Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 921
Filtrar
1.
Front Immunol ; 14: 1110482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817444

RESUMO

In engineered T cells the CAR is co-expressed along with the physiological TCR/CD3 complex, both utilizing the same downstream signaling machinery for T cell activation. It is unresolved whether CAR-mediated T cell activation depends on the presence of the TCR and whether CAR and TCR mutually cross-activate upon engaging their respective antigen. Here we demonstrate that the CD3ζ CAR level was independent of the TCR associated CD3ζ and could not replace CD3ζ to rescue the TCR complex in CD3ζ KO T cells. Upon activation, the CAR did not induce phosphorylation of TCR associated CD3ζ and, vice versa, TCR activation did not induce CAR CD3ζ phosphorylation. Consequently, CAR and TCR did not cross-signal to trigger T cell effector functions. On the membrane level, TCR and CAR formed separate synapses upon antigen engagement as revealed by total internal reflection fluorescence (TIRF) and fast AiryScan microscopy. Upon engaging their respective antigen, however, CAR and TCR could co-operate in triggering effector functions through combinatorial signaling allowing logic "AND" gating in target recognition. Data also imply that tonic TCR signaling can support CAR-mediated T cell activation emphasizing the potential relevance of the endogenous TCR for maintaining T cell capacities in the long-term.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Complexo CD3 , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Transdução de Sinais , Receptores de Antígenos Quiméricos/imunologia
2.
Cancer Immunol Res ; 11(1): 93-108, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265009

RESUMO

The engagement of the T-cell receptor (TCR) by a specific peptide-MHC ligand initiates transmembrane signaling to induce T-cell activation, a key step in most adaptive immune responses. Previous studies have indicated that TCR signaling is tightly regulated by cholesterol and its sulfate metabolite, cholesterol sulfate (CS), on the membrane. Here, we report a novel mechanism by which CS modulates TCR signaling through a conformational change of CD3 subunits. We found that the negatively charged CS interacted with the positively charged cytoplasmic domain of CD3ε (CD3εCD) to enhance its binding to the cell membrane and induce a stable secondary structure. This secondary structure suppressed the release of CD3εCD from the membrane in the presence of Ca2+, which in turn inhibited TCR phosphorylation and signaling. When a point mutation (I/A) was introduced to the intracellular immunoreceptor tyrosine-based activation motifs (YxxI-x6-8-YxxL) of CD3ε subunit, it reduced the stability of the secondary structure and regained sensitivity to Ca2+, which abolished CS-mediated inhibition and enhanced the signaling of the TCR complex. Notably, the I/A mutation could be applied to both murine and human TCR-T cell therapy to improve the antitumor efficacy. Our study reveals insights into the regulatory mechanism of TCR signaling and provides a strategy to functionally engineer the TCR/CD3 complex for T cell-based cancer immunotherapy.


Assuntos
Cálcio , Linfócitos T , Animais , Humanos , Camundongos , Cálcio/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo CD3/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Fosforilação , Lipídeos/análise
3.
Front Immunol ; 13: 935367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860252

RESUMO

Lck and Zap70, two non-receptor tyrosine kinases, play a crucial role in the regulation of membrane proximal TCR signaling critical for thymic selection, CD4/CD8 lineage choice and mature T cell function. Signal initiation upon TCR/CD3 and peptide/MHC interaction induces Lck-mediated phosphorylation of CD3 ITAMs. This is necessary for Zap70 recruitment and its phosphorylation by Lck leading to full Zap70 activation. In its native state Zap70 maintains a closed conformation creating an auto-inhibitory loop, which is relieved by Lck-mediated phosphorylation of Y315/Y319. Zap70 is differentially expressed in thymic subsets and mature T cells with CD8 T cells expressing the highest amount compared to CD4 T cells. However, the mechanistic basis of differential Zap70 expression in thymic subsets and mature T cells is not well understood. Here, we show that Zap70 is degraded relatively faster in DP and mature CD4 T cells compared to CD8 T cells, and inversely correlated with relative level of activated Zap70. Importantly, we found that Zap70 expression is negatively regulated by Lck activity: augmented Lck activity resulting in severe diminution in total Zap70. Moreover, Lck-mediated phosphorylation of Y315/Y319 was essential for Zap70 degradation. Together, these data shed light on the underlying mechanism of Lck-mediated differential modulation of Zap70 expression in thymic subsets and mature T cells.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
4.
Elife ; 112022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35861317

