Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
Neurosci Lett ; 814: 137428, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37544578

RESUMO

BACKGROUND: Alzheimer's Disease (AD) is the most common form of dementia, affecting cognitive and behavioral functions. AD is a complex disease resulting from the modest effect of gene interaction and environmental factors, as a result of which the exact pathogenesis is still unknown. AIM: The aim of the present study was to investigate the association between variants of 98 targeted genes with Alzheimer's disease phenotype. METHOD: A total of 98 genes from 32 AD cases and 11 controls were genotyped using the Haloplex target enrichment method and the PCR-RFLP approach.Association analysis was performed using the PLINK tool to identify the variant significantly associated with AD. Functional enrichment analysis and network analysis was performed using ClueGo and String database respectively. The Expression Quantitative Trait Loci (eQTL) analysis using the Genotype Tissue Expression (GTEx) dataset to explore the possible implication of the variant on the expression of one or more genes in different brain regions and whole blood. RESULT: Association analysis showed significant association of 19 variant assigned to 16 genes with Alzheimer's with p-value < 0.05 with rs367398/NOTCH4 only variant that passed multiple test corrections. Functional enrichment analysis showed association of these genes with AD. ClueGo and network analysis utilizing the String database suggested that genes are directly and indirectly linked to the AD pathogenesis. eQTL analysis revealed that the rs367398/NOTCH4 and rs1799806/ACHE variant showed significant eQTL for the neighbouring genes. CONCLUSION: The present study showed the possible role of 16 genes in AD pathogenesis, especially highlighting the role of rs367398/NOTCH4 and rs1799806/ACHE. However further investigation with large cohort is required to study and validate the implication of these variants in the AD pathogenesis.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Epistasia Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Receptor Notch4/genética
2.
Int Immunol ; 35(10): 497-509, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37478314

RESUMO

IL-13 signaling polarizes macrophages to an M2 alternatively activated phenotype, which regulates tissue repair and anti-inflammatory responses. However, an excessive activation of this pathway leads to severe pathologies, such as allergic airway inflammation and asthma. In this work, we identified NOTCH4 receptor as an important modulator of M2 macrophage activation. We show that the expression of NOTCH4 is induced by IL-13, mediated by Janus kinases and AP1 activity, probably mediated by the IL-13Rα1 and IL-13Rα2 signaling pathway. Furthermore, we demonstrate an important role for NOTCH4 signaling in the IL-13 induced gene expression program in macrophages, including various genes that contribute to pathogenesis of the airways in asthma, such as ARG1, YM1, CCL24, IL-10, or CD-163. We also demonstrate that NOTCH4 signaling modulates IL-13-induced gene expression by increasing IRF4 activity, mediated, at least in part, by the expression of the histone H3K27me3 demethylase JMJD3, and by increasing AP1-dependent transcription. In summary, our results provide evidence for an important role of NOTCH4 signaling in alternative activation of macrophages by IL-13 and suggest that NOTCH4 may contribute to the increased severity of lesions in M2 inflammatory responses, such as allergic asthma, which points to NOTCH4 as a potential new target for the treatment of these pathologies.


Assuntos
Asma , Interleucina-13 , Humanos , Macrófagos/metabolismo , Inflamação/metabolismo , Transdução de Sinais/genética , Receptor Notch4/metabolismo
3.
Nat Commun ; 14(1): 3183, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268635

RESUMO

Resistance to epidermal growth factor tyrosine kinase inhibitors (EGFR-TKI) remains one of the major challenges in lung adenocarcinoma (LUAD) therapy. Here, we find an increased frequency of the L12_16 amino acid deletion mutation in the signal peptide region of NOTCH4 (NOTCH4ΔL12_16) in EGFR-TKI-sensitive patients. Functionally, exogenous induction of NOTCH4ΔL12_16 in EGFR-TKI -resistant LUAD cells sensitizes them to EGFR-TKIs. This process is mainly mediated by the reduction of the intracellular domain of NOTCH4 (NICD4) caused by the NOTCH4ΔL12_16 mutation, which results in a lower localization of NOTCH4 in the plasma membrane. Mechanistically, NICD4 transcriptionally upregulates the expression of HES1 by competitively binding to the gene promoter relative to p-STAT3. Because p-STAT3 can downregulate the expression of HES1 in EGFR-TKI-resistant LUAD cells, the reduction of NICD4 induced by NOTCH4ΔL12_16 mutation leads to a decrease in HES1. Moreover, inhibition of the NOTCH4-HES1 pathway using inhibitors and siRNAs abolishes the resistance of EGFR-TKI. Overall, we report that the NOTCH4ΔL12_16 mutation sensitizes LUAD patients to EGFR-TKIs through transcriptional down-regulation of HES1 and that targeted blockade of this signaling cohort could reverse EGFR-TKI -resistance in LUAD, providing a potential approach to overcome resistance to EGFR-TKI -therapy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Regulação para Baixo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Mutação , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Receptor Notch4/genética
4.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108670

