Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.736
Filtrar
1.
Toxicol Appl Pharmacol ; 484: 116872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428465

RESUMO

Previous studies have demonstrated that tetramethylpyrazine (TMP) can enhance the recovery of motor function in spinal cord injury (SCI) rats. However, the underlying mechanism involved in this therapeutic effect remains to be elucidated. We conducted RNA sequencing with a network pharmacology strategy to predict the targets and mechanism of TMP for SCI. The modified Allen's weight-drop method was used to construct an SCI rat model. The results indicated that the nuclear transfer factor-κB (NF-κB) pathway was identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and an inflammatory response was identified through the Gene Ontology (GO) enrichment analysis. Tumor necrosis factor (TNF) was identified as a crucial target. Western blotting revealed that TMP decreased the protein expression of TNF superfamily receptor 1 (TNFR1), inhibitor κB-α (IκB-α), and NF-κB p65 in spinal cord tissues. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) demonstrated that TMP inhibited TNF-α, interleukin-1ß (IL-1ß), reactive oxygen species (ROS), and malondialdehyde (MDA) expression and enhanced superoxide dismutase (SOD) expression. Histopathological observation and behavior assessments showed that TMP improved morphology and motor function. In conclusion, TMP inhibits inflammatory response and oxidative stress, thereby exerting a neuroprotective effect that may be related to the regulation of the TNFR1/IκB-α/NF-κB p65 signaling pathway.


Assuntos
NF-kappa B , Pirazinas , Traumatismos da Medula Espinal , Animais , Ratos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Pirazinas/farmacologia , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo
2.
PLoS One ; 19(3): e0300364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512915

RESUMO

Paracoccidioides fungi are thermodimorphic microorganisms that cause paracoccidioidomycosis (PCM), an autochthonous disease from Latin America, with most cases in Brazil. Humans become infected by inhaling conidia or mycelial fragments that transform into yeast at body temperature. These fungi cause chronic-granulomatous inflammation, which may promote fibrosis and parenchyma destruction in the lungs. In response to stress imposed by the host, fungi Paracoccidioides spp. increase the expression of heat shock proteins (HSP), which protect them by sustaining cellular proteostasis. Our group has studied the role of HSP60 in PCM, and previous data show that the recombinant HSP60 (rHSP60) has a deleterious effect when used in a single dose as therapy for experimental PCM. Here, we investigated the mechanism by which rHSP60 could worsen the disease. We found that rHSP60 caused the viability loss of splenic or lymph node cells from both immunized and non-immunized mice, including in splenic T lymphocytes under polyclonal stimulation with concanavalin A, probably by undergoing apoptosis. Among analyzed splenic cells, lymphocytes were indeed the main cells to die. When we investigated the death mechanisms, remarkably, we found that there was no viability loss in rHSP60-stimulated splenic cells from mice deficient in Toll-like receptor 4, TRIF adapter protein, and TNF receptor 1(TNFR1), as well as rHSP60-stimulated WT cells incubated with anti-TNF antibody. Besides, caspase-8 inhibitor IETD-CHO blocked the rHSP60 effect on splenic cells, suggesting that rHSP60 induces the extrinsic apoptosis pathway dependent on signaling via TLR4/TRIF and TNFR1.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Humanos , Camundongos , Animais , Receptor 4 Toll-Like , Receptores Tipo I de Fatores de Necrose Tumoral , Inibidores do Fator de Necrose Tumoral , Paracoccidioidomicose/microbiologia , Fator de Necrose Tumoral alfa , Inflamação , Linfócitos/patologia , Proteínas Adaptadoras de Transporte Vesicular
3.
Yonsei Med J ; 65(4): 241-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38515362

RESUMO

Tumor necrosis factor receptor-associated periodic syndrome (TRAPS, OMIM: #142680) is a rare autoinflammatory disease (AID) with recurrent febrile episodes. To our knowledge, we report herein the first case of a patient with TRAPS in South Korea whose symptoms included fever, arthralgia, abdominal pain, rash, myalgia, cough, and lymphadenopathy. A pathogenic de novo mutation, c.175T>C (p.Cys59Arg), in the tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) gene, was confirmed by gene sequencing. The patient has been with tocilizumab (an interleukin-6 inhibitor); tocilizumab administration every other week has completely alleviated the patient's symptoms. Our report further expands the clinical spectrum of patients with TRAPS and reaffirms the use of tocilizumab as a viable alternative treatment option for those patients who are unsatisfactorily responsive to other commonly used biologics, such as canakinumab, anakinra, infliximab, and etanercept. Furthermore, our report may aid in increasing awareness about the existence of mutation-confirmed TRAPS in South Korea in addition to emphasizing the importance of actively pursuing genetic testing to correctly diagnose rare AID.