RESUMO

CD4+ T cells use T cell receptor (TCR)-CD3 complexes, and CD4, to respond to peptide antigens within MHCII molecules (pMHCII). We report here that, through ~435 million years of evolution in jawed vertebrates, purifying selection has shaped motifs in the extracellular, transmembrane, and intracellular domains of eutherian CD4 that enhance pMHCII responses, and covary with residues in an intracellular motif that inhibits responses. Importantly, while CD4 interactions with the Src kinase, Lck, are viewed as key to pMHCII responses, our data indicate that CD4-Lck interactions derive their importance from the counterbalancing activity of the inhibitory motif, as well as motifs that direct CD4-Lck pairs to specific membrane compartments. These results have implications for the evolution and function of complex transmembrane receptors and for biomimetic engineering.


Assuntos
Antígenos CD4 , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Animais , Complexo CD3/metabolismo , Antígenos CD4/genética , Antígenos CD4/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Ativação Linfocitária , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Quinases da Família src/metabolismo
5.
Mol Cell ; 82(7): 1278-1287.e5, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271814

RESUMO

Cholesterol molecules specifically bind to the resting αßTCR to inhibit cytoplasmic CD3ζ ITAM phosphorylation through sequestering the TCR-CD3 complex in an inactive conformation. The mechanisms of cholesterol-mediated inhibition of TCR-CD3 and its activation remain unclear. Here, we present cryoelectron microscopy structures of cholesterol- and cholesterol sulfate (CS)-inhibited TCR-CD3 complexes and an auto-active TCR-CD3 variant. The structures reveal that cholesterol molecules act like a latch to lock CD3ζ into an inactive conformation in the membrane. Mutations impairing binding of cholesterol molecules to the tunnel result in the movement of the proximal C terminus of the CD3ζ transmembrane helix, thereby activating the TCR-CD3 complex in human cells. Together, our data reveal the structural basis of TCR inhibition by cholesterol, illustrate how the cholesterol-binding tunnel is allosterically coupled to TCR triggering, and lay a foundation for the development of immunotherapies through directly targeting the TCR-CD3 complex.


Assuntos
Complexo Receptor-CD3 de Antígeno de Linfócitos T , Linfócitos T , Complexo CD3/genética , Complexo CD3/metabolismo , Colesterol/metabolismo , Microscopia Crioeletrônica , Humanos , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo
6.
Mol Immunol ; 144: 35-43, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35176559

RESUMO

In mammals, the T lymphocyte receptor (TCR) is a multiprotein complex formed by the proteins TCRα, TCRß, CD3ε, CD3γ, CD3δ, and CD3ζ. It is responsible for recognizing antigens processed and presented by antigen-presenting cells (APC). The TCR is located at the cytoplasmic membrane of the T lymphocyte but is functional assembled in the rough endoplasmic reticulum (RER). Most of the available information on TCR constituents in salmonids comes from numerous nucleotide sequences available in different databases. In this work, by in silico homology modeling, we generated the TCRαß/CD3 complex of rainbow trout (Oncorhynchus mykiss) and characterized the structure of the different proteins and their potential interactions. The results show that the main structural features described in mammalian TCR/CD3 are present in the model predicted for trout. Furthermore, we highlighted several aminoacidic interactions between TCRα, TCRß, CD3γδ, and CD3ε. In silico structural analyses suggest that trout TCRαß complex would fit similarly to that described for mammals. Herein, we explore the implications of the modeled trout complex and the leukocyte phenotypes, mainly associated with different regulation mechanisms of trout TCRαß/CD3 subunits gene expression or may be due to differences in the assembly process of the complex in the RER. However, further studies will be needed to study deeper the mechanisms involved.


Assuntos
Oncorhynchus mykiss , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Complexo CD3 , Mamíferos , Complexo Receptor-CD3 de Antígeno de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Nanoscale ; 14(9): 3513-3526, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35171177

RESUMO

T cells are highly sensitive to low levels of antigen, but how this sensitivity is achieved is currently unknown. Here, we imaged proximal TCR-CD3 signal propagation with single molecule localization microscopy (SMLM) in T cells activated with nanoscale clusters of TCR stimuli. We observed the formation of large TCR-CD3 clusters that exceeded the area of the ligand clusters, and required multivalent interactions facilitated by TCR-CD3 phosphorylation for assembly. Within these clustered TCR-CD3 domains, TCR-CD3 signaling spread laterally for ∼500 nm, far beyond the activating site, via non-engaged receptors. Local receptor density determined the functional cooperativity between engaged and non-engaged receptors, but lateral signal propagation was not influenced by the genetic deletion of ZAP70. Taken together, our data demonstrates that clustered ligands induced the clustering of non-ligated TCR-CD3 into domains that cooperatively facilitate lateral signal propagation.


