Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 980
Filtrar
1.
Lancet Microbe ; 4(8): e642-e650, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327802

RESUMO

The most prevalent symptoms of post-COVID-19 condition are pulmonary dysfunction, fatigue and muscle weakness, anxiety, anosmia, dysgeusia, headaches, difficulty in concentrating, sexual dysfunction, and digestive disturbances. Hence, neurological dysfunction and autonomic impairments predominate in post-COVID-19 condition. Tachykinins including the most studied substance P are neuropeptides expressed throughout the nervous and immune systems, and contribute to many physiopathological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems and participate in inflammation, nociception, and cell proliferation. Substance P is a key molecule in neuroimmune crosstalk; immune cells near the peripheral nerve endings can send signals to the brain with cytokines, which highlights the important role of tachykinins in neuroimmune communication. We reviewed the evidence that relates the symptoms of post-COVID-19 condition to the functions of tachykinins and propose a putative pathogenic mechanism. The antagonism of tachykinins receptors can be a potential treatment target.


Assuntos
COVID-19 , Neuropeptídeos , Humanos , Substância P/fisiologia , Taquicininas/fisiologia , Neuropeptídeos/fisiologia , Receptores de Taquicininas
2.
Front Immunol ; 14: 1049739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756128

RESUMO

The coexistence of chronic pain and anxiety is a common clinical phenomenon. Here, the role of tachykinin receptor 3 (NK3R) in the lateral habenula (LHb) in trigeminal neuralgia and in pain-associated anxiety was systematically investigated. First, electrophysiological recording showed that bilateral LHb neurons are hyperactive in a mouse model of trigeminal neuralgia made by partial transection of the infraorbital nerve (pT-ION). Chemicogenetic activation of bilateral LHb glutamatergic neurons in naive mice induced orofacial allodynia and anxiety-like behaviors, and pharmacological activation of NK3R in the LHb attenuated allodynia and anxiety-like behaviors induced by pT-ION. Electrophysiological recording showed that pharmacological activation of NK3R suppressed the abnormal excitation of LHb neurons. In parallel, pharmacological inhibition of NK3R induced orofacial allodynia and anxiety-like behavior in naive mice. The electrophysiological recording showed that pharmacological inhibition of NK3R activates LHb neurons. Neurokinin B (NKB) is an endogenous high-affinity ligand of NK3R, which binds NK3R and activates it to perform physiological functions, and further neuron projection tracing showed that the front section of the periaqueductal gray (fPAG) projects NKB-positive nerve fibers to the LHb. Optogenetics combined with electrophysiology recordings characterize the functional connections in this fPAG NKB → LHb pathway. In addition, electrophysiological recording showed that NKB-positive neurons in the fPAG were more active than NKB-negative neurons in pT-ION mice. Finally, inhibition of NKB release from the fPAG reversed the analgesic and anxiolytic effects of LHb Tacr3 overexpression in pT-ION mice, indicating that fPAG NKB → LHb regulates orofacial allodynia and pain-induced anxious behaviors. These findings for NK3R suggest the cellular mechanism behind pT-ION in the LHb and suggest that the fPAG NKB → LHb circuit is involved in pain and anxiety comorbidity. This previously unrecognized pathway might provide a potential approach for relieving the pain and anxiety associated with trigeminal neuralgia by targeting NK3R.


Assuntos
Ansiedade , Habenula , Dor , Receptores de Taquicininas , Neuralgia do Trigêmeo , Animais , Camundongos , Comorbidade , Habenula/metabolismo , Hiperalgesia , Neurocinina B/metabolismo , Receptores de Taquicininas/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768456

