion cells manifested an increase in vacuolization and necrosis. In addition, the extracellular matrix exhibited collagen-fiber disorganization, a marked decrease in fiber content, and became thicker in presence of the toxin. Cyclooxigenase-2 expression and metalloproteinase activity were also higher in the treated groups than in untreated ones. Finally, a preincubation of hemolysin with specific antibodies prevented the cytotoxicity on the chorion cells and the increase in metalloproteinase activity. DISCUSSION: Hemolysin induces structural and molecular changes associated with the remodeling of human-fetal-membranes in-vitro.


Assuntos
Escherichia coli , Infecções Urinárias , Gravidez , Feminino , Humanos , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Membranas Extraembrionárias/metabolismo , Infecções Urinárias/metabolismo , Metaloproteases/metabolismo
5.
Arch Microbiol ; 206(3): 90, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315222

RESUMO

Trueperella pyogenes (T. pyogenes) is an opportunistic pathogen that causes infertility, mastitis, and metritis in animals. T. pyogenes is also a zoonotic disease and is considered an economic loss agent in the livestock industry. Therefore, vaccine development is necessary. Using an immunoinformatics approach, this study aimed to construct a multi-epitope vaccine against T. pyogenes. The collagen adhesion protein, fimbriae, and pyolysin (PLO) sequences were initially retrieved. The HTL, CTL, and B cell epitopes were predicted. The vaccine was designed by binding these epitopes with linkers. To increase vaccine immunogenicity, profilin was added to the N-terminal of the vaccine construct. The antigenic features and safety of the vaccine model were investigated. Docking, molecular dynamics simulation of the vaccine with immune receptors, and immunological simulation were used to evaluate the vaccine's efficacy. The vaccine's sequence was then optimized for cloning. The vaccine construct was designed based on 18 epitopes of T. pyogenes. The computational tools validated the vaccine as non-allergenic, non-toxic, hydrophilic, and stable at different temperatures with acceptable antigenic features. The vaccine model had good affinity and stability to bovine TLR2, 4, and 5 as well as stimulation of IgM, IgG, IL-2, IFN-γ, and Th1 responses. This vaccine also increased long-lived memory cells, dendritic cells, and macrophage population. In addition, codon optimization was done and cloned in the E. coli K12 expression vector (pET-28a). For the first time, this study introduced a novel multi-epitope vaccine candidate based on collagen adhesion protein, fimbriae, and PLO of T. pyogenes. It is expected this vaccine stimulates an effective immune response to prevent T. pyogenes infection.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Proteínas Hemolisinas , Vacinas , Feminino , Animais , Bovinos , Escherichia coli/metabolismo , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/química , Colágeno , Biologia Computacional
6.
FEBS Lett ; 598(4): 446-456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38339784

RESUMO

Whereas extracellular vesicles (EVs) have been engineered for cargo loading, innovative strategies for it can still be developed. Here, we describe domain 4 (D4), a cholesterol-binding domain derived from perfringolysin O, as a viable candidate for EV cargo loading. D4 and its mutants localized to the plasma membrane and the membranes of different vesicular structures in the cytoplasm, and facilitate the transport of proteins of interest (POIs) into EVs. D4-EVs were internalized by recipient cells analogous to EVs engineered with CD9. Intracellular cargo discharge from D4-EVs was successfully detected with the assistance of vesicular stomatitis virus glycoprotein. This study presents a novel strategy for recruiting POIs into EVs via a lipid-binding domain that ensures content release in recipient cells.