RESUMO

The Notch signalling pathway is one of the most conserved and well-characterised pathways involved in cell fate decisions and the development of many diseases, including cancer. Among them, it is worth noting the Notch4 receptor and its clinical application, which may have prognostic value in patients with colon adenocarcinoma. The study was performed on 129 colon adenocarcinomas. Immunohistochemical and fluorescence expression of Notch4 was performed using the Notch4 antibody. The associations between the IHC expression of Notch4 and clinical parameters were analysed using the Chi2 test or Chi2Yatesa test. The Kaplan-Meier analysis and the log-rank test were used to verify the relationship between the intensity of Notch4 expression and the 5-year survival rate of patients. Intracellular localisation of Notch4 was detected by the use of the immunogold labelling method and TEM. 101 (78.29%) samples had strong Notch4 protein expression, and 28 (21.71%) samples were characterised by low expression. The high expression of Notch4 was clearly correlated with the histological grade of the tumour (p < 0.001), PCNA immunohistochemical expression (p < 0.001), depth of invasion (p < 0.001) and angioinvasion (p < 0.001). We can conclude that high expression of Notch4 is correlated with poor prognosis of colon adenocarcinoma patients (log-rank, p < 0.001).


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Receptor Notch4/metabolismo , Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Imuno-Histoquímica , Transdução de Sinais , Receptores Notch
5.
Eur Neurol ; 86(2): 107-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724752

RESUMO

INTRODUCTION: Brain arteriovenous malformations (BAVMs) are high-flow intracranial vascular malformations characterized by the direct connection of arteries to veins without an intervening capillary bed. They are one of the main causes of intracranial hemorrhage and epilepsy, although morbidity is low. Angiogenesis, heredity, inflammation, and arteriovenous malformation syndromes play important roles in BAVM formation. Animal experiments and previous studies have confirmed that NOTCH4 may be associated with BAVM development. Our study identifies a connection between NOTCH4 gene polymorphisms and BAVM in a Chinese Han population. METHODS: We enrolled 150 patients with BAVMs confirmed by digital subtraction angiography (DSA) in the Department of Neurosurgery, Zhujiang Hospital, Southern Medical University from June 2017 to July 2019. Simultaneously, 150 patients without cerebrovascular disease were confirmed by computed tomography angiography/magnetic resonance angiography/DSA. DNA was extracted from peripheral blood and NOTCH4 genotypes were identified by PCR-ligase detection reaction. The χ2 test or Fisher's exact test was used to evaluate the differences in allele and genotype frequencies between the BAVM group, control group, bleeding group, and other complications. RESULTS: Two single-nucleotide polymorphisms (SNPs), rs443198 and rs438475, were significantly associated with BAVM. No SNP genotypes were significantly associated with hemorrhage or epilepsy. SNPs rs443198_AA-SNP and rs438475_AA-SNP may be associated with a lower risk of BAVM (p = 0.011, odds ratio (OR) = 0.459, 95% confidence interval (CI): 0.250-0.845; p = 0.033, OR = 0.759, 95% CI: 0.479-1.204). CONCLUSION: NOTCH4 gene polymorphisms were associated with BAVM and may be a risk factor in a Chinese Han population.