RESUMO

Radiopharmaceutical development hinges on the affinity and selectivity of the biological component for the intended target. An analogue of the neuropeptide Substance P (SP), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[Thi8,Met(O2)11]-SP (DOTA-[Thi8,Met(O2)11]SP), in the theranostic pair [68Ga]Ga-/ [213Bi]Bi-DOTA-[Thi8,Met(O2)11]SP has shown promising clinical results in the treatment of inoperable glioblastoma. As the theranostic targeting component, modifications to SP that affect the selectivity of the resulting analogue for the intended target (neurokinin-1 receptor [NK1R]) could be detrimental to its therapeutic potential. In addition to other closely related tachykinin receptors (neurokinin-2 receptor [NK2R] and neurokinin-3 receptor [NK3R]), SP can activate a mast cell expressed receptor Mas-related G protein-coupled receptor subtype 2 (MRGPRX2), which has been implicated in allergic-type reactions. Therefore, activation of these receptors by SP analogues has severe implications for their therapeutic potential. Here, the receptor selectivity of DOTA-[Thi8,Met(O2)11]SP was examined using inositol phosphate accumulation assay in HEK293-T cells expressing NK1R, NK2R, NK3R or MRGPRX2. DOTA-[Thi8,Met(O2)11]SP had similar efficacy and potency as native SP at NK1R, but displayed greater NK1R selectivity. DOTA-[Thi8,Met(O2)11]SP was unable to elicit significant activation of the other tachykinin receptors nor MRGPRX2 at high concentrations nor did it display antagonistic behaviour at these receptors. DOTA-[Thi8,Met(O2)11]SP, therefore has high potency and selectivity for NK1R, supporting its potential for targeted theranostic use in glioblastoma multiforme and other conditions characterised by NK1R overexpression.


Assuntos
Glioblastoma , Substância P , Humanos , Receptores de Taquicininas , Células HEK293 , Receptores da Neurocinina-1 , Receptores da Neurocinina-2 , Proteínas do Tecido Nervoso , Receptores de Neuropeptídeos , Receptores Acoplados a Proteínas G
4.
Gen Comp Endocrinol ; 320: 114010, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231487

RESUMO

Neuropeptides and their receptors are fundamentally important in regulating many physiological and behavioural processes in insects. In this work, we have identified, cloned, and sequenced the tachykinin receptor (Rhopr-TKR) from Rhodnius prolixus, a vector of Chagas disease. The receptor is a G protein-coupled receptor belonging to the Rhodopsin Family A. The total length of the open reading frame of the Rhopr-TKR transcript is 1110 bp, which translates into a receptor of 338 amino acids. Fluorescent in-situ RNA-hybridization (FISH) for the Rhopr-TKR transcript shows a signal in a group of six bilaterally paired neurons in the protocerebrum of the brain, localized in a similar region as the insulin producing cells. To examine the role of tachykinin signaling in lipid and carbohydrate homeostasis we used RNA interference. Downregulation of the Rhopr-TKR transcript led to a decrease in the size of blood meal consumed and a significant increase in circulating carbohydrate and lipid levels. Further investigation revealed a close relationship between tachykinin and insulin signaling since the downregulation of the Rhopr-TKR transcript negatively affected the transcript expression for insulin-like peptide 1 (Rhopr-ILP1), insulin-like growth factor (Rhopr-IGF) and insulin receptor 1 (Rhopr-InR1) in both the central nervous system and fat body. Taken together, these findings suggest that tachykinin signaling regulates lipid and carbohydrate homeostasis via the insulin signaling pathway.


Assuntos
Doença de Chagas , Rhodnius , Animais , Carboidratos , Vetores de Doenças , Homeostase , Lipídeos , Receptores de Taquicininas/metabolismo , Rhodnius/metabolismo , Taquicininas/metabolismo
5.
Peptides ; 150: 170729, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34958850

