Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.376
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542202

RESUMO

Fas-associated death domain (FADD) is an adaptor protein that predominantly transduces the apoptosis signal from the death receptor (DR) to activate caspases, leading to the initiation of apoptotic signaling and the coordinated removal of damaged, infected, or unwanted cells. In addition to its apoptotic functions, FADD is involved in signaling pathways related to autophagy, cell proliferation, necroptosis, and cellular senescence, indicating its versatile role in cell survival and proliferation. The subcellular localization and intracellular expression of FADD play a crucial role in determining its functional outcomes, thereby highlighting the importance of spatiotemporal mechanisms and regulation. Furthermore, FADD has emerged as a key regulator of inflammatory signaling, contributing to immune responses and cellular homeostasis. This review provides a comprehensive summary and analysis of the cellular dynamics of FADD in regulating programmed cell death and inflammation through distinct molecular mechanisms associated with various signaling pathways.


Assuntos
Apoptose , Neoplasias , Humanos , Domínio de Morte , Proteína de Domínio de Morte Associada a Fas/metabolismo , Apoptose/fisiologia , Receptor fas/metabolismo , Inflamação , Caspase 8/metabolismo
2.
J Allergy Clin Immunol ; 153(1): 67-76, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977527

RESUMO

Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.


Assuntos
Anemia Hemolítica Autoimune , Doenças Autoimunes , Síndrome Linfoproliferativa Autoimune , Imunodeficiência de Variável Comum , Doenças do Sistema Imunitário , Transtornos Linfoproliferativos , Humanos , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Síndrome Linfoproliferativa Autoimune/terapia , Fenótipo , Receptor fas/genética , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/terapia
3.
J Allergy Clin Immunol ; 153(1): 297-308.e12, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979702

RESUMO

BACKGROUND: Elevated TCRαß+CD4-CD8- double-negative T cells (DNT) and serum biomarkers help identify FAS mutant patients with autoimmune lymphoproliferative syndrome (ALPS). However, in some patients with clinical features and biomarkers consistent with ALPS, germline or somatic FAS mutations cannot be identified on standard exon sequencing (ALPS-undetermined: ALPS-U). OBJECTIVE: We sought to explore whether complex genetic alterations in the FAS gene escaping standard sequencing or mutations in other FAS pathway-related genes could explain these cases. METHODS: Genetic analysis included whole FAS gene sequencing, copy number variation analysis, and sequencing of FAS cDNA and other FAS pathway-related genes. It was guided by FAS expression analysis on CD57+DNT, which can predict somatic loss of heterozygosity (sLOH). RESULTS: Nine of 16 patients with ALPS-U lacked FAS expression on CD57+DNT predicting heterozygous "loss-of-expression" FAS mutations plus acquired somatic second hits in the FAS gene, enriched in DNT. Indeed, 7 of 9 analyzed patients carried deep intronic mutations or large deletions in the FAS gene combined with sLOH detectable in DNT; 1 patient showed a FAS exon duplication. Three patients had reduced FAS expression, and 2 of them harbored mutations in the FAS promoter, which reduced FAS expression in reporter assays. Three of the 4 ALPS-U patients with normal FAS expression carried heterozygous FADD mutations with sLOH. CONCLUSION: A combination of serum biomarkers and DNT phenotyping is an accurate means to identify patients with ALPS who are missed by routine exome sequencing.


Assuntos
Síndrome Linfoproliferativa Autoimune , Receptor fas , Humanos , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Biomarcadores , Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Receptor fas/genética , Proteína de Domínio de Morte Associada a Fas/genética , Mutação
4.
J Allergy Clin Immunol ; 153(1): 203-215, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793571

RESUMO

BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.


Assuntos
Síndrome Linfoproliferativa Autoimune , Proteína de Domínio de Morte Associada a Fas , Humanos , Apoptose/genética , Doenças Autoimunes/genética , Síndrome Linfoproliferativa Autoimune/genética , Hibridização Genômica Comparativa , DNA , Receptor fas/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células Germinativas/patologia , Mutação
5.
Apoptosis ; 29(1-2): 1-2, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794219

RESUMO

Fas and Fas ligand (FasL)-induced cell death is critical for the appropriate regulation of immune responses, especially those mediated by T cells. In this letter, several studies are discussed that reinforce the importance of FasL intracellular signaling for CD4 + T cell death, which might involve PSTPIP phosphatase and/or MAPKs.