Assuntos
Epilepsia , Malformações Arteriovenosas Intracranianas , Humanos , Polimorfismo de Nucleotídeo Único , População do Leste Asiático , Encéfalo/patologia , Malformações Arteriovenosas Intracranianas/cirurgia , Receptor Notch4/genética
6.
Front Immunol ; 14: 1081483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817473

RESUMO

Background: Tuberculosis (TB) is a serious public health problem to human health, but the pathogenesis of TB remains elusive. Methods: To identify novel candidate genes associated with TB susceptibility, we performed a population-based case control study to genotype 41SNPs spanning 21 genes in 435 pulmonary TB patients and 375 health donors from China. Results: We found Notch4 gene rs206018 and rs422951 polymorphisms were associated with susceptibility to pulmonary tuberculosis. The association was validated in another independent cohort including 790 TB patients and 1,190 healthy controls. Moreover, we identified that the rs206018 C allele was associated with higher level of Notch4 in PBMCs from pulmonary TB patients. Furthermore, Notch4 expression increased in TB patients and higher Notch4 expression correlated with the severer pulmonary TB. Finally, we explored the origin and signaling pathways involved in the regulation of Notch4 expression in response to Mycobacterium tuberculosis (Mtb) infection. We determine that Mtb induced Notch4 and its ligand Jagged1expression in macrophages, and Notch4 through TLR2/P38 signaling pathway and Jagged1 through TLR2/ERK signaling pathway. Conclusion: Our work further strengthens that Notch4 underlay an increased risk of TB in humans and is involved in the occurrence and development of TB, which could serve as a novel target for the host-targeted therapy of TB.


Assuntos
Tuberculose Pulmonar , Tuberculose , Humanos , Receptor 2 Toll-Like/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Tuberculose Pulmonar/microbiologia , Tuberculose/genética , Expressão Gênica , Receptor Notch4/genética
7.
J Exp Med ; 220(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36441145

RESUMO

Upregulation of Notch signaling is associated with brain arteriovenous malformation (bAVM), a disease that lacks pharmacological treatments. Tetracycline (tet)-regulatable endothelial expression of constitutively active Notch4 (Notch4*tetEC) from birth induced bAVMs in 100% of mice by P16. To test whether targeting downstream signaling, while sustaining the causal Notch4*tetEC expression, induces AVM normalization, we deleted Rbpj, a mediator of Notch signaling, in endothelium from P16, by combining tet-repressible Notch4*tetEC with tamoxifen-inducible Rbpj deletion. Established pathologies, including AV connection diameter, AV shunting, vessel tortuosity, intracerebral hemorrhage, tissue hypoxia, life expectancy, and arterial marker expression were improved, compared with Notch4*tetEC mice without Rbpj deletion. Similarly, Rbpj deletion from P21 induced advanced bAVM regression. After complete AVM normalization induced by repression of Notch4*tetEC, virtually no bAVM relapsed, despite Notch4*tetEC re-expression in adults. Thus, inhibition of endothelial Rbpj halted Notch4*tetEC bAVM progression, normalized bAVM abnormalities, and restored microcirculation, providing proof of concept for targeting a downstream mediator to treat AVM pathologies despite a sustained causal molecular lesion.


Assuntos
Malformações Arteriovenosas , Encefalopatias , Malformações do Sistema Nervoso , Animais , Camundongos , Antibacterianos , Malformações Arteriovenosas/genética , Encéfalo , Endotélio , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Tetraciclina , Receptor Notch4/metabolismo
8.
Angiogenesis ; 26(2): 249-263, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36376768

RESUMO

The Notch signaling pathway is an important therapeutic target for the treatment of inflammatory diseases and cancer. We previously created ligand-specific inhibitors of Notch signaling comprised of Fc fusions to specific EGF-like repeats of the Notch1 extracellular domain, called Notch decoys, which bound ligands, blocked Notch signaling, and showed anti-tumor activity with low toxicity. However, the study of their function depended on virally mediated expression, which precluded dosage control and limited clinical applicability. We have refined the decoy design to create peptibody-based Notch inhibitors comprising the core binding domains, EGF-like repeats 10-14, of either Notch1 or Notch4. These Notch peptibodies showed high secretion properties and production yields that were improved by nearly 100-fold compared to previous Notch decoys. Using surface plasmon resonance spectroscopy coupled with co-immunoprecipitation assays, we observed that Notch1 and Notch4 peptibodies demonstrate strong but distinct binding properties to Notch ligands DLL4 and JAG1. Both Notch1 and Notch4 peptibodies interfere with Notch signaling in endothelial cells and reduce expression of canonical Notch targets after treatment. While prior DLL4 inhibitors cause hyper-sprouting, the Notch1 peptibody reduced angiogenesis in a 3-dimensional in vitro sprouting assay. Administration of Notch1 peptibodies to neonate mice resulted in reduced radial outgrowth of retinal vasculature, confirming anti-angiogenic properties. We conclude that purified Notch peptibodies comprising EGF-like repeats 10-14 bind to both DLL4 and JAG1 ligands and exhibit anti-angiogenic properties. Based on their secretion profile, unique Notch inhibitory activities, and anti-angiogenic properties, Notch peptibodies present new opportunities for therapeutic Notch inhibition.