RESUMO

Substance P (SP), a product of the tachykinin 1 (Tac1) gene, is expressed in many hypothalamic neurons. Its wake-promoting potential could be mediated through histaminergic (HA) neurons of the tuberomamillary nucleus (TMN), where functional expression of neurokinin receptors (NKRs) waits to be characterized. As in the process of nociception in the peripheral nervous system (PNS) capsaicin-receptor (transient potential vanilloid 1: TRPV1) signalling is amplified by local release of histamine and SP, we tested the involvement of tachykinins in the capsaicin-induced long-lasting enhancement (LLEcaps) of HA neurons firing by investigating selective neurokinin receptor ligands in the hypothalamic mouse brain slice preparation using patch-clamp recordings in cell-attached mode combined with single-cell RT-PCR. We report that the majority of HA neurons respond to SP (EC50 3 nM), express the SP precursor tachykinin 1 (Tac1) gene and at least one of the neurokinin receptors. Responses to selective agonists of three known neurokinin receptors were sensitive to corresponding antagonists. LLEcaps was significantly impaired by the neurokinin receptor antagonists, indicating that in hypothalamus, as in the PNS, release of tachykinins downstream to TRPV1 activation is able to boost the release of histamine. The excitatory action of SP on histaminergic neurons adds another pathway to the noradrenergic and orexinergic ones to synergistically enhance cortical arousal. We show NK1R to play a prominent role on HA neurons and thus the control of wakefulness.


Assuntos
Capsaicina , Histamina , Animais , Capsaicina/metabolismo , Capsaicina/farmacologia , Camundongos , Neurônios/metabolismo , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Receptores da Neurocinina-2/metabolismo , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Substância P/metabolismo , Taquicininas/metabolismo
6.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884698

RESUMO

Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several physiological functions in mammals. However, little information is available about TAC4 in teleost. In the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp brain and pituitary. Sequence analysis showed that grass carp TAC4 could encode two mature peptides (namely hemokinin 1 (HK1) and hemokinin 2 (HK2)), in which HK2 retained the typical FXGLM motif in C-terminal of tachyinin, while HK1 contained a mutant VFGLM motif. The ligand-receptor selectivity showed that HK2 could activate all 6 NKRs but with the highest activity for the neurokinin receptor 2 (NK2R). Interestingly, HK1 displayed a very weak activation for each NKR isoform. In grass carp pituitary cells, HK2 could induce prolactin (PRL), somatolactin α (SLα), urotensin 1 (UTS1), neuromedin-B 1 (NMB1), cocaine- and amphetamine-regulated transcript 2 (CART2) mRNA expression mediated by NK2R and neurokinin receptor 3 (NK3R) via activation cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC) and calcium2+ (Ca2+)/calmodulin (CaM)/calmodulin kinase-II (CaMK II) cascades. However, the corresponding stimulatory effects triggered by HK1 were found to be notably weaker. Furthermore, based on the structural base for HK1, our data suggested that a phenylalanine (F) to valine (V) substitution in the signature motif of HK1 might have contributed to its weak agonistic actions on NKRs and pituitary genes regulation.


Assuntos
Encéfalo/metabolismo , Proteínas de Peixes/metabolismo , Hipófise/metabolismo , Hormônios Hipofisários/metabolismo , Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Animais , Carpas , Proteínas de Peixes/genética , Receptores de Taquicininas/genética , Taquicininas/genética
7.
Dev Comp Immunol ; 120: 104065, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33705792

RESUMO

Tachykinin-related peptides (TRPs) are important neuropeptides. Here we show that they affect the insect immune system, especially the cellular response. We also identify and predict the sequence and structure of the tachykinin-related peptide receptor (TRPR) and confirm the presence of expression of gene encoding TRPR on Tenebrio molitor haemocytes. After application of the Tenmo-TRP-7 in T. molitor the number of circulating haemocytes increased and the number of haemocytes participating in phagocytosis of latex beads decreased in a dose- and time-dependent fashion. Also, Tenmo-TRP-7 affects the adhesion ability of haemocytes. Six hours after injection of Tenmo-TRP-7, a decrease of haemocyte surface area was observed under both tested Tenmo-TRP-7 concentrations (10-7 and 10-5 M). The opposite effect was reported 24 h after injection, which indicates that the influence of Tenmo-TRP-7 on modulation of haemocyte behaviour differs at different stages of stress response. Tenmo-TRP-7 application also resulted in increased phenoloxidase activity 6 and 24 h after injection. The assessment of DNA integrity of haemocytes showed that the injection of Tenmo-TRP-7 at 10-7 M led to a decrease in DNA damage compared to control individuals. This effect was only visible 6 h after Tenmo-TRP-7 application. After 24 h, Tenmo-TRP-7 injection increased DNA damage. We also confirmed the expression of immune-related genes in nervous tissue of T. molitor. Transcripts for genes encoding receptors participating in pathogen recognition processes and antimicrobial peptides were detected in T. molitor brain, retrocerebral complex and ventral nerve cord. These results may indicate a role of the insect nervous system in pathogen recognition and modulation of immune response similar to vertebrates. Taken together, our results support the notion that tachykinin-related peptides probably play an important role in the regulation of the insect immune system. Moreover, some resemblances with action of tachykinin-related peptides and substance P showed that insects can be potential model organisms for analysis of hormonal regulation of conserved innate immune mechanisms.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Hemócitos/imunologia , Proteínas de Insetos/metabolismo , Taquicininas/metabolismo , Tenebrio/imunologia , Animais , Dano ao DNA/imunologia , Hemócitos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fagocitose , Receptores de Taquicininas/metabolismo , Tenebrio/genética , Tenebrio/metabolismo
8.
J Neurosci ; 41(5): 901-910, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472824

