Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.070
Filtrar
1.
Sci Transl Med ; 16(741): eadj5705, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569015

RESUMO

Cancer-associated fibroblasts (CAFs) are abundant stromal cells in the tumor microenvironment that promote cancer progression and relapse. However, the heterogeneity and regulatory roles of CAFs underlying chemoresistance remain largely unclear. Here, we performed a single-cell analysis using high-dimensional flow cytometry analysis and identified a distinct senescence-like tetraspanin-8 (TSPAN8)+ myofibroblastic CAF (myCAF) subset, which is correlated with therapeutic resistance and poor survival in multiple cohorts of patients with breast cancer (BC). TSPAN8+ myCAFs potentiate the stemness of the surrounding BC cells through secretion of senescence-associated secretory phenotype (SASP)-related factors IL-6 and IL-8 to counteract chemotherapy. NAD-dependent protein deacetylase sirtuin 6 (SIRT6) reduction was responsible for the senescence-like phenotype and tumor-promoting role of TSPAN8+ myCAFs. Mechanistically, TSPAN8 promoted the phosphorylation of ubiquitin E3 ligase retinoblastoma binding protein 6 (RBBP6) at Ser772 by recruiting MAPK11, thereby inducing SIRT6 protein destruction. In turn, SIRT6 down-regulation up-regulated GLS1 and PYCR1, which caused TSPAN8+ myCAFs to secrete aspartate and proline, and therefore proved a nutritional niche to support BC outgrowth. By demonstrating that TSPAN8+SIRT6low myCAFs were tightly associated with unfavorable disease outcomes, we proposed that the combined regimen of anti-TSPAN8 antibody and SIRT6 activator MDL-800 is a promising approach to overcome chemoresistance. These findings highlight that senescence contributes to CAF heterogeneity and chemoresistance and suggest that targeting TSPAN8+ myCAFs is a promising approach to circumvent chemoresistance.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Sirtuínas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/patologia , Fibroblastos/patologia , Microambiente Tumoral , Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases , Tetraspaninas/genética , Tetraspaninas/metabolismo
2.
Invest Ophthalmol Vis Sci ; 65(4): 1, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558095

RESUMO

Purpose: The purpose of this study is to report five novel FZD4 mutations identified in familial exudative vitreoretinopathy (FEVR) and to analyze and summarize the pathogenic mechanisms of 34 of 96 reported missense mutations in FZD4. Methods: Five probands diagnosed with FEVR and their family members were enrolled in the study. Ocular examinations and targeted gene panel sequencing were conducted on all participants. Plasmids, each carrying 29 previously reported FZD4 missense mutations and five novel mutations, were constructed based on the selection of mutations from each domain of FZD4. These plasmids were used to investigate the effects of mutations on protein expression levels, Norrin/ß-catenin activation capacity, membrane localization, norrin binding ability, and DVL2 recruitment ability in HEK293T, HEK293STF, and HeLa cells. Results: All five novel mutations (S91F, V103E, C145S, E160K, C377F) responsible for FEVR were found to compromise Norrin/ß-catenin activation of FZD4 protein. After reviewing a total of 34 reported missense mutations, we categorized all mutations based on their functional changes: signal peptide mutations, cysteine mutations affecting disulfide bonds, extracellular domain mutations influencing norrin binding, transmembrane domain (TM) 1 and TM7 mutations impacting membrane localization, and intracellular domain mutations affecting DVL2 recruitment. Conclusions: We expanded the spectrum of FZD4 mutations relevant to FEVR and experimentally demonstrated that missense mutations in FZD4 can be classified into five categories based on different functional changes.


Assuntos
Doenças Retinianas , beta Catenina , Humanos , Vitreorretinopatias Exsudativas Familiares , beta Catenina/metabolismo , Doenças Retinianas/patologia , Células HEK293 , Células HeLa , Receptores Frizzled/genética , Mutação , Linhagem , Análise Mutacional de DNA , Tetraspaninas/genética
3.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473906