Assuntos
Toxinas Bacterianas , Vesículas Extracelulares , Proteínas Hemolisinas , Vesículas Extracelulares/metabolismo , Membrana Celular , Toxinas Bacterianas/metabolismo , Lipídeos
7.
Anal Chem ; 96(8): 3587-3592, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38372205

RESUMO

Sensitive detection of resistance mutation T790 M is of great significance for early diagnosis and prognostic monitoring of non-small-cell lung cancer (NSCLC). In this paper, we showed a highly sensitive detection strategy for T790 M using a three-level characteristic current signal pattern in an α-hemolysin nanopore. A probe was designed that formed a C-T mismatched base pair with wild-type/P and a T-T mismatched with the T790M/P. The T790M/P produced a unique three-level characteristic current signal in the presence of mercury ions(II): first, T790M-Hg2+-P entering the vestibule of α-HL under the transmembrane potential and overhang of probe occupying the ß-barrel, then probe unzipping from the T790M/P, T790 M temporally residing inside the nanocavity due to the interaction with Hg(II), and finally T790 M passing through the ß-barrel. The blocking current distribution was concentrated with a small relative standard deviation of about 3%, and the signal peaks of T790 M and wild-type can be completely separated with a high separation resolution of more than 2.5, which achieved the highly sensitive detection of T790 M down to 0.001 pM (confidence level P 95%) with a linear range from 0.001 pM to 1 nM in human serum samples. This highly sensitive recognition strategy enables the detection of low abundance T790 M and provides a method for prognostic monitoring in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mercúrio , Nanoporos , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Timina , Proteínas Hemolisinas/genética , Receptores ErbB/genética , Mutação , Inibidores de Proteínas Quinases
8.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38411234

RESUMO

Electro-osmotic flow (EOF) is a phenomenon where fluid motion occurs in porous materials or micro/nano-channels when an external electric field is applied. In the particular example of single-molecule electrophoresis using single nanopores, the role of EOF on the translocation velocity of the analyte molecule through the nanopore is not fully understood. The complexity arises from a combination of effects from hydrodynamics in restricted environments, electrostatics emanating from charge decorations and geometry of the pores. We address this fundamental issue using the Poisson-Nernst-Planck and Navier-Stokes (PNP-NS) equations for cylindrical solid-state nanopores and three representative protein nanopores (α-hemolysin, MspA, and CsgG). We present the velocity profiles inside the nanopores as a function of charge decoration and geometry of the pore and applied electric field. We report several unexpected results: (a) The apparent charges of the protein nanopores are different from their net charge and the surface charge of the whole protein geometry, and the net charge of inner surface is consistent with the apparent charge. (b) The fluid velocity depends non-monotonically on voltage. The three protein nanopores exhibit unique EOF and velocity-voltage relations, which cannot be simply deduced from their net charge. Furthermore, effective point mutations can significantly change both the direction and the magnitude of EOF. The present computational analysis offers an opportunity to further understand the origins of the speed of transport of charged macromolecules in restricted space and to design desirable nanopores for tuning the speed of macromolecules through nanopores.


Assuntos
Nanoporos , Proteínas Hemolisinas , Movimento (Física) , Eletricidade Estática , Eletroforese
9.
Toxins (Basel) ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393170

RESUMO

Paralipsa gularis (Zeller) is a storage pest; however, in recent years it has evolved into a considerable maize pest during the late growth stage in the border region between China and other Southeast Asian countries. Bt transgenic insect-resistant maize is an effective measure in controlling a wide range of lepidopteran pests, but there is a lack of research on the toxic effects of storage pests. We tested the toxicity of Bt-Cry1Ab, Vip3Aa, and their complex proteins against P. gularis via bioassay and investigated the efficiency of Bt-(Cry1Ab+Vip3Aa) maize in controlling P. gularis during the late growth stage of maize in the period 2022-2023. The bioassay results show that the susceptibilities of P. gularis to the two Bt proteins and their complex proteins were significantly different. The LC50 values of DBNCry1Ab ("DBN9936" event), DBNVip3Aa ("DBN9501" event), DBN Cry1Ab+Vip3Aa ("DBN3601T" event), and Syngenta Cry1Ab+Vip3Aa ("Bt11" event × "MIR162" event) were 0.038 µg/g, 0.114 µg/g, 0.110 µg/g, and 0.147 µg/g, and the GIC50 values were 0.014 µg/g, 0.073 µg/g, 0.027 µg/g, and 0.026 µg/g, respectively. Determination of the expression content of the insecticidal protein in different tissues of Bt-(Cry1Ab+Vip3Aa) maize shows that the total Bt protein content in different tissues was in the following order: stalk > bract > cob > kernel. However, the bioassay results show that the mortalities of P. gularis feeding on Bt-(Cry1Ab+Vip3Aa) maize in different tissues at different growth stages were all above 93.00%. The field trial indicates that the occurrence density of larvae and plant damage rate for conventional maize were 422.10 individuals/100 plants and 94.40%, respectively, whereas no larvae were found on Bt-(Cry1Ab+Vip3Aa) maize. In summary, this study implies that Bt-(Cry1Ab+Vip3Aa) maize has a high potential for control of P. gularis, providing a new technical measure for the management of the pest.