RESUMO

Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predictable threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmacotherapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural processes that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimination by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies demonstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments. Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique core elements of PTSD pathophysiology.


Assuntos
Ansiedade/metabolismo , Emoções/fisiologia , Sistema Límbico/metabolismo , Neuropeptídeos/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Emoções/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Humanos , Sistema Límbico/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Neuropeptídeos/farmacologia , Neuropeptídeos/uso terapêutico , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologia , Taquicininas/antagonistas & inibidores , Taquicininas/metabolismo
9.
Fundam Clin Pharmacol ; 35(4): 681-689, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33058252

RESUMO

The protective effects of tachykinin receptor antagonists: SR140333 (NK1 receptor), SR48968 (NK2 receptor), and SB222200 (NK3 receptor) were tested in rats against a surgically induced postoperative inhibition of gut motility, a common complication of abdominal surgery. The small intestinal transit of Evans blue was measured 24-h post-surgery in untreated rats and animals subjected to skin incision, laparotomy, or laparotomy followed by gut evisceration and manipulation. Surgical procedures were conducted under diethyl ether anesthesia. In comparison to untreated and ether-anesthetized rats, animals undergoing skin incision, laparotomy, or laparotomy with gut evisceration and manipulation showed a significant decrease in the intestinal transit of Evans blue. The pretreatment with NK1 (3-100 µg/kg), NK2 (3-30 µg/kg), and NK3 (10-300 µg/kg) blockers before surgery ameliorated the inhibitory effects of gut manipulation in a dose-dependent manner. Moreover, the submaximal and maximal doses of NK3 antagonists showed a trend toward reversing not only the inhibition caused by gut manipulation but also laparotomy. An additive effect of combining submaximal doses of NK1-3 blockers was observed in animals pretreated with NK1  + NK2 compared to single-agent NK1 and NK2 . Additionally, doublets: NK1  + NK3 or NK2  + NK3 and a triplet: NK1  + NK2  + NK3 proved to be more effective than NK2 antagonist alone. In contrast, NK1-3 blockers have not markedly affected the intestinal propulsion in untreated rats or animals subjected to skin incision or laparotomy. NK1-3 blockers ameliorated the suppressed small-bowel gut motility 24 post-surgery. Combined pretreatment with NK1-3 antagonists provided selective, additive benefits compared to single agents.


Assuntos
Carbacol/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Íleus/prevenção & controle , Receptores de Taquicininas/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Complicações Pós-Operatórias/prevenção & controle , Distribuição Aleatória , Ratos , Ratos Wistar
10.
J Surg Res ; 255: 510-516, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32629333