Assuntos
Febre , Doenças Hereditárias Autoinflamatórias , Humanos , Febre/complicações , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Doenças Hereditárias Autoinflamatórias/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Mutação , Etanercepte/uso terapêutico
4.
Cell Death Dis ; 15(3): 202, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467621

RESUMO

Cellular responses to TNF are inherently heterogeneous within an isogenic cell population and across different cell types. TNF promotes cell survival by activating pro-inflammatory NF-κB and MAPK signalling pathways but may also trigger apoptosis and necroptosis. Following TNF stimulation, the fate of individual cells is governed by the balance of pro-survival and pro-apoptotic signalling pathways. To elucidate the molecular mechanisms driving heterogenous responses to TNF, quantifying TNF/TNFR1 signalling at the single-cell level is crucial. Fluorescence live-cell imaging techniques offer real-time, dynamic insights into molecular processes in single cells, allowing for detection of rapid and transient changes, as well as identification of subpopulations, that are likely to be missed with traditional endpoint assays. Whilst fluorescence live-cell imaging has been employed extensively to investigate TNF-induced inflammation and TNF-induced cell death, it has been underutilised in studying the role of TNF/TNFR1 signalling pathway crosstalk in guiding cell-fate decisions in single cells. Here, we outline the various opportunities for pathway crosstalk during TNF/TNFR1 signalling and how these interactions may govern heterogenous responses to TNF. We also advocate for the use of live-cell imaging techniques to elucidate the molecular processes driving cell-to-cell variability in single cells. Understanding and overcoming cellular heterogeneity in response to TNF and modulators of the TNF/TNFR1 signalling pathway could lead to the development of targeted therapies for various diseases associated with aberrant TNF/TNFR1 signalling, such as rheumatoid arthritis, metabolic syndrome, and cancer.


Assuntos
Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Apoptose
5.
Zhen Ci Yan Jiu ; 49(2): 145-154, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38413035

RESUMO

OBJECTIVES: To observe the effects of moxibustion at "Zusanli" (ST36) on the expression levels of tumor necrosis factor (TNF)-α, TNF receptor 1 (TNF-R1), p38 mitogen-activated protein kinase (P38 MAPK), and transient receptor potential vanilloid 1 (TRPV1) in the colon tissue of mice with chronic ulcerative colitis (UC), so as to explore the underlying mechanisms of moxibustion in improving visceral hypersensitivity in chronic UC. METHODS: Male C57BL/6J mice were randomly divided into normal group, normal with moxibustion (NM) group, model group, and model with moxibustion (MM) group, with 10 mice in each group. The chronic UC model was established by drinking 2.5% dextran sodium sulfate for 3 cycles. Mice in the NM and MM groups received moxibustion at ST36 for 20 min, 5 days per week with a 2-day break, for a total of 4 weeks. The disease activity index (DAI) score of each group was evaluated before and after treatment. The minimum volume threshold of abdominal wall retraction reflex (AWR) was measured to observe the intestinal sensitivity of mice. The colon length was measured. The pathological changes of colon tissue were observed by HE staining. The expression of mucin in colon goblet cells was detected by periodate Scheff staining. The intestinal fibrosis was observed by Masson staining. The number of trypsin-positive cells (i.e., mast cell) and the expression level of TNF-α in colon tissue were detected by immunofluorescence staining. The expression levels of TNF-R1, P38 MAPK and TRPV1 in colon tissue were detected by immunohistochemistry. RESULTS: Compared with the normal group after treatment, the model group showed increased DAI score (P<0.001), decreased AWR minimum volume threshold (P<0.01), shortened colon length (P<0.001), significant inflammatory infiltration in the colon tissue, reduced mucin secretion (P<0.01), increased collagen fiber deposition (P<0.001), and elevated expression levels of TNF-α, TNF-R1, P38 MAPK, and TRPV1 (P<0.001, P<0.01, P<0.05). Compared with the model group, the MM group showed decreased DAI score (P<0.01), increased AWR minimum volume threshold (P<0.001), elongated colon length (P<0.001), reduced inflammatory cell infiltration, improved integrity of mucosal glandular structure, enhanced mucin secretion (P<0.01), decreased collagen fiber deposition (P<0.001), decreased number of mast cells in the colon tissue (P<0.001), and decreased expression levels of TNF-α, TNF-R1, P38 MAPK, and TRPV1 (P<0.001, P<0.01, P<0.05). There were no significant differences in the above index between the NM group and the normal group. CONCLUSIONS: Moxibustion can reduce visceral hypersensitivity, alleviate inflammatory infiltration and fibrotic damage in the colon tissue of mice with chronic UC. These effects may be associated with the down-regulation of TNF-α, TNF-R1, P38 MAPK, and TRPV1 expression in colon.