Assuntos
Bacillus thuringiensis , Lepidópteros , Humanos , Animais , Zea mays/genética , Zea mays/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/genética , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/genética , Controle Biológico de Vetores/métodos , Lepidópteros/metabolismo , Larva
10.
Toxins (Basel) ; 16(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393166

RESUMO

Bacillus thuringiensis Vip3 toxins form a tetrameric structure crucial for their insecticidal activity. Each Vip3Aa monomer comprises five domains. Interaction of the first four α-helices in domain I with the target cellular membrane was proposed to be a key step before pore formation. In this study, four N-terminal α-helix-deleted truncations of Vip3Aa were produced and, it was found that they lost both liposome permeability and insecticidal activity against Spodoptera litura. To further probe the role of domain I in membrane permeation, the full-length domain I and the fragments of N-terminal α-helix-truncated domain I were fused to green fluorescent protein (GFP), respectively. Only the fusion carrying the full-length domain I exhibited permeability against artificial liposomes. In addition, seven Vip3Aa-Cry1Ac fusions were also constructed by combination of α-helices from Vip3Aa domains I and II with the domains II and III of Cry1Ac. Five of the seven combinations were determined to show membrane permeability in artificial liposomes. However, none of the Vip3Aa-Cry1Ac combinations exhibited insecticidal activity due to the significant reduction in proteolytic stability. These results indicated that the N-terminal helix α1 in the Vip3Aa domain I is essential for both insecticidal activity and liposome permeability and that domain I of Vip3Aa preserved a high liposome permeability independently from domains II-V.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/metabolismo , Lipossomos/metabolismo , Conformação Proteica em alfa-Hélice , Inseticidas/química , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Larva/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo
11.
Int J Biol Macromol ; 263(Pt 1): 130271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373570

RESUMO

Overuse of insecticides has accelerated the evolution of insecticide resistance and created serious environmental concerns worldwide, thus incentivizing development of alternative methods. Bacillus thuringiensis (Bt) is an insecticidal bacterium that has been developed as a biopesticide to successfully control multiple species of pests. It operates by secreting several insect toxins such as Cry1Ac. However, metabolic resistance based on ATP-binding cassette (ABC) transporters may play a crucial role in the development of metabolic resistance to Bt. Here, we characterized an ABCG gene from the agricultural pest Plutella xylostella (PxABCG3) and found that it was highly expressed in a Cry1Ac-resistant strain, up-regulated after Cry1Ac protoxin treatment. Binding miR-8510a-3p to the coding sequence (CDS) of PxABCG3 was then confirmed by a luciferase reporter assay and RNA immunoprecipitation. miR-8510a-3p agomir delivery markedly reduced PxABCG3 expression in vivo and consequently decreased the tolerance of P. xylostella to Cry1Ac, while reduction of miR-8510a-3p significantly increased PxABCG3 expression, accompanied by an increased tolerance to Cry1Ac. Our results suggest that miR-8510a-3p could potentially be used as a novel molecular target against P. xylostella or other lepidopterans, providing novel insights into developing effective and environmentally friendly pesticides.