Assuntos
Inibidores da Angiogênese , Células Endoteliais , Receptor Notch1 , Receptor Notch4 , Animais , Camundongos , Inibidores da Angiogênese/genética , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Imunoprecipitação , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vasos Retinianos/efeitos dos fármacos , Ressonância de Plasmônio de Superfície
10.
Cytokine Growth Factor Rev ; 67: 25-34, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941043

RESUMO

The early onset of colorectal cancer (CRC) in individuals younger than 50 years is an emerging phenomenon, and obesity is a strong risk factor. Inflammatory mechanisms are mediated by immune cells, with macrophages and their phenotypical changes playing a significant role in CRC. Obesity-related hormones, such as leptin and adiponectin, affect macrophage polarization and cytokine expression. Macrophage metabolism, and therefore polarization, directly affects tumor progression and survival in patients with CRC. Altered obesity-related hormone levels induce phosphoinositide kinase-3 (PI3K)/serine-threonine-protein kinase (AKT) activation in colon cancer, causing increased cell survival, hyperplasia, and proliferation. Investigating the effects of obesity-related mechanisms on PI3K/Akt signaling can provide new insights for targeting mechanisms in CRC and obesity among the young. Central molecules for the control of cell proliferation, differentiation, and tumorigenesis within the gastrointestinal tract include downstream targets of the PI3K/AKT pathway, such as Neurogenic locus notch homolog 4 (Notch4) and GATA binding proteins (GATA). Leptin and adiponectin both alter gene expression within this pathway, thereby affecting TAM-mediated CRC progression. Our goal is to introduce the NOTCH4-GATA4-IRG1 axis as a link between inflammation and sporadic CRC and to discuss this pathway as a new potential immunotherapeutic target in individuals affected with obesity and early-onset CRC.


Assuntos
Neoplasias Colorretais , Leptina , Adiponectina/metabolismo , Idade de Início , Carboxiliases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Leptina/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptor Notch4/genética , Receptor Notch4/metabolismo
11.
Front Immunol ; 13: 894110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967450

RESUMO

Background: NRAS wildtype melanoma accounts for approximately 80% of melanomas. Previous studies have shown that NRAS wildtype melanoma had higher response rates and better prognoses than NRAS-mutant patients following immunotherapy, while as major actors in tumor cells and tumor microenvironment (TME), the association between NOTCH family genes and response to immunotherapy in NRAS wildtype melanoma remains indistinct. Objective: We aim to explore whether NOTCH family gene variation is associated with genomic factors in immune checkpoint inhibitor (ICI) response in NRAS wildtype melanoma and with clinical results in these patients. Method: This research used genomic data of 265 NRAS wildtype ICI-pretreatment samples from five ICI-treated melanoma cohorts to analyze the relationship between NOTCH family gene mutation and the efficacy of ICI therapy. Results: NRAS wildtype melanomas with NOTCH4-Mut were identified to be associated with prolonged overall survival (OS) in both the discovery (HR: 0.30, 95% CI: 0.11-0.83, P = 0.01) and validation cohorts(HR: 0.21, 95% CI: 0.07-0.68, P = 0.003). Moreover, NOTCH4-Mut melanoma had a superior clinical response in the discovery cohort (ORR, 40.0% vs 13.11%, P = 0.057) and validation cohort (ORR, 68.75% vs 30.07%, P = 0.004). Further exploration found that NOTCH4-Mut tumors had higher tumor mutation burden (TMB) and tumor neoantigen burden (TNB) (P <0.05). NOTCH4-Mut tumors had a significantly increased mutation in the DNA damage response (DDR) pathway. Gene set enrichment analysis revealed NOTCH4-Mut tumor enhanced anti-tumor immunity. Conclusion: NOTCH4 mutation may promote tumor immunity and serve as a biomarker to predict good immune response in NRAS wildtype melanoma and guide immunotherapeutic responsiveness.


Assuntos
GTP Fosfo-Hidrolases , Melanoma , Proteínas de Membrana , Receptor Notch4 , Biomarcadores , GTP Fosfo-Hidrolases/genética , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/terapia , Proteínas de Membrana/genética , Mutação , Receptor Notch4/genética , Microambiente Tumoral/genética
12.
Sci Adv ; 8(35): eabo7958, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044575

RESUMO

Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.