RESUMO

Many metastatic cancers with poor prognoses correlate to downregulated CD82, but exceptions exist. Understanding the context of this correlation is essential to CD82 as a prognostic biomarker and therapeutic target. Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancer. We aimed to uncover the function and mechanism of CD82 in OSCC. We investigated CD82 in human OSCC cell lines, tissues, and healthy controls using the CRISPR-Cas9 gene knockout, transcriptomics, proteomics, etc. CD82 expression is elevated in CAL 27 cells. Knockout CD82 altered over 300 genes and proteins and inhibited cell migration. Furthermore, CD82 expression correlates with S100 proteins in CAL 27, CD82KO, SCC-25, and S-G cells and some OSCC tissues. The 37-50 kDa CD82 protein in CAL 27 cells is upregulated, glycosylated, and truncated. CD82 correlates with S100 proteins and may regulate their expression and cell migration. The truncated CD82 explains the invasive metastasis and poor outcome of the CAL 27 donor. OSCC with upregulated truncated CD82 and S100A7 may represent a distinct subtype with a poor prognosis. Differing alternatives from wild-type CD82 may elucidate the contradictory functions and pave the way for CD82 as a prognostic biomarker and therapeutic target.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/metabolismo , Proteína Kangai-1/metabolismo , Tetraspaninas/metabolismo , Proteínas S100 , Biomarcadores , Proteína A7 Ligante de Cálcio S100
4.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 97-103, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430035

RESUMO

Barrett's esophagus (BE) belongs to a pathological phenomenon occurring in the esophagus, this paper intended to unveil the underlying function of miR-378a-5p and its target TSPAN8 in BE progression. GEO analysis was conducted to determine differentially expressed genes in BE samples. Non-dysplastic metaplasia BE samples, high-grade dysplastic BE samples and controls were collected from subjects. CP-A and CP-B cells were exposed to bile acids (BA) to mimic gastroesophageal reflux in BE cells. RT-qPCR as well as western blot were applied for verifying expressions of miR-378a-5p, TSPAN8, CDX2 and SOX9. CCK-8, wound scratch together with Transwell assays were exploited for ascertaining cell proliferation, migration as well as invasion. The targeted relationship of miR-378a-5p and TSPAN8 could be verified by correlation analysis, dual-luciferase reporter experiment, and rescue experiments. Through analyzing GSE26886 dataset, we screened the most abundantly expressed gene TSPAN8 in BE samples. miR-378a-5p was reduced whereas TSPAN8 was elevated in CP-A as well as CP-B cells after triggering with BA. Knocking down TSPAN8 could counteract BA-triggered enhancement in BE cell proliferation, migration along with invasion. miR-378a-5p could suppress BE cell proliferation, and migration along with invasion via targeting TSPAN8. In BE, miR-378a-5p targeted TSPAN8 to inhibit BE cell proliferation, and migration along invasion. miR-378a-5p deletion or elevation of TSPAN8 may be key point in regulating CDX2 and SOX9 levels, thereby promoting BE formation.


Assuntos
Esôfago de Barrett , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Esôfago de Barrett/genética , Proliferação de Células/genética , Hiperplasia , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Tetraspaninas/genética , Tetraspaninas/metabolismo
5.
Anal Chem ; 96(13): 5086-5094, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513651

RESUMO

Glycosylation is a key modulator of the functional state of proteins. Recent developments in large-scale analysis of intact glycopeptides have enabled the identification of numerous glycan structures that are relevant in pathophysiological processes. However, one motif found in N-glycans, poly-N-acetyllactosamine (polyLacNAc), still poses a substantial challenge to mass spectrometry-based glycoproteomic analysis due to its relatively low abundance and large size. In this work, we developed approaches for the systematic mapping of polyLacNAc-elongated N-glycans in melanoma cells. We first evaluated five anion exchange-based matrices for enriching intact glycopeptides and selected two materials that provided better overall enrichment efficiency. We then tested the robustness of the methodology by quantifying polyLacNAc-containing glycopeptides as well as changes in protein fucosylation and sialylation. Finally, we applied the optimal enrichment methods to discover glycopeptides containing polyLacNAc motifs in melanoma cells and found that integrins and tetraspanins are substantially modified with these structures. This study demonstrates the feasibility of glycoproteomic approaches for identification of glycoproteins with polyLacNAc motifs.