Assuntos
Colite Ulcerativa , Moxibustão , Ratos , Camundongos , Masculino , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , Receptores Tipo I de Fatores de Necrose Tumoral , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Mucinas , Colágeno
6.
Life Sci ; 341: 122487, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316265

RESUMO

Photoaging of skin, a chronic disease, can produce the appearance changes and cancer lesions of skin. Therefore, it is of great significance to investigate the mechanisms and explore effective methods to treat the disorder. Gut microbiota and intestinal metabolisms have critical roles in a variety of diseases. However, their roles on photoaging of skin were not well tested. In the present work, the results showed that compared with control group, the levels of MDA, SOD and CAT associated with oxidative stress, the levels of COL I, CER, and HA associated with skin function, and the mRNA levels of IL-1ß, IL-6, TNF-α associated with inflammation after long-term exposure to ultraviolet radiation in mice were significantly changed. Skin pathological tissue was also seriously damaged. The protein levels of AQP3 and FLG were significantly decreased. Ultraviolet exposure also promoted skin photoaging by activating TNFR1/TRAF2-mediated MAPK pathway, in which the protein levels of P38/P-P38, c-FOS/P-c-FOS, MMP1, TNFR1 and TRAF2 were significantly increased in model mice compared with control group. In fecal microbiota transplantation (FMT) experiment, we found that the intestinal microbiome of control mice alleviated skin photoaging via adjusting the protein levels of P38/P-P38, c-FOS/P-c-FOS, MMP1, TNFR1 and TRAF2. 16S rRNA sequencing found that 1639 intestinal bacteria were found, in which 15 bacteria including norank_f_Ruminococcaceae, Lachnospirac -eae_NK4A136_group, Lachnoclostridium, etc., were significantly different at the genus level. Untargeted GC-TOF/MS and UHPLC-MS/MS metabolomics showed 72 and 188 metabolites including taurine, ornithine, L-arginine, L-histidine, sucrose with significant differences compared with control group. Then, amino acid targeting assay showed 10 amino acids including L-ornithine, L-arginine and L-citrulline with higher levels in control group compared with model group. In addition, we also found that the variation of Lachnoclostridium abundance may regulate L-arginine metabolism to affect skin photoaging. Some intestinal bacteria and metabolites including amino acids may be closely related to skin photoaging, which should provide new methods to treat skin photoaging in the future.


Assuntos
Microbioma Gastrointestinal , Envelhecimento da Pele , Animais , Camundongos , Metaloproteinase 1 da Matriz , RNA Ribossômico 16S/genética , Receptores Tipo I de Fatores de Necrose Tumoral , Fator 2 Associado a Receptor de TNF , Espectrometria de Massas em Tandem , Raios Ultravioleta/efeitos adversos , Metabolômica , Arginina , Citrulina , Ornitina
7.
Front Immunol ; 15: 1340013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384465

RESUMO

Background: Neurological dysfunction and glial activation are common in severe infections such as sepsis. There is a sexual dimorphism in the response to systemic inflammation in both patients and animal models, but there are few comparative studies. Here, we investigate the effect of systemic inflammation induced by intraperitoneal administration of lipopolysaccharide (LPS) on the retina of male and female mice and determine whether antagonism of the NLRP3 inflammasome and the extrinsic pathway of apoptosis have protective effects on the retina. Methods: A single intraperitoneal injection of LPS (5 mg/kg) was administered to two months old C57BL/6J male and female mice. Retinas were examined longitudinally in vivo using electroretinography and spectral domain optical coherence tomography. Retinal ganglion cell (RGC) survival and microglial activation were analysed in flat-mounts. Retinal extracts were used for flow cytometric analysis of CD45 and CD11b positive cells. Matched plasma and retinal levels of proinflammatory cytokines were measured by ELISA. Retinal function and RGC survival were assessed in animals treated with P2X7R and TNFR1 antagonists alone or in combination. Results: In LPS-treated animals of both sexes, there was transient retinal dysfunction, loss of vision-forming but not non-vision forming RGCs, retinal swelling, microglial activation, cell infiltration, and increases in TNF and IL-1ß. Compared to females, males showed higher vision-forming RGC death, slower functional recovery, and overexpression of lymphotoxin alpha in their retinas. P2X7R and TNFR1 antagonism, alone or in combination, rescued vision-forming RGCs. P2X7R antagonism also rescued retinal function. Response to treatment was better in females than in males. Conclusions: Systemic LPS has neuronal and sex-specific adverse effects in the mouse retina, which are counteracted by targeting the NLRP3 inflammasome and the extrinsic pathway of apoptosis. Our results highlight the need to analyse males and females in preclinical studies of inflammatory diseases affecting the central nervous system.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Retina , Células Ganglionares da Retina/metabolismo , Inflamação/metabolismo
8.
Front Immunol ; 15: 1354836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404573

RESUMO

Introduction: Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming. Methods: We sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation. Results: More extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1ß, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo. Discussion: These data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.