Assuntos
Apoptose , Receptor fas , Proteína Ligante Fas/genética , Transdução de Sinais , Morte Celular
6.
Eur J Immunol ; 54(1): e2350626, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837385

RESUMO

To better understand the stoichiometry of CD95L required to trigger apoptotic and nonapoptotic signals, we generated several CD95L concatemers from dimer to hexamer conjugated via a flexible link (GGGGS)2 . These ligands reveal that although the hexameric structure is the best stoichiometry to trigger cell death, a dimer is sufficient to induce the apoptotic response in CD95-sensitive Jurkat cells. Interestingly, only trimeric and hexameric forms can implement a potent Ca2+ response, suggesting that while CD95 aggregation controls the implementation of the apoptotic signal, both aggregation and conformation are required to implement the Ca2+ pathway.


Assuntos
Apoptose , Receptor fas , Humanos , Apoptose/fisiologia , Proteína Ligante Fas , Células Jurkat
7.
Medicine (Baltimore) ; 102(48): e36343, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050261

RESUMO

The molecular underpinnings of pediatric asthma present avenues for targeted therapies. A deeper exploration into the significance of differentially expressed autophagy-related genes (DE-ARGs) and their interactions with the long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA network may offer insights into the pathogenesis of pediatric asthma. DE-ARGs were retrieved from the Gene Expression Omnibus and the Human Autophagy Database. These DE-ARGs were subjected to comprehensive analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, Gene Set Enrichment Analysis, and protein-protein interaction networks. The identified DE-ARGs were further verified for core gene expression. The miRDB and ENCORI databases were used for inverse miRNA predictions. Furthermore, miRNA-lncRNA interactions were predicted using LncBase and ENCORI platforms. Following the exclusion of lncRNAs exclusively localized in the nucleus and extracellular space, a competitive endogenous RNA (ceRNA) network was established and subsequently subjected to detailed analysis. The mRNA expression patterns in the ceRNA network were validated using quantitative real-time PCR. In total, 31 DE-ARGs were obtained, of which 29 were up-regulated and 2 were down-regulated. Notably, the autophagy, regulation of apoptotic signaling pathways, interferon-α/ß signaling, interferon γ signaling, autophagy-animal, and apoptosis pathways were predominantly enriched in pediatric asthma. Five hub genes (VEGFA, CFLAR, RELA, FAS, and ATF6) were further analyzed using the Gene Expression Omnibus dataset to verify their expression patterns and diagnostic efficacy. Four hub genes (VEGFA, CFLAR, RELA, and FAS) were obtained. Finally, a ceRNA network of 4 mRNAs (VEGFA, CFLAR, RELA, and FAS), 3 miRNAs (hsa-miR-320b, hsa-miR-22-3p, and hsa-miR-625-5p), and 35 lncRNAs was constructed by integrating data from literature review and analyzing the predicted miRNAs and lncRNAs. Moreover, the quantitative real-time PCR data revealed a pronounced upregulation of Fas cell surface death receptor. The identification of 4 DE-ARGs, especially Fas cell surface death receptor, has shed light on their potential pivotal role in the pathogenesis of pediatric asthma. The established ceRNA network provides novel insights into the autophagy mechanism in asthma and suggests promising avenues for the development of potential therapeutic strategies.


Assuntos
Asma , MicroRNAs , RNA Longo não Codificante , Animais , Criança , Humanos , RNA Longo não Codificante/genética , Receptor fas , MicroRNAs/genética , Asma/genética , Biologia Computacional , RNA Mensageiro/genética , Autofagia/genética , Redes Reguladoras de Genes
8.
Endocrinology ; 165(2)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38091978