Assuntos
Integrinas , Melanoma , Humanos , Glicopeptídeos/análise , Espectrometria de Massas/métodos , Tetraspaninas , Polissacarídeos/química
6.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38530252

RESUMO

The integrity of the plasma membrane is critical to cell function and survival. Cells have developed multiple mechanisms to repair damaged plasma membranes. A key process during plasma membrane repair is to limit the size of the damage, which is facilitated by the presence of tetraspanin-enriched rings surrounding damage sites. Here, we identify phosphatidylserine-enriched rings surrounding damaged sites of the plasma membrane, resembling tetraspanin-enriched rings. Importantly, the formation of both the phosphatidylserine- and tetraspanin-enriched rings requires phosphatidylserine and its transfer proteins ORP5 and ORP9. Interestingly, ORP9, but not ORP5, is recruited to the damage sites, suggesting cells acquire phosphatidylserine from multiple sources upon plasma membrane damage. We further demonstrate that ORP9 contributes to efficient plasma membrane repair. Our results thus unveil a role for phosphatidylserine and its transfer proteins in facilitating the formation of tetraspanin-enriched macrodomains and plasma membrane repair.


Assuntos
Membrana Celular , Fosfatidilserinas , Tetraspaninas , Humanos , Células HeLa , Proteínas de Membrana/metabolismo , Receptores de Esteroides/metabolismo
7.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542421

RESUMO

Extracellular vesicles produced by tumor cells (TEVs) influence all stages of cancer development and spread, including tumorigenesis, cancer progression, and metastasis. TEVs can trigger profound phenotypic and functional changes in target cells through three main general mechanisms: (i) docking of TEVs on target cells and triggering of intra-cellular signaling; (ii) fusion of TEVs and target cell membranes with release of TEVs molecular cargo in the cytoplasm of recipient cell; and (iii) uptake of TEVs by recipient cells. Though the overall tumor-promoting effects of TEVs as well as the general mechanisms involved in TEVs interactions with, and uptake by, recipient cells are relatively well established, current knowledge about the molecular determinants that mediate the docking and uptake of tumor-derived EVs by specific target cells is still rather deficient. These molecular determinants dictate the cell and organ tropism of TEVs and ultimately control the specificity of TEVs-promoted metastases. Here, we will review current knowledge on selected specific molecules that mediate the tropism of TEVs towards specific target cells and organs, including the integrins, ICAM-1 Inter-Cellular Adhesion Molecule), ALCAM (Activated Leukocyte Cell Adhesion Molecule), CD44, the metalloproteinases ADAM17 (A Disintegrin And Metalloproteinase member 17) and ADAM10 (A Disintegrin And Metalloproteinase member 10), and the tetraspanin CD9.


Assuntos
Desintegrinas , Vesículas Extracelulares , Humanos , Comunicação Celular , Tetraspaninas/metabolismo , Carcinogênese/metabolismo , Vesículas Extracelulares/metabolismo
8.
Front Immunol ; 15: 1336246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515751

RESUMO

Introduction: To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods: We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results: Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion: These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígenos CD/metabolismo , Linfócitos do Interstício Tumoral , Interleucina-2/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/metabolismo , Citocinas/metabolismo , Tetraspaninas/metabolismo , Tetraspanina 28 , Proteína Kangai-1/metabolismo
9.
Sci Rep ; 14(1): 7465, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553534

RESUMO

Methods that enable specific and sensitive quantification of small extracellular vesicles (sEVs) using flow cytometry are still under development. Aggregation or adsorption of antibodies causes sub-nano sized particles or non-specific binding and largely affects the results of flow cytometric analysis of single sEVs. Comparison of control IgG and target-specific IgG is inappropriate because they have different characters. Here, we evaluate four preparation methods for flow cytometry, including ultracentrifugation, density gradient centrifugation, size exclusion chromatography (SEC), and the TIM4-affinity method by using tetraspanin-deficient sEVs. The ultracentrifugation or density gradient centrifugation preparation method has large false-positive rates for tetraspanin staining. Conversely, preparation methods using SEC or the TIM4-affinity method show specific detection of single sEVs, which elucidate the roles of sEV biogenesis regulators in the generation of sEV subpopulations. The methods are also useful for the detection of rare disease-related markers, such as PD-L1. Flow cytometric analysis using SEC or the TIM4-affinity method could accelerate research into sEV biogenesis and the development of sEV-based diagnostics and therapies.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo , Adsorção , Tetraspaninas , Imunoglobulina G
10.
FASEB J ; 38(4): e23493, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38363575