Assuntos
Doença Granulomatosa Crônica , Peritonite , Animais , Camundongos , Doença Granulomatosa Crônica/terapia , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , NADPH Oxidases/metabolismo , Meios de Cultivo Condicionados/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo
9.
Clin Chim Acta ; 555: 117825, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331209

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) still has a high incidence of varying degrees of heart failure (HF). The aim of this study is to identify new molecular markers for predicting the severity of HF after AMI. METHODS: We analyzed demographic indicators, past medical history, clinical indicators, major adverse cardiac events (MACEs) and molecular markers in patients with different Killip classifications after AMI. Olink proteomics was used to explore new molecular markers for predicting different severity of HF after AMI. RESULTS: Neutrophil count was the independent risk factors for in-hospital MACEs. Nineteen differentially expressed proteins (DEPs) increased significantly with increasing Killip classification. Five DEPs were also found to have an AUC (95 % CI) value greater than 0.8: GDF-15, NT-pro BNP, TNF-R2, TNF-R1 and TFF3. CONCLUSIONS: Neutrophil count, GDF-15, TNF-R2, TNF-R1 and TFF3 were closely related to the Killip classification of HF after AMI, which suggests that the inflammatory response plays an important role in the severity of HF after AMI and that regulating inflammation might become a new target for controlling HF.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Fator 15 de Diferenciação de Crescimento , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral , Proteômica , Biomarcadores , Infarto do Miocárdio/diagnóstico , Insuficiência Cardíaca/diagnóstico
10.
Nat Commun ; 15(1): 1282, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346956

RESUMO

TNF acts as one pathogenic driver for inducing intestinal epithelial cell (IEC) death and substantial intestinal inflammation. How the IEC death is regulated to physiologically prevent intestinal inflammation needs further investigation. Here, we report that EF-hand domain-containing protein D2 (EFHD2), highly expressed in normal intestine tissues but decreased in intestinal biopsy samples of ulcerative colitis patients, protects intestinal epithelium from TNF-induced IEC apoptosis. EFHD2 inhibits TNF-induced apoptosis in primary IECs and intestinal organoids (enteroids). Mice deficient of Efhd2 in IECs exhibit excessive IEC death and exacerbated experimental colitis. Mechanistically, EFHD2 interacts with Cofilin and suppresses Cofilin phosphorylation, thus blocking TNF receptor I (TNFR1) internalization to inhibit IEC apoptosis and consequently protecting intestine from inflammation. Our findings deepen the understanding of EFHD2 as the key regulator of membrane receptor trafficking, providing insight into death receptor signals and autoinflammatory diseases.


Assuntos
Colite , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Camundongos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Intestinos/patologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Apoptose , Colite/patologia , Inflamação/patologia , Fatores de Despolimerização de Actina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
11.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339126

RESUMO

Borna disease virus 1 (BoDV1) causes a persistent infection in the mammalian brain. Peroxisomes and mitochondria play essential roles in the cellular antiviral immune response, but the effect of BoDV1 infection on peroxisomal and mitochondrial dynamics and their respective antioxidant capacities is still not clear. Using different mouse lines-i.e., tumor necrosis factor-α transgenic (TNFTg; to pro-inflammatory status), TNF receptor-1 knockout (TNFR1ko), and TNFR2ko mice in comparison to wild-type (Wt) mice-we analyzed the abundances of both organelles and their main antioxidant enzymes, catalase and superoxide dismutase 2 (SOD2), in neurons of the hippocampal, cerebral, and cerebellar cortices. In TNFTg mice, a strong increase in mitochondrial (6.9-fold) and SOD2 (12.1-fold) abundances was detected; meanwhile, peroxisomal abundance increased slightly (1.5-fold), but that of catalase decreased (2.9-fold). After BoDV1 infection, a strong decrease in mitochondrial (2.1-6.5-fold), SOD2 (2.7-9.1-fold), and catalase (2.7-10.3-fold) abundances, but a slight increase in peroxisomes (1.3-1.6-fold), were detected in Wt and TNFR2ko mice, whereas no changes occurred in TNFR1ko mice. Our data suggest that the TNF system plays a crucial role in the biogenesis of both subcellular organelles. Moreover, TNFR1 signaling mediated the changes in peroxisomal and mitochondrial dynamics after BoDV1 infection, highlighting new mechanisms by which BoDV1 may achieve immune evasion and viral persistence.