Assuntos
Bacillus thuringiensis , Inseticidas , MicroRNAs , Mariposas , Animais , Mariposas/metabolismo , Larva/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/química , Inseticidas/farmacologia , Inseticidas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
12.
Infect Immun ; 92(3): e0001924, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38353543

RESUMO

Virus-like particles (VLPs) are protein-based nanoparticles frequently used as carriers in conjugate vaccine platforms. VLPs have been used to display foreign antigens for vaccination and to deliver immunotherapy against diseases. Hemolysin-coregulated proteins 1 (Hcp1) is a protein component of the Burkholderia type 6 secretion system, which participates in intracellular invasion and dissemination. This protein has been reported as a protective antigen and is used in multiple vaccine candidates with various platforms against melioidosis, a severe infectious disease caused by the intracellular pathogen Burkholderia pseudomallei. In this study, we used P22 VLPs as a surface platform for decoration with Hcp1 using chemical conjugation. C57BL/6 mice were intranasally immunized with three doses of either PBS, VLPs, or conjugated Hcp1-VLPs. Immunization with Hcp1-VLPs formulation induced Hcp1-specific IgG, IgG1, IgG2c, and IgA antibody responses. Furthermore, the serum from Hcp1-VLPs immunized mice enhanced the bacterial uptake and opsonophagocytosis by macrophages in the presence of complement. This study demonstrated an alternative strategy to develop a VLPs-based vaccine platform against Burkholderia species.


Assuntos
Burkholderia pseudomallei , Burkholderia , Animais , Camundongos , Proteínas Hemolisinas , Camundongos Endogâmicos C57BL , Imunoglobulina G , Camundongos Endogâmicos BALB C
13.
Curr Microbiol ; 81(3): 80, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281302

RESUMO

Cry4Aa, produced by Bacillus thuringiensis subsp. israelensis, exhibits specific toxicity to larvae of medically important mosquito genera. Cry4Aa functions as a pore-forming toxin, and a helical hairpin (α4-loop-α5) of domain I is believed to be the transmembrane domain that forms toxin pores. Pore formation is considered to be a central mode of Cry4Aa action, but the relationship between pore formation and toxicity is poorly understood. In the present study, we constructed Cry4Aa mutants in which each polar amino acid residues within the transmembrane α4 helix was replaced with glutamic acid. Bioassays using Culex pipiens mosquito larvae and subsequent ion permeability measurements using symmetric KCl solution revealed an apparent correlation between toxicity and toxin pore conductance for most of the Cry4Aa mutants. In contrast, the Cry4Aa mutant H178E was a clear exception, almost losing its toxicity but still exhibiting a moderately high conductivity of about 60% of the wild-type. Furthermore, the conductance of the pore formed by the N190E mutant (about 50% of the wild-type) was close to that of H178E, but the toxicity was significantly higher than that of H178E. Ion selectivity measurements using asymmetric KCl solution revealed a significant decrease in cation selectivity of toxin pores formed by H178E compared to N190E. Our data suggest that the toxicity of Cry4Aa is primarily pore related. The formation of toxin pores that are highly ion-permeable and also highly cation-selective may enhance the influx of cations and water into the target cell, thereby facilitating the eventual death of mosquito larvae.


Assuntos
Aedes , Bacillus thuringiensis , Culex , Culicidae , Animais , Bacillus thuringiensis/metabolismo , Culicidae/metabolismo , Endotoxinas/genética , Endotoxinas/toxicidade , Endotoxinas/química , Toxinas de Bacillus thuringiensis , Sequência de Aminoácidos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Larva , Cátions/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/química
14.
Int Immunopharmacol ; 128: 111478, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183913