RESUMO

BACKGROUND: Supraceliac aortic clamping and unclamping produces ischemia-reperfusion (I/R) injury of the splanchnic organs. The protective effects of tachykinin receptor antagonists, SR140333 (NK1 receptor), SR48968 (NK2 receptor), and SB222200 (NK3 receptor), against I/R-induced inhibition of intestinal motility were tested in rats. MATERIAL AND METHODS: The intestinal transit of Evans blue was measured in untreated rats and animals subjected to skin incision, I/R (1 h superior mesenteric artery occlusion followed by 24 h reperfusion) or sham operation. Surgical procedures were conducted under diethyl ether anesthesia. RESULTS: The gastrointestinal transit has not been markedly affected in rats, which were anesthetized or subjected to skin incision in comparison with untreated animals. In contrast, a sham operation and I/R have significantly reduced the intestinal motility. Pretreatment with NK1-3 blockers (SR140333 [3-30 µg/kg]; SR48968 [3-100 µg/kg]; and SB222200 [10-100 µg/kg]) reversed dose dependently the effects of I/R to the level observed after sham operation only. A combination of NK1+NK2+NK3 inhibitors exerted an additive effect compared with NK1 and NK2 antagonists used as single agents. Similarly, combined NK1+NK2 were more effective than NK2 alone. Sham operation and I/R have shifted the in vitro carbachol concentration-response curves to the right in comparison with untreated animals, a phenomenon partially reversed by NK1-NK3 pretreatment. CONCLUSIONS: Single-agent and combined treatment with NK1-3 antagonists markedly attenuated the gastrointestinal dysmotility evoked by I/R injury. The pretreatment with NK3 blocker proved to be the most active in this experimental setting.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Motilidade Gastrointestinal/efeitos dos fármacos , Receptores de Taquicininas/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Circulação Esplâncnica/efeitos dos fármacos , Animais , Benzamidas/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Masculino , Piperidinas/administração & dosagem , Quinolinas/administração & dosagem , Quinuclidinas/administração & dosagem , Ratos , Receptores de Taquicininas/metabolismo , Traumatismo por Reperfusão/etiologia , Taquicininas/metabolismo
11.
J Neuroendocrinol ; 32(7): e12877, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572994

RESUMO

Neurokinin B (NKB) is critical for fertility in humans and stimulates gonadotrophin-releasing hormone/luteinising hormone (LH) secretion in several species, including sheep. There is increasing evidence that the actions of NKB in the retrochiasmatic area (RCh) contribute to the induction of the preovulatory LH surge in sheep. In the present study, we determined whether there are sex differences in the response to RCh administration of senktide, an agonist to the NKB receptor (neurokinin receptor-3 [NK3R]), and in NKB and NK3R expression in the RCh of sheep. To normalise endogenous hormone concentrations, animals were gonadectomised and given implants to mimic the pattern of ovarian steroids seen in the oestrous cycle. In females, senktide microimplants in the RCh produced an increase in LH concentrations that lasted for at least 8 hours after the start of treatment, whereas a much shorter increment (approximately 2 hours) was seen in males. We next collected tissue from gonadectomised lambs 18 hours after the insertion of oestradiol implants that produce an LH surge in female, but not male, sheep for immunohistochemical analysis of NKB and NK3R expression. As expected, there were more NKB-containing neurones in the arcuate nucleus of females than males. Interestingly, there was a similar sexual dimorphism in NK3R-containing neurones in the RCh, NKB-containing close contacts onto these RCh NK3R neurones, and overall NKB-positive fibres in this region. These data demonstrate that there are both functional and morphological sex differences in NKB-NK3R signalling in the RCh and raise the possibility that this dimorphism contributes to the sex-dependent ability of oestradiol to induce an LH surge in female sheep.


Assuntos
Hipotálamo Médio/metabolismo , Neurocinina B/metabolismo , Caracteres Sexuais , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Kisspeptinas/metabolismo , Masculino , Neurônios/metabolismo , Receptores de Taquicininas/metabolismo , Ovinos , Transdução de Sinais/fisiologia
12.
Biochim Biophys Acta Mol Cell Res ; 1867(6): 118690, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112783