Assuntos
Vírus da Doença de Borna , Receptores Tipo I de Fatores de Necrose Tumoral , Camundongos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/fisiologia , Catalase/genética , Antioxidantes , Dinâmica Mitocondrial , Camundongos Knockout , Neurônios , Camundongos Endogâmicos C57BL , Mamíferos
12.
Int Immunopharmacol ; 130: 111701, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38382266

RESUMO

Pregnant women with preeclampsia (PE) present a shift in the immune response to an inflammatory profile. This deviation could be due to the interaction of tumor necrosis factor (TNF) with TNFR1 and TNFR2 receptors, besides the failure in modulation of inflammation regulatory mechanisms. This study evaluated the effects of progesterone on the expression of TNFR1 and TNFR2 by Jurkat cells after stimulation with plasma from PE and normotensive (NT) pregnant women. Jurkat cells were cultured with or without progesterone in a medium containing 20% (v/v) plasma from PE or NT women. The expression of TNF receptors was evaluated by flow cytometry. The concentration of soluble forms of TNF receptors and cytokines was determined in culture supernatant and plasma by ELISA. The plasma of PE women showed significantly higher concentrations of sTNFR1 and TNF and lower concentrations of sTNFR2 compared to the NT group. TNFR1 receptor expression was increased in Jurkat cells, while TNFR2 was decreased after culture with PE plasma when compared with Jurkat cells cultured with progesterone and plasma from NT women. The concentration of sTNFR1, TNF, and IL-10 in the culture supernatant of Jurkat cells was increased after culture with PE plasma, while the sTNFR2 receptor was decreased when compared to the NT group. Results demonstrate that in preeclamptic women a systemic inflammation occurs with an increase of inflammatory molecules, and progesterone may have a modulating effect on the expression of TNF receptors, shifting Jurkat cells towards an anti-inflammatory profile with greater expression of TNFR2.


Assuntos
Pré-Eclâmpsia , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Feminino , Gravidez , Receptores Tipo II do Fator de Necrose Tumoral , Progesterona/farmacologia , Gestantes , Pré-Eclâmpsia/metabolismo , Células Jurkat , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Células Cultivadas
13.
Cell Commun Signal ; 22(1): 30, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212807

RESUMO

Glioblastoma is the most common and aggressive primary brain tumour in adults. The development of anti-brain cancer agents are challenged by the blood-brain barrier and the resistance conferred by the local tumour microenvironment. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence compounds that have recently emerged as promising agents for drug delivery. We conjugated palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, to an HMCD, MHI-148, and conducted drug activity analysis on primary patient-derived glioblastoma cell lines. In addition to the expected cytostatic activity, our in vitro studies revealed that palbociclib-MHI-148 conjugate resulted in an almost 100-fold increase in cytotoxicity compared to palbociclib alone. This shift of palbociclib from cytostatic to cytotoxic when conjugated to MHI-148 was due to increased DNA damage, as indicated by an increase in γH2AX foci, followed by an increased expression of key extrinsic apoptosis genes, including TP53, TNFR1, TRAIL, FADD and caspase 8. In addition, we observed a time-dependent increase in the cell surface expression of TNFR1, consistent with an observed increase in the secretion TNFα, followed by TNFR1 endocytosis at 48 h. The treatment of patient GBM cells with the palbociclib-MHI-148 conjugate prevented TNFα-induced NFκB translocation, suggesting conjugate-induced TNFR1 signalling favoured the TNFR1-mediated apoptotic response rather than the pro-inflammatory response pathway. Notably, pharmacological inhibition of endocytosis of TNFR1, and siRNA-knockdown of TNFR1 reversed the palbociclib-MHI-148-induced cell death. These results show a novel susceptibility of glioblastoma cells to TNFR1-dependent apoptosis, dependent on inhibition of canonical NFκB signalling using our previously reported palbociclib-HMCD conjugate. Video Abstract.