Assuntos
Complexo Receptor-CD3 de Antígeno de Linfócitos T , Receptores de Antígenos de Linfócitos T , Fosforilação , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
8.
Cells ; 11(4)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203317

RESUMO

The machinery involved in cytotoxic T-cell activation requires three main characters: the major histocompatibility complex class I (MHC I) bound to the peptide (p), the T-cell receptor (TCR), and the CD3 complex, a multidimer interfaced with the intracellular side. The pMHC:TCR interaction has been largely studied by means of both experimental and computational models, giving a contribution in understanding the complexity of the TCR triggering. Nevertheless, a detailed study of the structural and dynamical characterization of the full complex (pMHC:TCR:CD3 complex) is still missing due to a lack of structural information of the CD3-chains arrangement around the TCR. Very recently, the determination of the TCR:CD3 complex structure by means of Cryo-EM technique has given a chance to build the entire system essential in the activation of T-cells, a fundamental mechanism in the adaptive immune response. Here, we present the first complete model of the pMHC interacting with the TCR:CD3 complex, built in a lipid environment. To describe the conformational behavior associated with the unbound and the bound states, all-atom Molecular Dynamics simulations were performed for the TCR:CD3 complex and for two pMHC:TCR:CD3 complex systems, bound to two different peptides. Our data point out that a conformational change affecting the TCR Constant ß (Cß) region occurs after the binding to the pMHC, revealing a key role of this region in the propagation of the signal. Moreover, we found that TCR reduces the flexibility of the MHC I binding groove, confirming our previous results.


Assuntos
Complexo Principal de Histocompatibilidade , Complexo Receptor-CD3 de Antígeno de Linfócitos T , Complexo CD3/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/química
9.
Front Immunol ; 13: 1052090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685546

RESUMO

Introduction: We have recently developed a novel T cell engager concept by utilizing γ9δ2TCR as tumor targeting domain, named gamma delta TCR anti-CD3 bispecific molecule (GAB), targeting the phosphoantigen-dependent orchestration of BTN2A1 and BTN3A1 at the surface of cancer cells. GABs are made by the fusion of the ectodomains of a γδTCR to an anti-CD3 single chain variable fragment (scFv) (γδECTO-αCD3), here we explore alternative designs with the aim to enhance GAB effectivity. Methods: The first alternative design was made by linking the variable domains of the γ and δ chain to an anti-CD3 scFv (γδVAR-αCD3). The second alternative design was multimerizing γδVAR-αCD3 proteins to increase the tumor binding valency. Both designs were expressed and purified and the potency to target tumor cells by T cells of the alternative designs was compared to γδECTO-αCD3, in T cell activation and cytotoxicity assays. Results and discussion: The γδVAR-αCD3 proteins were poorly expressed, and while the addition of stabilizing mutations based on finding for αß single chain formats increased expression, generation of meaningful amounts of γδVAR-αCD3 protein was not possible. As an alternative strategy, we explored the natural properties of the original GAB design (γδECTO-αCD3), and observed the spontaneous formation of γδECTO-αCD3-monomers and -dimers during expression. We successfully enhanced the fraction of γδECTO-αCD3-dimers by shortening the linker length between the heavy and light chain in the anti-CD3 scFv, though this also decreased protein yield by 50%. Finally, we formally demonstrated with purified γδECTO-αCD3-dimers and -monomers, that γδECTO-αCD3-dimers are superior in function when compared to similar concentrations of monomers, and do not induce T cell activation without simultaneous tumor engagement. In conclusion, a γδECTO-αCD3-dimer based GAB design has great potential, though protein production needs to be further optimized before preclinical and clinical testing.


Assuntos
Neoplasias , Anticorpos de Cadeia Única , Humanos , Complexo CD3/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T , Neoplasias/tratamento farmacológico , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/química , Ativação Linfocitária , Butirofilinas , Antígenos CD
10.
Nat Commun ; 12(1): 7296, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911975

RESUMO

CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans.