RESUMO

Severe soft tissue infections caused by Aeromonas dhakensis, such as necrotizing fasciitis or cellulitis, are prevalent in southern Taiwan and around the world. However, the mechanism by which A. dhakensis causes tissue damage remains unclear. Here, we found that the haemolysin Ahh1, which is the major virulence factor of A. dhakensis, causes cellular damage and activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome signalling pathway. Deletion of ahh1 significantly downregulated caspase-1, the proinflammatory cytokine interleukin 1ß (IL-1ß) and gasdermin D (GSDMD) and further decreased the damage caused by A. dhakensis in THP-1 cells. In addition, we found that knockdown of the NLRP3 inflammasome confers resistance to A. dhakensis infection in both THP-1 NLRP3-/- cells and C57BL/6 NLRP3-/- mice. In addition, we demonstrated that severe soft-tissue infections treated with antibiotics combined with a neutralizing antibody targeting IL-1ß significantly increased the survival rate and alleviated the degree of tissue damage in model mice compared control mice. These findings show that antibiotics combined with therapies targeting IL-1ß are potential strategies to treat severe tissue infections caused by toxin-producing bacteria.


Assuntos
Aeromonas , Infecções por Bactérias Gram-Negativas , Proteínas Hemolisinas , Inflamassomos , Infecções dos Tecidos Moles , Animais , Camundongos , Aeromonas/metabolismo , Antibacterianos , Caspase 1/metabolismo , Proteínas Hemolisinas/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções dos Tecidos Moles/imunologia , Infecções dos Tecidos Moles/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia
15.
Mult Scler Relat Disord ; 82: 105386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183695

RESUMO

The most extensive and meticulous epidemiological study yet to be published on the frequency of multiple sclerosis (MS) across the regions of Scotland has confirmed that the high incidence of MS on the Orcadian islands is unique and is most probably the highest in the world. Environmental and genetic studies of Orcadian MS have been carried out over many years but the results have been discouragingly inconclusive; no convincing explanation of the distinctively high Orcadian MS risks has come to light. However, studies of both prevalence and incidence of MS over a time line of approximately five decades, show that Orcadian MS has steadily increased to significantly exceed the neighbouring genetically related populations including North Eastern Scotland and the Shetland islands. Over this period the islands have progressively expanded occupations related to agriculture and have simultaneously acquired the highest concentration of cattle in Europe. Coinciding high and increasing Orcadian MS risk with increasing agricultural activities including bovine density and dairying, points towards a potential but unexpected causal risk. Raised incidence of MS with farming and in particular with dairy farming have been documented in Australia, Denmark, and more recently in Norway, further pointing to a possible MS risk associated with agricultural activities. A clue to the cause of this curious association has unexpectedly emerged from laboratory studies. Using very rarely available tissues from patients coming to autopsy during an MS attack, a toxin known as beta-haemolysin (sphingomyelinase), which is produced by the bacterium Staphylococcus aureus, has been identified in the affected tissues. Staph aureus is a common inhabitant of the mucosal linings of the human nasal sinuses and sinus mucosal inflammations have been shown to be closely associated with attacks of MS and optic neuritis. Irrespective of origin, human or animal, all strains of Staph aureus carry the beta haemolysin gene. However, the toxin is only sporadically expressed by the strains most commonly isolated from human carriers. Strains carried by bovines nearly always express toxin. Has the increasing high risk of MS in Orcadians been promoted by the nasal transmission and subsequent establishment of the high secreting bovine genotypes of Staph aureus in the Orcadian population? To demonstrate that bovine associated strains of Staph aureus are carried more frequently in the Orcadian population (or even specifically in Orcadian MS cases), would not of itself necessarily explain the high prevalence of Orcadian MS. It would however clearly justify an in-depth exploration of the nasal bacterial microbiome of MS cases. This should include the incidence of beta-toxin secreting Staph aureus genotypes. If MS cases are shown to have a distinctive nasal bacterial microbiome, including beta-toxin secretors, this finding would open up an almost entirely new range of investigations and approaches to the understanding of the pathogenesis of MS.