Assuntos
Antineoplásicos , Carbocianinas , Citostáticos , Glioblastoma , Indóis , Piperazinas , Piridinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Citostáticos/farmacologia , Citostáticos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
14.
Ecotoxicol Environ Saf ; 270: 115896, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184974

RESUMO

To assess the causal effect of particulate matter 2.5 (PM2.5) on human bone mineral density (BMD) and to explore the possible mechanism and proportion mediated by inflammation-related protein. The genetic correlation between PM2.5 and BMD was assessed using the Linkage Disequilibrium Score (LDSC), and the causal effect between PM2.5 and BMD was assessed by two-sample Mendelian randomization (TSMR). A 2-step Mendelian randomization (MR) approach was employed to evaluate the potential role of inflammation-associated protein as the mediator in the causal association between PM2.5 and BMD. The multivariate Mendelian randomization (MVMR) study was designed to perform mediation analyses, exclude possible confounders and calculate the proportion of mediation. Subsequently, we used Bayesian colocalization analysis to consolidate the MR results. Finally, using drug-target MR design, we evaluated the potential repurposing of tumor necrosis factor (TNF) inhibitors for the treatment of osteoporosis (OP). The results of the analyses show that BMD is negatively influenced by PM2.5 (Inverse variance weighted [IVW] beta [ß] = -0.288, 95% confidence interval [CI]: -0.534 - -0.042, P < 0.05). PM2.5 has a positive causal association with TNF (IVW ß = 1.564, 95% CI: 0.155 - 2.973, P < 0.05) and a negative causal association with protachykinin-1 (TAC-1) (IVW ß = -1.654, 95% CI: -3.063 - -0.244, P < 0.05). TNF has a negative causal association with BMD (Wald ratio ß = -0.082, 95% CI: -0.165 - 0.000, P < 0.05) and TAC-1 has a positive causal association with BMD (IVW ß = 0.042, 95% CI: 0.007 - 0.077, P < 0.05). After adjusting TNF and TAC-1, PM2.5 has no causal association with BMD (IVW ß = -0.200, 95% CI: -0.579 - 0.179, P > 0.05). After adjusting PM2.5 and TAC-1, there was still a negative causal association between TNF and BMD (IVW ß = -0.089, 95% CI: -0.166 - -0.012, P < 0.05). In the final drug-target MR study, the protective effect of TNF/TNF receptor 1 (TNFR1) inhibition on BMD was observed. For every 10% decrease of circulating C-reactive protein (CRP) achieved by TNF/TNF receptor 1 (TNFR1) blockade, ß was 0.540 (95% CI: 0.040-1.040) for BMD. We found a negative causal association between PM2.5 and BMD and that causal association was mediated by TNF. The results of drug-target MR do support TNFR1 as a promising target for OP prevention among the general population.


Assuntos
Proteoma , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Densidade Óssea/genética , Teorema de Bayes , Análise da Randomização Mendeliana , Fator de Necrose Tumoral alfa/genética , Inflamação , Material Particulado/toxicidade , Estudo de Associação Genômica Ampla
15.
Physiol Behav ; 274: 114418, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042454

RESUMO

Previous studies have shown the relevance of high mobility group box 1 protein (HMGB1) and tumor necrosis factor α (TNFα) in nerve or tissue injury-induced nociception. However, the role of these proteins in chronic stress and social transfer of stress (STS)-induced dysfunctional pain is not entirely known. The aim of this study was to determine the participation of the spinal HMGB1-TNFα signaling pathway and TNFα receptor 1 (TNFR1) in rats subjected to chronic restraint stress (CRS) and STS. Non-stressed female and male rats in contact with CRS rats increased sniffing behavior of the anogenital area, behavior related to STS. Rats subjected to CRS and STS reduced 50 % withdrawal threshold and reached the value of tactile allodynia after 21 days of stress. Rats return to the basal withdrawal threshold after 30 days without stress and return to allodynia values in only 5 days of stress sessions (priming). Female and male rats subjected to 28 days of CRS or STS were intrathecal injected with glycyrrhizin (inhibitor of HMGB1), thalidomide (inhibitor of the TNFα synthesis), and R7050 (TNFR1 antagonist), in all the cases, an antiallodynic effect was observed. Rats under CRS or STS enhanced HMGB1 and TNFR1 protein expression in DRG and dorsal spinal cord. Data suggest that the spinal HMGB1/TNFα/TNFR1 signaling pathway plays a relevant role in the maintenance of CRS and STS-induced nociceptive hypersensitivity in rats. These proteins could be helpful in developing pain treatments for fibromyalgia in humans.