Assuntos
Aterosclerose , Proteína Jagged-1 , Placa Aterosclerótica , Receptor Notch4 , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Camundongos , Placa Aterosclerótica/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Transdução de Sinais , Suínos
13.
Cell Oncol (Dordr) ; 45(3): 463-477, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35543859

RESUMO

PURPOSE: Reliable biomarkers to predict the outcome and treatment response of estrogen receptor (ER)-negative breast cancer (BC) are urgently needed. Since immune-related signaling plays an important role in the tumorigenesis of ER-negative BC, we asked whether Notch genes, alone or in combination with other immune genes, can be used to predict the clinical outcome and immune checkpoint blockade (ICB) for this type of cancer. METHODS: We analyzed transcriptome data of 6918 BC samples from five independent cohorts, 81 xenograft triple-negative BC tumors that respond differently to ICB treatment and 754 samples of different cancer types from patients treated with ICB agents. RESULTS: We found that among four Notch genes, the expression levels of NOTCH1 and NOTCH4 were positively associated with recurrence of ER-negative BC, and that combined expression of these two genes (named Notch14) further enhanced this association, which was comparable with that of the Notch pathway signature. Analysis of 1182 immune-related genes revealed that the expression levels of most HLA genes, particularly HLA-DMA and -DRA, were reversely associated with recurrence in ER-negative BC with low, but not high Notch14 expression. A combined expression signature of NOTCH1, NOTCH4, HLA-DMA and HLA-DRA was more prognostic for ER-negative and triple-negative BCs than previously reported immune-related signatures. Furthermore, we found that the expression levels of these four genes were also synergistically associated with T cell exclusion score, infiltration of specific T cells and ICB efficacy in ER-negative BC, thereby providing a potential molecular mechanism for the synergistic effect of these genes on BC. CONCLUSIONS: Our data indicate that a gene signature composed of NOTCH1, NOTCH4, HLA-DMA and HLA-DRA may serve as a potential promising biomarker for predicting ICB therapy efficacy and recurrence in ER-negative/triple-negative BCs.


Assuntos
Cadeias alfa de HLA-DR , Receptor Notch1 , Receptor Notch4 , Linfócitos T , Neoplasias de Mama Triplo Negativas , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Feminino , Cadeias alfa de HLA-DR/biossíntese , Cadeias alfa de HLA-DR/genética , Cadeias alfa de HLA-DR/imunologia , Humanos , Receptor Notch1/biossíntese , Receptor Notch1/genética , Receptor Notch1/imunologia , Receptor Notch4/biossíntese , Receptor Notch4/genética , Receptor Notch4/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
14.
Respir Res ; 23(1): 6, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016680

RESUMO

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a chronic progressive advanced disorder pathologically characterized by pulmonary vascular remodeling. Notch4 as a cell surface receptor is critical for vascular development. However, little is known about the role and mechanism of Notch4 in the development of hypoxic vascular remodeling. METHODS: Lung tissue samples were collected to detect the expression of Notch4 from patients with HPH and matched controls. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic and normoxic conditions. Real-time quantitative PCR and western blotting were used to examine the mRNA and protein levels of Notch4. HPASMCs were transfected with small interference RNA (siRNA) against Notch4 or Notch4 overexpression plasmid, respectively. Cell viability, cell proliferation, apoptosis, and migration were assessed using Cell Counting Kit-8, Edu, Annexin-V/PI, and Transwell assay. The interaction between Notch4 and ERK, JNK, P38 MAPK were analyzed by co-immunoprecipitation. Adeno-associated virus 1-mediated siRNA against Notch4 (AAV1-si-Notch4) was injected into the airways of hypoxic rats. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular remodeling were evaluated. RESULTS: In this study, we demonstrate that Notch4 is highly expressed in the media of pulmonary vascular and is upregulated in lung tissues from patients with HPH and HPH rats compared with control groups. In vitro, hypoxia induces the high expression of Delta-4 and Notch4 in HPASMCs. The increased expression of Notch4 promotes HPASMCs proliferation and migration and inhibits cells apoptosis via ERK, JNK, P38 signaling pathways. Furthermore, co-immunoprecipitation result elucidates the interaction between Notch4 and ERK/JNK/P38. In vivo, silencing Notch4 partly abolished the increase in RVSP and pulmonary vascular remodeling caused by hypoxia in HPH rats. CONCLUSIONS: These findings reveal an important role of the Notch4-ERK/JNK/P38 MAPK axis in hypoxic pulmonary remodeling and provide a potential therapeutic target for patients with HPH.