Assuntos
Esclerose Múltipla , Infecções Estafilocócicas , Animais , Humanos , Bovinos , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/etiologia , Proteínas Hemolisinas , Staphylococcus aureus/genética , Europa (Continente)
16.
Int J Food Microbiol ; 413: 110581, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246026

RESUMO

Foodborne diseases caused by Staphylococcus aureus contamination on meat and meat products has gained increasing attention in recent years, while the pathogenicity of S. aureus is mainly attributed to its virulence factors production, which is primarily regulated by quorum sensing (QS) system. Herein, we aimed to uncover the inhibitory effects and mechanisms of citral (CIT) on virulence factors production by S. aureus, and further explore its potential application in pork preservation. Susceptibility test confirmed the antibacterial properties of CIT against S. aureus, the minimal inhibitory concentration (MIC) was 0.25 mg/mL. Treatment with sub-MICs of CIT reduced the hemolytic activity by inhibiting the production of α-hemolysin, and staphylococcal enterotoxins (SEs) production was significantly inhibited by CIT in both culture medium and pork without affecting bacterial growth. Transcriptomic analysis indicated that the differentially expression genes encoding α-hemolysin, SEs, and other virulence factors were down-regulated after treatment with 1/2MIC CIT. Moreover, the genes related to QS including agrA and agrC were also down-regulated, while the global transcriptional regulator sarA was up-regulated. Data here demonstrated that CIT could inhibited S. aureus virulence factors production through disturbing QS systems. In a challenge test, the addition of CIT caused a remarkable inhibition of S. aureus population and delay in lipid oxidation and color change on pork after 15 days incubation at 4 °C. These findings demonstrated that CIT could not only efficiently restrain the production of S. aureus virulence factors by disturbing QS, but also exhibit the potential application on the preservation of meat products.


Assuntos
Monoterpenos Acíclicos , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas Hemolisinas , Proteínas de Bactérias/metabolismo , Enterotoxinas/metabolismo , Carne , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo
17.
Phytochemistry ; 219: 113962, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185394

RESUMO

Thirteen previously undescribed iridoids (1-13), together with five known iridoids (14-18) were isolated from the roots and rhizomes of Valeriana jatamansi Jones. Their structures with absolute configurations were elucidated by analysis of MS, NMR, optical rotation and their experimental and calculated electronic circular dichroism spectra. All of the isolated compounds were tested for their protective effects against α-hemolysin-induced cell death in A549 cells. Compounds 14, 16 and 17 showed moderate protective effects, and compounds 15 and 18 showed weak protective effects.


Assuntos
Nardostachys , Valeriana , Rizoma , Valeriana/química , Proteínas Hemolisinas/análise , Estrutura Molecular , Iridoides/farmacologia , Iridoides/química , Raízes de Plantas/química
18.
mSphere ; 9(2): e0067323, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38289073

RESUMO

Staphylococcus aureus produces various hemolysins regulated by the Agr-QS system, except ß-hemolysin encoded by the gene hlb. A classical laboratory S. aureus strain RN4220 displays only the ß-hemolysin phenotype. It was suspected that the 8A mutation at the end of its agrA gene delayed the expressions of hla and RNAIII, then failed to express α- and δ-hemolysins. However, hla gene expression was detected at the later culture time without α-hemolysin phenotype, the reason for such a phenotype has not been clearly understood. We created hlb knockout and complementary mutants via homologous recombination in RN4220 and NRS049, two strains that normally produce ß-hemolysin and carry agrA mutation. We found interestingly that the presence or absence of α-hemolysin phenotype in such strains depended on the expression of ß-hemolysin instead of agrA mutations, which only inhibited δ-hemolysin expression. The hemolysis phenotype was verified by the Christie-Atkinson-Munch-Peterson (CAMP) test. Quantitative reverse transcription PCR was carried out to evaluate the relative gene expressions of hlb, hla, and RNAIII. The construction of mutants did not affect the agrA mutation status. We demonstrate that the absence of α-hemolysin in S. aureus RN4220 and NRS049 strains is attributed to their production of ß-hemolysin instead of agrA mutation. Our findings broaden the understanding of the molecular mechanisms that control hemolysin expression in S. aureus that is crucial for the development of new therapeutic strategies to combat S. aureus infections. IMPORTANCE: α-Hemolysin is a critical virulence factor in Staphylococcus aureus and its expression is largely controlled by the Agr-QS system. Nonetheless, the hemolysis phenotype and the regulation of the Agr-QS system in S. aureus still hold many mysteries. Our study finds that it is the expression of ß- hemolysin rather than the agrA mutation that inhibits the function of the α-hemolysin in an important S. aureus strain RN4220 and a clinical strain presents a similar phenotype, which clarifies the misunderstood hemolytic phenotype and mechanism of S. aureus. Our findings highlight the interactions among different toxins and their biological roles, combined with QS system regulation, which is ultimately the true underlying cause of its virulence. This emphasizes the importance of considering the collaborative action of various factors in the infection process caused by this significant human pathogen.