RESUMO

Tachykinin signaling system is present in both vertebrates and invertebrates, and functions as neuromodulator responsible for the regulation of various physiological processes. In human, the internalization of G protein-coupled receptors has been extensively characterized; however, the insect GPCR internalization has been rarely investigated. Here, we constructed two expression vectors of Bombyx tachykinin-related peptide receptor (BmTKRPR) fused with Enhanced Green Fluorescent Protein (EGFP) at the C-terminal end for direct visualization of receptor expression, localization, and trafficking in cultured mammalian HEK293 and insect Sf21 cells. Our results demonstrated that agonist-activated BmTKRPR underwent rapid internalization in a dose-and time-dependent manner via a clathrin-dependent pathway in both HEK293 and Sf21 cells. Further investigation via RNAi or specific inhibitors, or co-immunoprecipitation demonstrated that agonist-induced BmTKRPR internalization was mediated by PKC, GRK5 and ß-arrestin2/BmKurtz. In addition, we also observed that most of the internalized BmTKRP receptors were recycled to the cell surface via early endosomes upon peptide ligand removal. Our study provides the first in-depth information on mechanisms underlying insect TKRP receptor internalization and perhaps aids in the interpretation of the signaling in the regulation of physiological processes.


Assuntos
Bombyx/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Proteína Quinase C/metabolismo , Receptores de Taquicininas/metabolismo , beta-Arrestina 2/metabolismo , Animais , Endossomos/metabolismo , Células HEK293 , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ligantes , Transporte Proteico , Receptores de Taquicininas/genética , Células Sf9 , Transdução de Sinais
13.
J Cell Biochem ; 121(5-6): 3031-3041, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32115751

RESUMO

Tachykinins (TKs) are a family of neuropeptides mainly expressed by neuronal and non-neuronal cell types, especially immune cells. Expression of TKs receptors on immune cell surfaces, their involvement in immune-related disorders, and therefore, understanding their immunomodulatory roles have become of particular interest to researchers. In fact, the precise understanding of TKs intervention in the immune system would help to design novel therapeutic approaches for patients suffering from immune disorders. The present review summarizes studies on TKs function as modulators of the immune system by reviewing their roles in generation, activation, development, and migration of immune cells. Also, it discusses TKs involvement in three main cellular mechanisms including inflammation, apoptosis, and proliferation.


Assuntos
Regulação da Expressão Gênica , Sistema Imunitário/metabolismo , Neuropeptídeos/metabolismo , Receptores de Taquicininas , Taquicininas/metabolismo , Animais , Apoptose , Movimento Celular , Proliferação de Células , Homeostase , Humanos , Inflamação , Leucócitos/citologia , Neuropeptídeos/química , Receptores de Taquicininas/metabolismo , Transdução de Sinais
14.
Brain Res Bull ; 154: 106-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722250

RESUMO

Single-nucleotide polymorphism (SNP) and Alternative splicing (AS) were found to be implicated in certain diseases, nevertheless, the contributions of mRNA SNPs and AS to pathogenesis in developing rat brains with hypoxic-ischemic encephalopathy (HIE) remained largely vague. Additionally, the disease associated with Tacr3 was normosmic congenital hypogonadotropic hypogonadism, while the relationship between HIE and Tacr3 remained largely elusive. The current study was designed to investigate the differentially expressed mRNAs and related SNPs as well as AS in neonatal rats subjected to HIE to identify if the exhibition of AS was associated with SNPs under pathological condition. Firstly, we used postnatal day 7 Sprague-Dawley rats to construct neonatal HIE model, and analyzed the expression profiles of SNP mRNA in hypoxic-ischemic (HI) and sham brains by using RNA sequencing. Then four genes, including Mdfic, Lpp, Bag3 and Tacr3, connecting with HIE and exhibiting SNPs and AS were identified by bioinformatics analysis. Moreover, combined with exonic splicing enhancer (ESE) and alternative splice site predictor (ASSP) analysis, we found that Tacr3 is associated specifically with HIE through 258547789 G > A SNP in inside the Alt First Exon and 258548573 G > A SNP in outside the Alt First Exon. Taken together, our study provides new evidence to understand the role of Tacr3 in HIE and it is possibly a potential target for the treatment of HIE in future clinic trial.