Assuntos
Proteína HMGB1 , Hiperalgesia , Humanos , Ratos , Masculino , Feminino , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/efeitos adversos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína HMGB1/efeitos adversos , Proteína HMGB1/metabolismo , Dor/induzido quimicamente
16.
Transplant Cell Ther ; 30(2): 187.e1-187.e12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000709

RESUMO

Plasma biomarkers of endothelial dysfunction have been postulated for the diagnosis and prognosis of acute graft-versus-host disease (aGVHD). However, their use is not validated in clinical practice yet. The endothelial activation and stress index (EASIX), a simple score based on routine laboratory parameters, is considered to be an indirect marker of endothelial damage. High value of EASIX was correlated with worse non-relapse mortality (NRM) and overall survival (OS) and a high risk of sinusoidal obstructive syndrome and transplant-associated thrombotic microangiopathy (TA-TMA). This study investigates the predictive value of plasma biomarkers and the EASIX score for the prediction of aGVHD. We assessed vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor receptor 1 (TNFR1), and VWF:Ag plasma levels and the EASIX score before allogeneic hematopoietic stem cell transplantation (allo-HSCT) and on days 0, 3, 7, 14, and 21 in an experimental cohort (n = 33). EASIX was transformed to a base-2 logarithm to perform the analysis. For the most relevant biomarkers, we estimate the optimal cutoff values and the discriminatory ability to differentiate patients with high-risk of aGVHD. The conclusions obtained in the experimental cohort were validated in a large cohort of 321 patients at the same institution. Plasma biomarkers and EASIX showed similar post-transplantation dynamics consisting of a progressive increase. Multivariate analysis showed an association between high TNFR1 levels and Log-2 EASIX score on day 7 after transplantation with an increased likelihood of developing aGVHD (hazard ratio [HR] = 1, P = .002; HR = 2.31, P = .013, respectively). Patients with TNFR1 ≥1300 ng/mL (HR = 7.19, P = .006) and Log2-EASIX ≥3 (HR = 14.7, P <.001) at day 7 after transplantation were more likely to develop aGVHD with high predictive accuracy (C-index of 74% and 81%, respectively). In the validation cohort, patients with Log2-EASIX ≥3 on day 7 after transplantation presented a significantly higher incidence of grade II-IV aGVHD (HR = 1.94, P = .004) independent of GVHD prophylaxis (HR = 0.38, P = .004), conditioning regimen (HR = 0.59, P =.02) and type of donor (HR = 2.38, P = .014). Differential degree of endothelial damage can be measured using both EASIX score and plasma biomarkers in the early post-transplantation period. Patients at risk of developing aGVHD could be easily identified by a high EASIX score. Both indicators of endothelial activation represent a promising approach to predict aGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Transplante Homólogo/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Biomarcadores
17.
Biol Trace Elem Res ; 202(4): 1722-1740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37422542

RESUMO

Selenium (Se) deficiency can affect the expression of microRNA (miRNA) and induce necroptosis, apoptosis, etc., resulting in damage to various tissues and organs. Bisphenol A (BPA) exposure can cause adverse consequences such as oxidative stress, endothelial dysfunction, and atherosclerosis. The toxic effects of combined treatment with Se-deficiency and BPA exposure may have a synergistic effect. We replicated the BPA exposure and Se-deficiency model in broiler to investigate whether the combined treatment of Se-deficiency and BPA exposure induced necroptosis and inflammation of chicken vascular tissue via the miR-26A-5p/ADAM17 axis. We found that Se deficiency and BPA exposure significantly inhibited the expression of miR-26a-5p and increased the expression of ADAM17, thereby increasing reactive oxygen species (ROS) production. Subsequently, we discovered that the tumor necrosis factor receptor (TNFR1), which was highly expressed, activated the necroptosis pathway through receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like (MLKL), and regulated the heat shock proteins-related genes expressions and inflammation-related genes expressions after exposure to BPA and selenium deficiency. In vitro, we found that miR-26a-5p knockdown and increased ADAM17 can induce necroptosis by activating the TNFR1 pathway. Similarly, both N-Acetyl-L-cysteine (NAC), Necrostatin-1 (Nec-1), and miR-26a-5p mimic prevented necroptosis and inflammation caused by BPA exposure and Se deficiency. These results suggest that BPA exposure activates the miR-26a-5p/ADAM17 axis and exacerbates Se deficient-induced necroptosis and inflammation through the TNFR1 pathway and excess ROS. This study lays a data foundation for future ecological and health risk assessments of nutrient deficiencies and environmental toxic pollution.