Assuntos
Complexo CD3/imunologia , Linfócitos T CD8-Positivos/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Complexo CD3/genética , Proliferação de Células , Citocinas/genética , Citocinas/imunologia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
11.
Int J Med Sci ; 18(15): 3544-3555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522181

RESUMO

Premature ovarian failure (POF) is a typical form of pathological aging with complex pathogenesis and no effective treatment. Meanwhile, recent studies have reported that a high-fat and high-sugar (HFHS) diet adversely affects ovarian function and ovum quality. Here, we investigated the therapeutic effect of thymopentin (TP-5) as a treatment for murine POF derived from HFHS and its target. Pathological examination and hormone assays confirmed that TP-5 significantly improved murine POF symptoms. And, TP-5 could reduce oxidative stress injury and blood lipids in the murine POF derived from HFHS. Flow cytometry and qPCR results suggested that TP-5 attenuated activation of CD3+ T cells and type I macrophages. RNA-Seq results indicated somedifferences in gene transcription between the TP-5 intervention group and the control group. KEGG analysis indicated that the expression of genes involved in the mTOR signaling pathway was the most significantly different between the two groups. Additionally, compared with the control groups, the expression levels of interleukin, NFκB, and TNF families of genes were significantly downregulated in the POF+TP-5 group, whereas expression of the TGFß/Smad9 genes was significantly upregulated. Finally, immunofluorescence staining and qPCR confirmed that TP-5 promoted the polarization of Mø2 cells in the ovary by activating the expression of the BMP4/Smad9 signalling pathway. Thus, our study confirmed that TP-5 has a significant therapeutic effect on POF by upregulating BMP4/Smad9 signalling pathway so as to promote the balance and polarization of immune cell and reducing the release of inflammatory factors and reduce lipid oxidative stress injury.


Assuntos
Adjuvantes Imunológicos/farmacologia , Insuficiência Ovariana Primária/tratamento farmacológico , Complexo Receptor-CD3 de Antígeno de Linfócitos T/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Timopentina/farmacologia , Animais , Proteína Morfogenética Óssea 4/imunologia , Modelos Animais de Doenças , Feminino , Camundongos , Insuficiência Ovariana Primária/imunologia , Transdução de Sinais/imunologia , Proteína Smad8/imunologia
12.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34490842

RESUMO

We investigate the structural and orientational variability of the membrane-embedded T cell receptor (TCR) - CD3 complex in extensive atomistic molecular dynamics simulations based on the recent cryo-EM structure determined by Dong et al., 2019. We find that the TCR extracellular (EC) domain is highly variable in its orientation by attaining tilt angles relative to the membrane normal that range from 15° to 55°. The tilt angle of the TCR EC domain is both coupled to a rotation of the domain and to characteristic changes throughout the TCR - CD3 complex, in particular in the EC interactions of the Cß FG loop of the TCR, as well as in the orientation of transmembrane helices. The concerted motions of the membrane-embedded TCR - CD3 complex revealed in our simulations provide atomistic insights on conformational changes of the complex in response to tilt-inducing forces on antigen-bound TCRs.


Assuntos
Complexo CD3/metabolismo , Membrana Celular/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/metabolismo , Complexo CD3/ultraestrutura , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Complexo Receptor-CD3 de Antígeno de Linfócitos T/ultraestrutura , Receptores de Antígenos de Linfócitos T alfa-beta/ultraestrutura , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/ultraestrutura
13.
PLoS Comput Biol ; 17(7): e1009232, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34280187

RESUMO

The T cell receptor (TCR-CD3) initiates T cell activation by binding to peptides of Major Histocompatibility Complexes (pMHC). The TCR-CD3 topology is well understood but the arrangement and dynamics of its cytoplasmic tails remains unknown, limiting our grasp of the signalling mechanism. Here, we use molecular dynamics simulations and modelling to investigate the entire TCR-CD3 embedded in a model membrane. Our study demonstrates conformational changes in the extracellular and transmembrane domains, and the arrangement of the TCR-CD3 cytoplasmic tails. The cytoplasmic tails formed highly interlaced structures while some tyrosines within the immunoreceptor tyrosine-based activation motifs (ITAMs) penetrated the hydrophobic core of the membrane. Interactions between the cytoplasmic tails and phosphatidylinositol phosphate lipids in the inner membrane leaflet led to the formation of a distinct anionic lipid fingerprint around the TCR-CD3. These results increase our understanding of the TCR-CD3 dynamics and the importance of membrane lipids in regulating T cell activation.