Assuntos
Hipóxia-Isquemia Encefálica , Receptores de Taquicininas , Animais , Humanos , Masculino , Ratos , Processamento Alternativo/genética , Animais Recém-Nascidos , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ratos Sprague-Dawley , Receptores da Neurocinina-3/genética , Receptores da Neurocinina-3/metabolismo , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo
15.
Cell Rep ; 29(3): 764-777.e5, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618642

RESUMO

RNA sequencing analyses are often limited to identifying lowest p value transcripts, which does not address polygenic phenomena. To overcome this limitation, we developed an integrative approach that combines large-scale transcriptomic meta-analysis of patient brain tissues with single-cell sequencing data of CNS neurons, short RNA sequencing of human male- and female-originating cell lines, and connectomics of transcription factor and microRNA interactions with perturbed transcripts. We used this pipeline to analyze cortical transcripts of schizophrenia and bipolar disorder patients. Although these pathologies show massive transcriptional parallels, their clinically well-known sexual dimorphisms remain unexplained. Our method reveals the differences between afflicted men and women and identifies disease-affected pathways of cholinergic transmission and gp130-family neurokine controllers of immune function interlinked by microRNAs. This approach may open additional perspectives for seeking biomarkers and therapeutic targets in other transmitter systems and diseases.


Assuntos
Transtorno Bipolar/patologia , Esquizofrenia/patologia , Transcriptoma , Biomarcadores/metabolismo , Transtorno Bipolar/genética , Transtorno Bipolar/imunologia , Linhagem Celular , Neurônios Colinérgicos/metabolismo , Conectoma , Feminino , Ontologia Genética , Humanos , Masculino , MicroRNAs/metabolismo , Receptores de Taquicininas/metabolismo , Esquizofrenia/genética , Esquizofrenia/imunologia , Análise de Sequência de RNA , Caracteres Sexuais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
CNS Neurosci Ther ; 25(1): 123-135, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29900692

RESUMO

AIM: Substance P (SP) causes vasodilation and blood pressure (BP) reduction. However, the involvement of tachykinin receptors (NKRs) within baroreflex afferent pathway in SP-mediated BP regulation is largely unknown. METHODS: Under control and hypertensive condition, NKRs' expressions were evaluated in nodose (NG) and nucleus of tractus solitary (NTS) of male, female, and ovariectomized (OVX) rats; BP was recorded after microinjection of SP and NKRs agonists into NG; Baroreceptor sensitivity (BRS) was tested as well. RESULTS: Immunostaining and immunoblotting data showed that NK1R and NK2R were estrogen-dependently expressed on myelinated and unmyelinated afferents in NG. A functional study showed that BP was reduced dose-dependently by SP microinjection, which was more dramatic in males and can be mimicked by NK1R and NK2R agonists. Notably, further BP elevation and BRS dysfunction were confirmed in desoxycorticosterone acetate (DOCA)-salt model in OVX compared with DOCA-salt model in intact female rats. Additionally, similar changes in NKRs' expression in NG were also detected using DOCA-salt and SHR. Compared with NG, inversed expression profiles of NKRs were also found in NTS with either gender. CONCLUSION: The estrogen-dependent NKRs' expression in baroreflex afferent pathway participates at least partially in sexual-dimorphic and SP-mediated BP regulation under physiological and hypertensive conditions.


Assuntos
Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Gânglio Nodoso/metabolismo , Receptores de Taquicininas/metabolismo , Núcleo Solitário/metabolismo , Vias Aferentes/metabolismo , Animais , Estrogênios/metabolismo , Feminino , Hipertensão/metabolismo , Masculino , Pressorreceptores/metabolismo , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Ratos Wistar , Substância P/metabolismo
17.
Elife ; 72018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30565563