RESUMO

Neutrophil gelatinase-associated lipocalin (NGAL), a siderophore-mediated iron binding protein, is highly expressed in human anaplastic thyroid carcinomas (ATCs) where it plays pleiotropic protumorigenic roles including that of a prosurvival protein. Here we show that NGAL inhibits FAS/CD95 death receptor to control ATC cell survival. FAS/CD95 expression in human specimens from patients with ATC and in ATC-derived cell lines negatively correlate with NGAL expression. Silencing of NGAL in ATC cells leads to FAS/CD95 upregulation, whereas NGAL overexpression determines the opposite effect. As a result, an agonist anti-FAS/CD95 antibody induces cell death in NGAL-silenced cells while it is ineffective on NGAL-overexpressing cells. Interestingly, the inhibitory activity of NGAL on FAS/CD95 is due to its iron carrier property given that perturbing iron homeostasis of NGAL-proficient and -deficient ATC cells directly influences FAS/CD95 expression. Accordingly, conditioned media containing a mutant form of NGAL unable to bind siderophores cannot rescue cells from FAS/CD95-dependent death, whereas NGAL wild type-containing conditioned media abolish the effects of the agonist antibody. We also find that downregulation of FAS/CD95 expression is mediated by iron-dependent NGAL suppression of p53 transcriptional activity. Our results indicate that NGAL contributes to ATC cell survival by iron-mediated inhibition of p53-dependent FAS/CD95 expression and suggest that restoring FAS/CD95 by NGAL suppression could be a helpful strategy to kill ATC cells.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Lipocalina-2/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53 , Sobrevivência Celular , Meios de Cultivo Condicionados , Ferro , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Apoptose , Receptor fas/genética , Receptor fas/metabolismo
9.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 207-216, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953561

RESUMO

Evidences supported many food additives (FAs) possess toxicity to human health due to chronic excessive exposure. Global hygienic standards strictly limit the dosage of each FA and mixture of the same functional FAs. However, the synergetic effects caused by the combination of FAs with different functions require careful evaluation. In the present study, the content of each FA in beverages was determined by HPLC-UV-Vis detection. The cytotoxic effects of selected typical FAs alone or their combination were evaluated in human renal tubular epithelial cells. Mathematical Modeling and bioinformatics methods were employed to evaluate the toxicity of FAs and to predict the key target proteins of FAs on renal tubular cell toxicity, which were verified by western blot. The results indicated above 5 FAs were used in each surveyed beverage. The content of each FA and the respective ratios of the same functional FAs in each beverage did not exceed the maximum permitted level. But it was intensively shown that the significant synergistic cytotoxicity for the combination of FAs with lower concentration. The intercellular signaling transduction pathways including JNK/STAT, PI3P/AKT, and MAPK pathways, which could also be activated by PDGF signaling, were predicted to be involved in Fas-induced cytotoxicity. The increased expression of p-STAT3, p-JNK and p-AKT was associated with renal tubular injury. The current study implied the synergistic cytotoxic effect caused by multiple FAs at no toxic dosages via activated cellular transduction pathways regulating cell survival and apoptosis function, which warning of the synergistic toxic effects of different types of FAs.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-akt , Humanos , Western Blotting , Células Epiteliais/metabolismo , Bebidas , Receptor fas/metabolismo , Proteína Ligante Fas
10.
Oncoimmunology ; 12(1): 2260618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781235

RESUMO

Although immune checkpoint inhibitor (ICI) therapy has dramatically improved outcome for metastatic melanoma patients, many patients do not benefit. Since adverse events may be severe, biomarkers for resistance would be valuable, especially in the adjuvant setting. We performed high-plex digital spatial profiling (DSP) using the NanoString GeoMx® on 53 pre-treatment specimens from ICI-treated metastatic melanoma cases. We interrogated 77 targets simultaneously in four molecular compartments defined by S100B for tumor, CD68 for macrophages, CD45 for leukocytes, and nonimmune stromal cells defined as regions negative for all three compartment markers but positive for SYTO 13. For DSP validation, we confirmed the results obtained for some immune markers, such as CD8, CD4, CD20, CD68, CD45, and PD-L1, by quantitative immunofluorescence (QIF). In the univariable analysis, 38 variables were associated with outcome, 14 of which remained significant after multivariable adjustment. Among them, CD95 was further validated using multiplex immunofluorescence in the Discovery immunotherapy (ITX) Cohort and an independent validation cohort with similar characteristics, showing an association between high levels of CD95 and shorter progression-free survival. We found that CD95 in stroma was associated with resistance to ICI. With further validation, this biomarker could have value to select patients that will not benefit from immunotherapy.


Assuntos
Imunoterapia , Melanoma , Receptor fas , Humanos , Imunoterapia/métodos , Melanoma/terapia , Intervalo Livre de Progressão , Receptor fas/genética
11.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189004, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37865305

RESUMO

Although the interaction of CD95L (also known as FasL) with its so-called death receptor CD95 (Fas) induces an apoptotic signal responsible for the elimination of infected and cancer cells and maintenance of tissue homeostasis, this receptor can also implement non apoptotic signaling pathways. This latter signaling is involved in metastatic dissemination in certain cancers and the severity of auto-immune disorders. The signaling complexity of this pair is increased by the fact that CD95 expression itself seems to contribute to oncogenesis via a CD95L-independent manner and, that both ligand and receptor might interact with other partners modulating their pathophysiological functions. Finally, CD95L itself can trigger cell signaling in immune cells rendering complex the interpretation of mouse models in which CD95 or CD95L are knocked out. Herein, we discuss these non-canonical responses and their biological functions.