Assuntos
Modelos Moleculares , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Biologia Computacional , Simulação por Computador , Microscopia Crioeletrônica , Citoplasma/química , Citoplasma/metabolismo , Humanos , Ativação Linfocitária , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Complexo Receptor-CD3 de Antígeno de Linfócitos T/ultraestrutura , Eletricidade Estática , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Immunohorizons ; 5(5): 349-359, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039676

RESUMO

We designed variant human TCRs composed of the full-length TCRα/ß or extracellular and transmembrane domains of the associated CD3 subunits fused to polypeptides derived from proteins thought to either enhance or inhibit normal T cell function. First, we showed that the C termini of both the TCR α- and ß-chains can accommodate specific additional sequences, without abrogating complex formation or acute sensitivity of the receptor. Replacement of ITAMs with ITIM-containing intracellular domains inverted the TCR signal (i.e., created a ligand-dependent inhibitory receptor). The normal signaling function of the CD3 complex was transferable to the TCR by eliminating all CD3 ITAMs and grafting three to six ITAMs onto the C termini of the α/ß-chains, with no effect on acute sensitivity. The observation that TCR variants of such diverse C-terminal composition can fold and function as signaling receptors demonstrates substantial structural and functional malleability of TCRs. These results add to knowledge about TCR structure-function with regard to acute signaling and may provide a route to use TCRs in different ways for T cell therapy.


Assuntos
Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/citologia , Linfócitos T/imunologia
15.
Future Oncol ; 17(11): 1269-1283, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33448873

RESUMO

Axicabtagene ciloleucel and brexucabtagene autoleucel are anti-CD19 T-cell therapies that utilize the same second-generation chimeric antigen receptor with a CD28 costimulatory subunit. They have demonstrated high rates of response in high-risk patients with relapsed and refractory B-cell malignancies in multicenter clinical trials, including diffuse large B-cell and mantle cell lymphomas. The high clinical activity has led to the US FDA approval of axicabtagene ciloleucel for diffuse large B-cell lymphoma, and brexucabtagene autoleucel for mantle cell lymphoma. While they are highly effective, they have significant toxicities, including cytokine release syndrome and neurologic toxicities, which can be severe and require specialized management. This review will discuss the development, efficacy and safety of axicabtagene ciloleucel and brexucabtagene autoleucel in B-cell lymphomas.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Linfoma Difuso de Grandes Células B/terapia , Linfoma de Célula do Manto/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Antígenos CD19/imunologia , Antineoplásicos Imunológicos/imunologia , Produtos Biológicos/imunologia , Antígenos CD28/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/patologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Recidiva , Segurança , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Resultado do Tratamento
16.
J Mol Biol ; 432(24): 166697, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33157083

RESUMO

T cells are vital for adaptive immune responses that protect against pathogens and cancers. The T cell receptor (TCR)-CD3 complex comprises a diverse αß TCR heterodimer in noncovalent association with three invariant CD3 dimers. The TCR is responsible for recognizing antigenic peptides bound to MHC molecules (pMHC), while the CD3 dimers relay activation signals to the T cell. However, the mechanisms by which TCR engagement by pMHC is transmitted to CD3 remain mysterious, although there is growing evidence that mechanosensing and allostery both play a role. Here, we carried out NMR analysis of a human autoimmune TCR (MS2-3C8) that recognizes a self-peptide from myelin basic protein presented by the MHC class II molecule HLA-DR4. We observed pMHC-induced NMR signal perturbations in MS2-3C8 that indicate long-range effects on TCR ß chain conformation and dynamics. Our results demonstrate that, in addition to expected changes in the NMR resonances of pMHC-contacting residues, perturbations extend to the Vß/Vα, Vß/Cß, and Cß/Cα interfacial regions. Moreover, the pattern of long-range perturbations is similar to that detected previously in the ß chains of two MHC class I-restricted TCRs, thereby revealing a common allosteric pathway among three unrelated TCRs. Molecular dynamics (MD) simulations predict similar pMHC-induced effects. Taken together, our results demonstrate that pMHC binding induces long-range allosteric changes in the TCR ß chain at conserved sites in both representative MHC class I- and class II-restricted TCRs, and that these sites may play a role in the transmission of signaling information.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Sítio Alostérico/genética , Sítios de Ligação/genética , Sequência Conservada/genética , Antígeno HLA-DR4/genética , Antígeno HLA-DR4/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Simulação de Dinâmica Molecular , Peptídeos/genética , Ligação Proteica/genética , Conformação Proteica , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia
17.
J Phys Chem B ; 124(46): 10303-10310, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33030343