RESUMO

Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease that could cause blindness. It has been established that Norrin forms dimers to activate ß-catenin signaling, yet the core interface for Norrin dimerization and the precise mechanism by which Norrin dimerization contributes to the pathogenesis of FEVR remain elusive. Here, we report an NDP variant, c.265T>C (p.Phe89Leu), that interrupted ß-catenin signaling by disrupting Norrin dimerization. Structural and functional analysis revealed that the Phe-89 of one Norrin monomer interacts with Pro-98, Ser-101, Arg-121, and Ile-123 of another, forming two core symmetrical dimerization interfaces that are pivotal for the formation of a "hand-by-arm" dimer. Intriguingly, we proved that one of the two core symmetrical interfaces is sufficient for dimerization and activation of ß-catenin signaling, with a substantial contribution from the Phe-89/Pro-98 interaction. Further functional analysis revealed that the disruption of both dimeric interfaces eliminates potential binding sites for LRP5, which could be partially restored by over-expression of TSPAN12. In conclusion, our findings unveil a core dimerization interface that regulates Norrin/LRP5 interaction, highlighting the essential role of Norrin dimerization on ß-catenin signaling and providing potential therapeutic avenues for the treatment of FEVR.


Assuntos
Oftalmopatias Hereditárias , Doenças Retinianas , Humanos , Vitreorretinopatias Exsudativas Familiares/genética , beta Catenina/genética , beta Catenina/metabolismo , Dimerização , Oftalmopatias Hereditárias/genética , Transdução de Sinais , Doenças Retinianas/metabolismo , Mutação , Tetraspaninas/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Receptores Frizzled/genética , Análise Mutacional de DNA
11.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396898

RESUMO

The identification of surfaceome proteins is a main goal in cancer research to design antibody-based therapeutic strategies. T cell engagers based on KLK2, a kallikrein specifically expressed in prostate cancer (PRAD), are currently in early clinical development. Using genomic information from different sources, we evaluated the immune microenvironment and genomic profile of prostate tumors with high expression of KLK2. KLK2 was specifically expressed in PRAD but it was not significant associated with Gleason score. Additionally, KLK2 expression did not associate with the presence of any immune cell population and T cell activating markers. A mild correlation between the high expression of KLK2 and the deletion of TMPRSS2 was identified. KLK2 expression associated with high levels of surface proteins linked with a detrimental response to immune checkpoint inhibitors (ICIs) including CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and the non-surface protein TRPM4. However, no association of these genes with an outcome in PRAD was observed. Finally, the expression of these genes in PRAD did not associate with an outcome in PRAD and any immune populations. We describe the immunologic microenvironment on PRAD tumors with a high expression of KLK2, including a gene signature linked with an inert immune microenvironment, that predicts the response to ICIs in other tumor types. Strategies targeting KLK2 with T cell engagers or antibody-drug conjugates will define whether T cell mobilization or antigen release and stimulation of immune cell death are sufficient effects to induce clinical activity.


Assuntos
Calicreínas , Neoplasias da Próstata , Receptores Odorantes , Humanos , Masculino , Genômica , Calicreínas/genética , Calicreínas/imunologia , Calicreínas/metabolismo , Proteínas de Neoplasias , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Tetraspaninas , Microambiente Tumoral/genética
12.
Biomarkers ; 29(2): 78-89, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354024

RESUMO

INTRODUCTION: Sepsis, a leading cause of mortality globally, has a complex and multifaceted pathophysiology which still requires elucidation. Therefore, this study aimed to analyze and quantify the number of exosomes in sepsis patients from a South African cohort using the ExoView (NanoView Biosciences, Boston, MA) platform. METHODS: Blood samples were collected from black South African patients attending the local Intensive Care Unit (ICU) hospital. Exosomes were isolated and characterize via TEM and CD63 ELISA kits. ExoView was used to determine particle count, particle size distribution and colocalization of different tetraspanin markers. RESULTS: Exosomal levels in sepsis patients were significantly higher compared to the control group (p < 0.05). Sepsis exosomes showed a homogenous size distribution ranging from 55 to 70 nm. Tetraspanin colocalization analysis revealed that sepsis exosomes have significantly higher CD63/CD9, CD63/CD81 and CD63/CD9/CD81 colocalization percentages than the control group. CONCLUSION: This unique tetraspanin colocalization pattern of sepsis exosomes could serve as a potential sepsis biomarker. Further investigations are required to identify sepsis exosomal cargo signatures for further understanding of sepsis pathophysiology in order to develop effective diagnostics and treatments.