Assuntos
Apoptose , Neoplasias , Animais , Camundongos , Proteína Ligante Fas , Receptor fas/metabolismo , Transdução de Sinais/fisiologia
12.
Rheum Dis Clin North Am ; 49(4): 841-860, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821199

RESUMO

As a disorder of immune dysregulation, autoimmune lymphoproliferative syndrome (ALPS) stems from pathogenic variants in the first apoptosis signal-mediated apoptosis (Fas) and Fas-ligand pathway that result in elevations of CD3+ TCRαß+ CD4- CD8- T cells along with chronic lymphoproliferation, a heightened risk for malignancy, and importantly for the rheumatologist, increased risk of autoimmunity. While immune cytopenias are the most encountered autoimmune phenomena, there is increasing appreciation for ocular, musculoskeletal, pulmonary and renal inflammatory manifestations similar to more common rheumatology diseases. Additionally, ALPS-like conditions that share similar clinical features and opportunities for targeted therapy are increasingly recognized via genetic testing, highlighting the need for rheumatologists to be facile in the recognition and diagnosis of this spectrum of disorders. This review will focus on clinical and laboratory features of both ALPS and ALPS-like disorders with the intent to provide a framework for rheumatologists to understand the pathophysiologic drivers and discriminate between diagnoses.


Assuntos
Doenças Autoimunes , Síndrome Linfoproliferativa Autoimune , Neoplasias , Humanos , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Receptor fas/genética , Autoimunidade
13.
Cell Death Differ ; 30(11): 2408-2431, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838774

RESUMO

Receptor clustering is the most critical step to activate extrinsic apoptosis by death receptors belonging to the TNF superfamily. Although clinically unsuccessful, using agonist antibodies, the death receptors-5 remains extensively studied from a cancer therapeutics perspective. However, despite its regulatory role and elevated function in ovarian and other solid tumors, another tumor-enriched death receptor called Fas (CD95) remained undervalued in cancer immunotherapy until recently, when its role in off-target tumor killing by CAR-T therapies was imperative. By comprehensively analyzing structure studies in the context of the binding epitope of FasL and various preclinical Fas agonist antibodies, we characterize a highly significant patch of positively charged residue epitope (PPCR) in its cysteine-rich domain 2 of Fas. PPCR engagement is indispensable for superior Fas agonist signaling and CAR-T bystander function in ovarian tumor models. A single-point mutation in FasL or Fas that interferes with the PPCR engagement inhibited apoptotic signaling in tumor cells and T cells. Furthermore, considering that clinical and immunological features of the autoimmune lymphoproliferative syndrome (ALPS) are directly attributed to homozygous mutations in FasL, we reveal differential mechanistic details of FasL/Fas clustering at the PPCR interface compared to described ALPS mutations. As Fas-mediated bystander killing remains vital to the success of CAR-T therapies in tumors, our findings highlight the therapeutic analytical design for potentially effective Fas-targeting strategies using death agonism to improve cancer immunotherapy in ovarian and other solid tumors.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Humanos , Feminino , Epitopos , Receptor fas/genética , Receptor fas/metabolismo , Proteína Ligante Fas , Linfócitos T , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Apoptose , Anticorpos/farmacologia
14.
Autoimmun Rev ; 22(11): 103442, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683818

RESUMO

Autoimmune Lymphoproliferative Syndrome (ALPS) is an autoimmune disease that has been reported in over 2200 patients. It is a rare, genetic disease where pathogenic variants occur in the extrinsic pathway of apoptosis. Various mutations in different genes, such as FAS, FASL, and CASP10, can result in ALPS. Most commonly, pathogenic variants occur in the FAS receptor. This malfunctioning pathway allows for the abnormal accumulation of lymphocytes, namely CD3 + TCRαß+CD4 - CD8- (double negative (DN) T) cells, which are a hallmark of the disease. This disease usually presents in childhood with lymphadenopathy and splenomegaly as a result of lymphoproliferation. Over time, these patients may develop cytopenias or lymphomas because of irregularities in the immune system. Current treatments include glucocorticoids, mycophenolate mofetil, sirolimus, immunoglobulin G, and rituximab. These medications serve to manage the symptoms and there are no standardized recommendations for the management of ALPS. The only curative therapy is a bone marrow transplant, but this is rarely done because of the complications. This review serves to broaden the understanding of ALPS by discussing the mechanism of immune dysregulation, how the symptoms manifest, and the mechanisms of treatment. Additionally, we discuss the epidemiology, comorbidities, and medications relating to ALPS patients across the United States using data from Cosmos.