RESUMO

Neurokinin B (NKB) signaling is critical for reproduction in all studied species. The existing consensus is that NKB induces GnRH release via kisspeptin (Kiss1) stimulation in the arcuate nucleus. However, the stimulatory action of NKB is dependent on circulating estrogen (E2) levels, without which, NKB inhibits luteinizing hormone (LH) release. Importantly, the evidence supporting the kisspeptin-dependent role of NKB, derives from models of persistent hypogonadal state [e.g. Kiss1r knock-out (KO) mice], with reduced E2 levels. Here, we demonstrate that in the presence of E2, NKB signaling induces LH release in a kisspeptin-independent manner through the activation of NK3R (NKB receptor) neurons in the posterodorsal medial amygdala (MePD). Importantly, we show that chemogenetic activation of MePD Kiss1 neurons induces LH release, however, the stimulatory action of NKB in this area is Kiss1 neuron-independent. These results document the existence of two independent neuronal circuitries within the MePD that regulate reproductive function in females. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Estrogênios/metabolismo , Kisspeptinas/genética , Neurocinina B/genética , Receptores de Taquicininas/genética , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Complexo Nuclear Corticomedial , Estrogênios/genética , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/antagonistas & inibidores , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Knockout , Neurocinina B/metabolismo , Neurônios/metabolismo , Transdução de Sinais
18.
Cell Rep ; 24(2): 271-277, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996088

RESUMO

Hot flushes are a sudden feeling of warmth commonly associated with the decline of gonadal hormones at menopause. Neurons in the arcuate nucleus of the hypothalamus that express kisspeptin and neurokinin B (Kiss1ARH neurons) are candidates for mediating hot flushes because they are negatively regulated by sex hormones. We used a combination of genetic and viral technologies in mice to demonstrate that artificial activation of Kiss1ARH neurons evokes a heat-dissipation response resulting in vasodilation (flushing) and a corresponding reduction of core-body temperature in both females and males. This response is sensitized by ovariectomy. Brief activation of Kiss1ARH axon terminals in the preoptic area of the hypothalamus recapitulates this response, while pharmacological blockade of neurokinin B (NkB) receptors in the same brain region abolishes it. We conclude that transient activation of Kiss1ARH neurons following sex-hormone withdrawal contributes to the occurrence of hot flushes via NkB release in the rostral preoptic area.


Assuntos
Vias Neurais/fisiologia , Vasodilatação , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Estrogênios/metabolismo , Feminino , Temperatura Alta , Kisspeptinas/metabolismo , Masculino , Camundongos , Vias Neurais/efeitos dos fármacos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Optogenética , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Taquicininas/metabolismo , Vasodilatação/efeitos dos fármacos
19.
Gen Comp Endocrinol ; 266: 110-118, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746853

RESUMO

Although tachykinin-like neuropeptides have been identified in molluscs more than two decades ago, knowledge on their function and signalling has so far remained largely elusive. We developed a cell-based assay to address the functionality of the tachykinin G-protein coupled receptor (Cragi-TKR) in the oyster Crassostrea gigas. The oyster tachykinin neuropeptides that are derived from the tachykinin precursor gene Cragi-TK activate the Cragi-TKR in nanomolar concentrations. Receptor activation is sensitive to Ala-substitution of critical Cragi-TK amino acid residues. The Cragi-TKR gene is expressed in a variety of tissues, albeit at higher levels in the visceral ganglia (VG) of the nervous system. Fluctuations of Cragi-TKR expression is in line with a role for TK signalling in C. gigas reproduction. The expression level of the Cragi-TK gene in the VG depends on the nutritional status of the oyster, suggesting a role for TK signalling in the complex regulation of feeding in C. gigas.


Assuntos
Crassostrea/metabolismo , Transdução de Sinais , Taquicininas/metabolismo , Sequência de Aminoácidos , Animais , Crassostrea/genética , Regulação da Expressão Gênica , Filogenia , Receptores de Taquicininas/química , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Reprodução , Taquicininas/química , Taquicininas/genética
20.
Cell ; 173(5): 1265-1279.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775595

RESUMO

Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.


Assuntos
Encéfalo/metabolismo , Neurocinina B/metabolismo , Precursores de Proteínas/metabolismo , Isolamento Social , Estresse Psicológico , Taquicininas/metabolismo , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurocinina B/genética , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Taquicininas/antagonistas & inibidores , Taquicininas/genética , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...