Assuntos
Toxinas Bacterianas , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Proteínas Hemolisinas/genética , Toxinas Bacterianas/genética , Hemólise , Proteínas de Bactérias/metabolismo , Mutação
19.
Nano Lett ; 24(5): 1494-1501, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38264980

RESUMO

The rapid progress in nanopore sensing has sparked interest in protein sequencing. Despite recent notable advancements in amino acid recognition using nanopores, chemical modifications usually employed in this process still need further refinements. One of the challenges is to enhance the chemical specificity to avoid downstream misidentification of amino acids. By employing adamantane to label proteinogenic amino acids, we developed an approach to fingerprint individual amino acids using the wild-type α-hemolysin nanopore. The unique structure of adamantane-labeled amino acids (ALAAs) improved the spatial resolution, resulting in distinctive current signals. Various nanopore parameters were explored using a machine-learning algorithm and achieved a validation accuracy of 81.3% for distinguishing nine selected amino acids. Our results not only advance the effort in single-molecule protein characterization using nanopores but also offer a potential platform for studying intrinsic and variant structures of individual molecules.


Assuntos
Proteínas Hemolisinas , Nanoporos , Proteínas Hemolisinas/química , Aminoácidos/química , Sequência de Aminoácidos , Algoritmos
20.
Insect Biochem Mol Biol ; 166: 104073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215915

RESUMO

The peritrophic matrix (or peritrophic membrane, PM) is present in most insects where it acts as a barrier to mechanical insults and pathogens, as well as a facilitator of digestive processes. The PM is formed by the binding of structural PM proteins, referred to as peritrophins, to chitin fibrils and spans the entire midgut in lepidopterans. To investigate the role of peritrophins in a highly polyphagous lepidopteran pest, namely the cotton leafworm (Spodoptera littoralis), we generated Insect Intestinal Mucin (IIM-) and non-mucin Peritrophin (PER-) mutant strains via CRISPR/Cas9 mutagenesis. Both strains exhibited deformed PMs and retarded developmental rates. Bioassays conducted with Bacillus thuringiensis (Bt) and nucleopolyhedrovirus (SpliNPV) formulations showed that both the IIM- and PER- mutant larvae were more susceptible to these bioinsecticides compared to the wild-type (WT) larvae with intact PM. Interestingly, the provision of chitin-binding agent Calcofluor (CF) in the diet lowered the toxicity of Bt formulations in both WT and IIM- larvae and the protective effect of CF was significantly lower in PER- larvae. This suggested that the interaction of CF with PER is responsible for Bt resistance mediated by CF. In contrast, the provision of CF caused increased susceptibility to SpliNPV in both mutants and WT larvae. The study showed the importance of peritrophins in the defense against pathogens in S. littoralis and revealed novel insights into CF-mediated resistance to Cry toxin.


Assuntos
Bacillus thuringiensis , Mariposas , Nucleopoliedrovírus , Animais , Bacillus thuringiensis/metabolismo , Spodoptera/metabolismo , Nucleopoliedrovírus/metabolismo , Mariposas/metabolismo , Larva/metabolismo , Endotoxinas/farmacologia , Quitina/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas Hemolisinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...