Assuntos
Doenças Autoimunes , Síndrome Linfoproliferativa Autoimune , Transtornos Linfoproliferativos , Humanos , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Síndrome Linfoproliferativa Autoimune/terapia , Doenças Autoimunes/tratamento farmacológico , Receptor fas/genética , Receptor fas/uso terapêutico , Esplenomegalia/tratamento farmacológico , Esplenomegalia/genética , Esplenomegalia/patologia , Mutação , Sirolimo/uso terapêutico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia
15.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569529

RESUMO

Osteosarcoma is the most frequent primary malignant bone tumor with an annual incidence of about 400 cases in the United States. Osteosarcoma primarily metastasizes to the lungs, where FAS ligand (FASL) is constitutively expressed. The interaction of FASL and its cell surface receptor, FAS, triggers apoptosis in normal cells; however, this function is altered in cancer cells. DNA methylation has previously been explored as a mechanism for altering FAS expression, but no variability was identified in the CpG island (CGI) overlapping the promoter. Analysis of an expanded region, including CGI shores and shelves, revealed high variability in the methylation of certain CpG sites that correlated significantly with FAS mRNA expression in a negative manner. Bisulfite sequencing revealed additional CpG sites, which were highly methylated in the metastatic LM7 cell line but unmethylated in its parental non-metastatic SaOS-2 cell line. Treatment with the demethylating agent, 5-azacytidine, resulted in a loss of methylation in CpG sites located within the FAS promoter and restored FAS protein expression in LM7 cells, resulting in reduced migration. Orthotopic implantation of 5-azacytidine treated LM7 cells into severe combined immunodeficient mice led to decreased lung metastases. These results suggest that DNA methylation of CGI shore sites may regulate FAS expression and constitute a potential target for osteosarcoma therapy, utilizing demethylating agents currently approved for the treatment of other cancers.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Camundongos , Animais , Receptor fas/genética , Receptor fas/metabolismo , Neoplasias Ósseas/metabolismo , Osteossarcoma/metabolismo , Azacitidina/farmacologia , Metilação de DNA , Ilhas de CpG , Linhagem Celular Tumoral
16.
J Biol Chem ; 299(8): 104989, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392849

RESUMO

Synthetic biology has emerged as a useful technology for studying cytokine signal transduction. Recently, we described fully synthetic cytokine receptors to phenocopy trimeric receptors such as the death receptor Fas/CD95. Using a nanobody as an extracellular-binding domain for mCherry fused to the natural receptor's transmembrane and intracellular domain, trimeric mCherry ligands were able to induce cell death. Among the 17,889 single nucleotide variants in the SNP database for Fas, 337 represent missense mutations that functionally remained largely uncharacterized. Here, we developed a workflow for the Fas synthetic cytokine receptor system to functionally characterize missense SNPs within the transmembrane and intracellular domain of Fas. To validate our system, we selected five functionally assigned loss-of-function (LOF) polymorphisms and included 15 additional unassigned SNPs. Moreover, based on structural data, 15 gain-of-function or LOF candidate mutations were additionally selected. All 35 nucleotide variants were functionally investigated through cellular proliferation, apoptosis and caspases 3 and 7 cleavage assays. Collectively, our results showed that 30 variants resulted in partial or complete LOF, while five lead to a gain-of-function. In conclusion, we demonstrated that synthetic cytokine receptors are a suitable tool for functional SNPs/mutations characterization in a structured workflow.