Assuntos
Compostos Benzidrílicos , MicroRNAs , Fenóis , Selênio , Animais , Apoptose , Galinhas/metabolismo , Inflamação/induzido quimicamente , MicroRNAs/genética , MicroRNAs/metabolismo , Necroptose , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Selênio/metabolismo
18.
Geroscience ; 46(2): 2521-2530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37993568

RESUMO

Chronic inflammatory pathway activation, commonly referred to as "Inflammaging" or chronic inflammation (CI), is associated with frailty, cognitive and functional decline, and other causes of health span decline in older adults. We investigated the variability of candidate serum measures of CI among community-dwelling older adults selected for mild low-grade inflammation. We focused on serum cytokines known to be highly predictive of adverse health outcomes in older adults (sTNFR1, IL-6) during a short-term (weeks) and medium-term (months) follow-up, as well as immune markers that are less studied in aging but reflect other potentially relevant domains such as adaptive immune activation (sCD25), innate immune activation (sCD14 and sCD163), and the inflammation-metabolism interface (adiponectin/Acrp30) during short-term (weeks) follow up. We found that sTNFR1 was more reproducible than IL-6 over a period of weeks and months short-term and medium-term. The intra-class correlation coefficient (ICC) for sTNFR1 was 0.95 on repeated measures over 6 weeks, and 0.79 on repeated measures with mean interval of 14 weeks, while the ICC for IL-6 was 0.52 over corresponding short-term and 0.67 over corresponding medium-term follow-up. This suggests that sTNFR1 is a more reliable marker of CI than IL-6. This study provides new insights into the reproducibility of serum markers of CI in older adults. The findings suggest that sTNFR1 may be a better marker of CI than IL-6 in this population. Further studies are needed to confirm these findings and to investigate the clinical utility of sTNFR1 in older adults.


Assuntos
Interleucina-6 , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Idoso , Reprodutibilidade dos Testes , Inflamação , Biomarcadores
19.
Bone Marrow Transplant ; 59(3): 334-343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110620

RESUMO

Identifying plasma biomarkers early after allo-HCT may become crucial to prevent and treat severe aGvHD. We utilized samples from 203 allo-HCT patients selected from the Blood & Marrow Transplant Clinical Trials Network (BMT CTN) to identify new biomarker models to predict aGvHD and overall mortality. Two new biomarkers (Gal-3 and LAG-3), and previously identified biomarkers (ST2/IL33R, IL6, Reg3A, PD-1, TIM-3, TNFR1) were screened. Increased Gal-3 levels measured at Day +7 post-transplant predicted the development of aGvHD (grade 2-4) in the total population [AUC: 0.602; P = 0.045] while higher Day +14 levels predicted overall mortality due to toxicity among patients receiving reduced intensity conditioning [P = 0.028] but not myeloablative conditioning. Elevated LAG-3 levels (Day +21) were associated with less severe aGvHD [159.1 ng/mL vs 222.0 ng/mL; P = 0.046]. We developed a model utilizing Gal-3, LAG-3, and PD-1 levels at Days +14 and +21 with an improved performance to predict aGvHD and overall non-relapse mortality. We confirmed four informative biomarkers (Reg3A, ST2, TIM-3, and TNFR1) predict severe aGvHD at day +14 and day +21 (grade 3-4). In conclusion, the combination of Gal-3 alone or in combination with LAG-3, and PD-1 is a new informative model to predict aGvHD development and overall non-relapse mortality after allo-HCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Galectina 3 , Receptor Celular 2 do Vírus da Hepatite A , Receptor de Morte Celular Programada 1 , Proteína 1 Semelhante a Receptor de Interleucina-1 , Receptores Tipo I de Fatores de Necrose Tumoral , Biomarcadores , Bancos de Espécimes Biológicos
20.
Immunobiology ; 229(1): 152748, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128238

RESUMO

The present study aimed to inspect the serum levels of the soluble receptors, sTNFR1 and sTNFR2, in patients with COVID-19. The large production of inflammatory cytokines is an essential process in the pathogenesis of COVID-19. TNF is a multifaceted proinflammatory cytokine which has soluble and membrane receptors. Thus, knowing the role of these receptors will help better understand this disease's immunopathogenesis. We included 131 patients confirmed for SARS-CoV-2, separated into three groups: ward patients without O2 support, group A (n = 14); ward patients with O2 support, group B (n = 85), and patients in an intensive care unit (ICU), group C (n = 32), making up the receptors dosed by flow cytometry. The results showed that sTNFR1 and sTNFR2 are associated with disease severity, being higher in group C when compared to group A. As for the levels of receptors and their relationship with the degree of lung involvement, we found higher values of sTNFR1 in patients in group 1 (pulmonary involvement < 25%), suggesting that inflammatory processes related to TNF are not necessarily associated with the primary site of infection. When we analysed the patients who passed away compared to those who recovered, both receptors significantly increased the mortality numbers. These findings suggest a relevant influence of soluble receptors in the inflammatory processes involved in the pathogenesis of COVID-19. Wherefore, we suggest using these receptors as biomarkers of severity and mortality of the disease.


Assuntos
COVID-19 , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Receptores Tipo II do Fator de Necrose Tumoral , SARS-CoV-2 , Citocinas , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...