RESUMO

Understanding how molecular interactions within the plasma membrane govern assembly, clustering, and conformational changes in single-pass transmembrane (TM) receptors has long presented substantial experimental challenges. Our previous work on activating immune receptors has combined direct biochemical and biophysical characterizations with both independent and experimentally restrained computational methods to provide novel insights into the key TM interactions underpinning assembly and stability of complex, multisubunit receptor systems. The recently published cryo-EM structure of the intact T cell receptor (TCR)-CD3 complex provides a unique opportunity to test the models and predictions arising from these studies, and we find that they are accurate, which we attribute to robust simulation environments and careful consideration of limitations related to studying TM interactions in isolation from additional receptor domains. With this in mind, we revisit results in other immune receptors and look forward to how similar methods may be applied to understand receptors for which little or no structural information is currently available.


Assuntos
Membrana Celular , Complexo Receptor-CD3 de Antígeno de Linfócitos T , Humanos , Conformação Proteica
18.
Mol Syst Biol ; 16(8): e9416, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32779888

RESUMO

It has recently become possible to simultaneously assay T-cell specificity with respect to large sets of antigens and the T-cell receptor sequence in high-throughput single-cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to model T-cell specificity in single cells. In agreement with previous results, we found that models that treat antigens as categorical outcome variables outperform those that model the TCR and antigen sequence jointly. Moreover, we show that variability in single-cell immune repertoire screens can be mitigated by modeling cell-specific covariates. Lastly, we demonstrate that the number of bound pMHC complexes can be predicted in a continuous fashion providing a gateway to disentangle cell-to-dextramer binding strength and receptor-to-pMHC affinity. We provide these models in the Python package TcellMatch to allow imputation of antigen specificities in single-cell RNA-seq studies on T cells without the need for MHC staining.


Assuntos
Biologia Computacional/métodos , Antígenos de Histocompatibilidade/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Análise de Célula Única/métodos , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Aprendizado Profundo , Antígenos de Histocompatibilidade/genética , Humanos , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Análise de Sequência de RNA , Aprendizado de Máquina Supervisionado
19.
Proc Natl Acad Sci U S A ; 117(27): 15809-15817, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571924

RESUMO

Src family kinase Lck plays critical roles during T cell development and activation, as it phosphorylates the TCR/CD3 complex to initiate TCR signaling. Lck is present either in coreceptor-bound or coreceptor-unbound (free) forms, and we here present evidence that the two pools of Lck have different molecular properties. We discovered that the free Lck fraction exhibited higher mobility than CD8α-bound Lck in OT-I T hybridoma cells. The free Lck pool showed more activating Y394 phosphorylation than the coreceptor-bound Lck pool. Consistent with this, free Lck also had higher kinase activity, and free Lck mediated higher T cell activation as compared to coreceptor-bound Lck. Furthermore, the coreceptor-Lck coupling was independent of TCR activation. These findings give insights into the initiation of TCR signaling, suggesting that changes in coreceptor-Lck coupling constitute a mechanism for regulation of T cell sensitivity.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/metabolismo , Quinases da Família src/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Hibridomas/imunologia , Ativação Linfocitária/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Camundongos , Fosforilação/genética , Ligação Proteica/genética , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/imunologia
20.
Cell Rep ; 30(7): 2261-2274.e7, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075764

RESUMO

The inability of Nef to downmodulate the CD3-T cell receptor (TCR) complex distinguishes HIV-1 from other primate lentiviruses and may contribute to its high virulence. However, the role of this Nef function in virus-mediated immune activation and pathogenicity remains speculative. Here, we selectively disrupted this Nef activity in SIVmac239 and analyzed the consequences for the virological, immunological, and clinical outcome of infection in rhesus macaques. The inability to downmodulate CD3-TCR does not impair viral replication during acute infection but is associated with increased immune activation and antiviral gene expression. Subsequent early reversion in three of six animals suggests strong selective pressure for this Nef function and is associated with high viral loads and progression to simian AIDS. In the absence of reversions, however, viral replication and the clinical course of infection are attenuated. Thus, Nef-mediated downmodulation of CD3 dampens the inflammatory response to simian immunodeficiency virus (SIV) infection and seems critical for efficient viral immune evasion.


Assuntos
Evasão da Resposta Imune/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Feminino , Produtos do Gene nef , Inflamação/imunologia , Inflamação/patologia , Macaca mulatta , Masculino , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Vírus da Imunodeficiência Símia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...