Assuntos
Regulação da Expressão Gênica , Hipertensão Pulmonar/genética , Hipóxia/complicações , Miócitos de Músculo Liso/metabolismo , Receptor Notch4/genética , Remodelação Vascular/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/genética , Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor Notch4/biossíntese , Transdução de Sinais , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese
15.
Methods Mol Biol ; 2393: 515-533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34837197

RESUMO

Quartz crystal microbalance (QCM) is a highly sensitive system that is used as a biosensor for biomolecules and cells. Detection and characterization of cancer cells in circulation or biopsy samples is of crucial importance for cancer diagnosis. Here, we introduce approaches for breast cancer cell detection via their surface molecules. The sensor system is based on preliminary coating of QCM chip with polymeric nanoparticles to increase the surface area and allow for the attachment of proteins to the chip surface. This is followed by the attachment of a specific protein in order to functionalize the chip. Breast cancer cells and fibroblast cells as control are cultured and applied to this chip. The functionalized QCM system can detect breast cancer cells with high affinity and selectivity. Here, we present the preparation methods of QCM-based sensors for selective detection of MDA MB 231 cancer cells. Selectivity of QCM-based sensor is carried out in the presence of L929 mouse fibroblast cells.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Animais , Feminino , Humanos , Limite de Detecção , Camundongos , Proteínas , Quartzo , Técnicas de Microbalança de Cristal de Quartzo , Receptor Notch4
16.
Front Immunol ; 12: 734966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925319

RESUMO

NOTCH4 is a member of the NOTCH family of receptors whose expression is intensively induced in macrophages after their activation by Toll-like receptors (TLR) and/or interferon-γ (IFN-γ). In this work, we show that this receptor acts as a negative regulator of macrophage activation by diminishing the expression of proinflammatory cytokines, such as IL-6 and IL-12, and costimulatory proteins, such as CD80 and CD86. We have observed that NOTCH4 inhibits IFN-γ signaling by interfering with STAT1-dependent transcription. Our results show that NOTCH4 reprograms the macrophage response to IFN-γ by favoring STAT3 versus STAT1 phosphorylation without affecting their expression levels. This lower activation of STAT1 results in diminished transcriptional activity and expression of STAT1-dependent genes, including IRF1, SOCS1 and CXCL10. In macrophages, NOTCH4 inhibits the canonical NOTCH signaling pathway induced by LPS; however, it can reverse the inhibition exerted by IFN-γ on NOTCH signaling, favoring the expression of NOTCH-target genes, such as Hes1. Indeed, HES1 seems to mediate, at least in part, the enhancement of STAT3 activation by NOTCH4. NOTCH4 also affects TLR signaling by interfering with NF-κB transcriptional activity. This effect could be mediated by the diminished activation of STAT1. These results provide new insights into the mechanisms by which NOTCH, TLR and IFN-γ signal pathways are integrated to modulate macrophage-specific effector functions and reveal NOTCH4 acting as a new regulatory element in the control of macrophage activation that could be used as a target for the treatment of pathologies caused by an excess of inflammation.


Assuntos
Interferon gama/metabolismo , Ativação de Macrófagos/genética , Macrófagos Peritoneais/imunologia , Receptor Notch4/metabolismo , Transdução de Sinais/genética , Receptor 4 Toll-Like/metabolismo , Animais , Doadores de Sangue , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Células RAW 264.7 , Receptor Notch4/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção
17.
Nat Commun ; 12(1): 6618, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785669

RESUMO

Previous genome-wide association studies revealed multiple common variants involved in eczema but the role of rare variants remains to be elucidated. Here, we investigate the role of rare variants in eczema susceptibility. We meta-analyze 21 study populations including 20,016 eczema cases and 380,433 controls. Rare variants are imputed with high accuracy using large population-based reference panels. We identify rare exonic variants in DUSP1, NOTCH4, and SLC9A4 to be associated with eczema. In DUSP1 and NOTCH4 missense variants are predicted to impact conserved functional domains. In addition, five novel common variants at SATB1-AS1/KCNH8, TRIB1/LINC00861, ZBTB1, TBX21/OSBPL7, and CSF2RB are discovered. While genes prioritized based on rare variants are significantly up-regulated in the skin, common variants point to immune cell function. Over 20% of the single nucleotide variant-based heritability is attributable to rare and low-frequency variants. The identified rare/low-frequency variants located in functional protein domains point to promising targets for novel therapeutic approaches to eczema.