Assuntos
Mutação com Perda de Função , Receptores Artificiais , Receptor fas , Apoptose , Receptor fas/química , Receptor fas/genética , Polimorfismo de Nucleotídeo Único , Domínios Proteicos
17.
J Reprod Immunol ; 158: 103970, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37263030

RESUMO

Lipopolysaccharide (LPS) triggers infectious acute inflammation, and interleukin (IL)-18 is an inflammasome-mediated cytokine. We previously demonstrated that endogenous IL-18 induces testicular germ cell apoptosis during acute inflammation when plasma IL-18 levels are high. Additionally, high-dose recombinant IL-18 (rIL-18) induced Leydig cell apoptosis. The blood-testis barrier formed by Sertoli cells protects testicular germ cells from both exogenous and endogenous harmful substances. However, the impact of LPS and IL-18 on Sertoli cells remained unclear. We stimulated TM4 cells, a mouse Sertoli cell line, with LPS (200 or 1000 ng/mL) or rIL-18 (0.1-100 ng/mL) at levels that induced Leydig cell apoptosis in our previous study and assessed caspase 3 cleavage and the mRNA expression of inflammatory cytokines and markers of apoptotic pathways (Tnfr1, Fasl, Fas, Fadd) after stimulation. Il6 mRNA was increased by LPS stimulation. Tnfα mRNA was increased by 200 ng/mL LPS but not 1000 ng/mL LPS. Fas was increased, but Fasl was decreased, by LPS. LPS had little influence on Tnfr1 or Fadd mRNA expression and did not induce apoptosis. Il18 mRNA was not increased, and Il18r1 was significantly decreased following LPS treatment. Treatment with rIL-18 increased Il18r1 mRNA and induced inflammation, but decreased Tnfr1 and had little influence on apoptosis, as indicated by Tnfα, Fasl, Fas, Fadd and cleaved caspase 3. These results suggested that Sertoli cells do not easily undergo apoptosis despite strong inflammatory stimuli. Additionally, Sertoli cells may resist inflammation and play a larger role in protecting testicular homeostasis than other component cells of the testis.


Assuntos
Lipopolissacarídeos , Células de Sertoli , Masculino , Camundongos , Animais , Células de Sertoli/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Caspase 3/metabolismo , Interleucina-18/metabolismo , Apoptose , Citocinas/metabolismo , Transdução de Sinais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
19.
BMC Immunol ; 24(1): 12, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353767

RESUMO

BACKGROUND: Patients with Sjögren's syndrome, like other patients with autoimmune disorders, display dysregulation in the function of their immune system. Fas and Fas Ligand (FasL) are among the dysregulated proteins. METHODS: We studied Fas and FasL on IL-2Rα+ cells and in serum of patients with Sjögren's syndrome (n = 16) and healthy individuals (n = 16); both from same ethnic and geographical background. We used flow cytometry and enzyme-linked immunosorbent for this purpose. We also measured the expression of Bcl-2 and Bax by reverse transcription quantitative real-time PCR (RT-qPCR) and percentage of apoptotic and dead cells using Annexin V and 7-AAD staining in lymphocytes. RESULTS: FasL was increased in patients' T and B cells while Fas was increased in patients' monocytes, T and B cells. No signs of increased apoptosis were found. sFas and sFasL in patients' serum were increased, although the increase in sFasL was not significant. We suspect an effect of non-steroidal anti-inflammatory therapy on B cells, explaining the decrease of the percentage Fas+ B cells found within our samples. In healthy individuals, there was a noticeable pattern in the expression of FasL which mutually correlated to populations of mononuclear cells; this correlation was absent in the patients with Sjögren's syndrome. CONCLUSIONS: Mononuclear cells expressing IL-2Rα+ had upregulated Fas in Sjögren's syndrome. However, the rate of apoptosis based on Annexin V staining and the Bcl-2/Bax expression was not observed in mononuclear cells. We suspect a functional role of abnormal levels of Fas and FasL which has not been cleared yet.


Assuntos
Doenças Autoimunes , Síndrome de Sjogren , Humanos , Anexina A5 , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose , Receptor fas/metabolismo
20.
Cell Biol Int ; 47(8): 1295-1313, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37132427

RESUMO

The Fas/FasL system plays a central role in the physiological regulation of apoptosis and has been implicated in the pathogenesis of several neoplasms and diseases of the immune system. Until now, it has received little attention in the context of ageing, but there is sufficient evidence that it plays an important role in this process and its deregulation favours the development of age-related diseases such as osteoarthritis, diabetes, eye diseases, ischaemic processes, anaemia, Alzheimer's disease and cancer. With this in mind, the aim of this work was to describe the main changes that occur in the Fas/FasL system during ageing and their association with the development of age-related diseases. Furthermore, it discusses how exercise and diet, considered the cornerstone of almost all healthy ageing programmes, produce beneficial effects through the regulation of the Fas/FasL system.


Assuntos
Neoplasias , Receptor fas , Humanos , Receptor fas/fisiologia , Proteína Ligante Fas , Envelhecimento , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...