Assuntos
Fosfatase 1 de Especificidade Dupla/genética , Eczema/diagnóstico , Eczema/genética , Receptor Notch4/genética , Trocadores de Sódio-Hidrogênio/genética , Subunidade beta Comum dos Receptores de Citocinas , Fosfatase 1 de Especificidade Dupla/química , Fosfatase 1 de Especificidade Dupla/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Proteínas de Ligação à Região de Interação com a Matriz , Polimorfismo de Nucleotídeo Único , Doenças Raras/genética , Receptor Notch4/química , Receptor Notch4/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo
18.
BMC Med ; 19(1): 154, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34284787

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy elicits durable antitumor responses in patients with many types of cancer. Genomic mutations may be used to predict the clinical benefits of ICI therapy. NOTCH homolog-4 (NOTCH4) is frequently mutated in several cancer types, but its role in immunotherapy is still unclear. Our study is the first to study the association between NOTCH4 mutation and the response to ICI therapy. METHODS: We tested the predictive value of NOTCH4 mutation in the discovery cohort, which included non-small cell lung cancer, melanoma, head and neck squamous cell carcinoma, esophagogastric cancer, and bladder cancer patients, and validated it in the validation cohort, which included non-small cell lung cancer, melanoma, renal cell carcinoma, colorectal cancer, esophagogastric cancer, glioma, bladder cancer, head and neck cancer, cancer of unknown primary, and breast cancer patients. Then, the relationships between NOTCH4 mutation and intrinsic and extrinsic immune response mechanisms were studied with multiomics data. RESULTS: We collected an ICI-treated cohort (n = 662) and found that patients with NOTCH4 mutation had better clinical benefits in terms of objective response rate (ORR: 42.9% vs 25.9%, P = 0.007), durable clinical benefit (DCB: 54.0% vs 38.1%, P = 0.021), progression-free survival (PFS, hazard ratio [HR] = 0.558, P < 0.001), and overall survival (OS, HR = 0.568, P = 0.006). In addition, we validated the prognostic value of NOTCH4 mutation in an independent ICI-treated cohort (n = 1423). Based on multiomics data, we found that NOTCH4 mutation is significantly associated with enhanced immunogenicity, including a high tumor mutational burden, the expression of costimulatory molecules, and activation of the antigen-processing machinery, and NOTCH4 mutation positively correlates activated antitumor immunity, including infiltration of diverse immune cells and various immune marker sets. CONCLUSIONS: Our findings indicated that NOTCH4 mutation serves as a novel biomarker correlated with a better response to ICI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Esofágicas , Neoplasias Pulmonares , Neoplasias Gástricas , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Receptor Notch4
19.
Pathol Oncol Res ; 27: 616204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257585

RESUMO

Breast cancer (BC) is a heterogeneous disease and is one of the most common malignancy affecting women worldwide while colorectal cancer (CRC) is estimated to be the third common cancer and second leading cause of cancer related death globally. Both BC and CRC involve multiple genetic and epigenetic alterations in genes belonging to various signaling pathways including NOTCH that has been implicated in the development of these cancers. We investigated four single nucleotide polymorphisms, each in genes encoding NOTCH1-4 receptors for their role in susceptibility to breast and colorectal cancers in Saudi population. In this case-control study, TaqMan genotypic analysis of rs3124591 in NOTCH1 and rs3820041 in NOTCH4 did not exhibit association with breast as well as colorectal cancers. However, a strong association of rs11249433 which is in close proximity to NOTCH2 was observed with breast cancer susceptibility especially with those having an early onset of the disease. Interestingly, the rs1043994 located in NOTCH3 showed gender preference and was found to be significantly associated with colorectal cancers in males. Validation of these findings in bigger populations of different ethnicities may prove beneficial in identifying rs11249433 and rs1043994 as genetic screening markers for early detection of breast and colorectal carcinomas, respectively.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Neoplasias Colorretais/patologia , Receptor Notch1/genética , Receptor Notch2/genética , Receptor Notch3/genética , Receptor Notch4/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Arábia Saudita/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...