Assuntos
Exossomos , Sepse , Humanos , Tetraspanina 30/análise , Tetraspaninas/análise , Biomarcadores/análise , Sepse/diagnóstico
13.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299843

RESUMO

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Assuntos
Membrana Celular , Fator de Iniciação 4E em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Internalização do Vírus , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cadeias beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tetraspaninas/metabolismo , Células Vero
14.
Oncogene ; 43(14): 1050-1062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374407

RESUMO

In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/ß-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Tetraspaninas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Transição Epitelial-Mesenquimal , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , Via de Sinalização Wnt
15.
Medicine (Baltimore) ; 103(8): e37185, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394483

RESUMO

The development of nonalcoholic fatty liver disease (NAFLD) has been reported to be caused by sphingolipid family inducing insulin resistance, mitochondrial dysfunction, and inflammation, which can be regulated by multiple sphingolipid metabolic pathways. This study aimed to explore the molecular mechanism of crucial sphingolipid metabolism related genes (SMRGs) in NAFLD. Firstly, the datasets (GSE48452, GSE126848, and GSE63067) from the Gene Expression Omnibus database and sphingolipid metabolism genes (SMGs) from previous research were collected for this study. The differentially expressed genes (DEGs) between different NAFLD and controls were acquired through "limma," and the SMRGs were authenticated via weighted gene co-expression network analysis (WGCNA). After overlapping the DEGs and SMRGs, the causality between the intersection genes (DE-SMRGs) and NAFLD was explored to sort out the candidate biomarkers by Mendelian randomization (MR) study. The receiver operating characteristic (ROC) curves of candidate biomarkers in GSE48452 and GSE126848 were yielded to determine the biomarkers, followed by the nomogram construction and enrichment analysis. Finally, the immune infiltration analysis, the prediction of transcription factors (TFs) and drugs targeting biomarkers were put into effect. A total of 23 DE-SMRGs were acquired based on the differential analysis and weighted gene co-expression network analysis (WGCNA), of which 3 DE-SMRGs (CD37, CXCL9 and IL7R) were picked out for follow-up analysis through univariate and multivariate MR analysis. The values of area under ROC curve of CD37 and CXCL9 were >0.7 in GSE48452 and GSE126848, thereby being regarded as biomarkers, which were mainly enriched in amino acid metabolism. With respect to the Spearman analysis between immune cells and biomarkers, CD37 and CXCL9 were significantly positively associated with M1 macrophages (P < .001), whose proportion was observably higher in NAFLD patients compared with controls. At last, TFs (ZNF460 and ZNF384) of CD37 and CXCL9 and a total of 79 chemical drugs targeting CD37 and CXCL9 were predicted. This study mined the pivotal SMRGs, CD37 and CXCL9, and systematically explored the mechanism of action of both biomarkers based on the public databases, which could tender a fresh reference for the clinical diagnosis and therapy of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Metabolismo dos Lipídeos , Movimento Celular , Bases de Dados Factuais , Imunoproteínas , Biomarcadores , Biologia Computacional , Quimiocina CXCL9 , Antígenos de Neoplasias , Tetraspaninas
16.
J Immunol ; 212(7): 1075-1080, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363205

RESUMO

B cell trafficking involves the coordinated activity of multiple adhesive and cytokine-receptor interactions, and the players in this process are not fully understood. In this study, we identified the tetraspanin CD53 as a critical regulator of both normal and malignant B cell trafficking. CXCL12 is a key chemokine in B cell homing to the bone marrow and secondary lymphoid organs, and both normal and malignant B cells from Cd53-/- mice have reduced migration toward CXCL12 in vitro, as well as impaired marrow homing in vivo. Using proximity ligation studies, we identified the CXCL12 receptor, CXCR4, as a novel, to our knowledge, CD53 binding partner. This interaction promotes receptor function, because Cd53-/- B cells display reduced signaling and internalization of CXCR4 in response to CXCL12. Together, our data suggest that CD53 interacts with CXCR4 on both normal and malignant B cells to promote CXCL12 signaling, receptor internalization, and marrow homing.


Assuntos
Linfócitos B , Medula Óssea , Animais , Camundongos , Medula Óssea/metabolismo , Linfócitos B/metabolismo , Quimiocina CXCL12/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Proteínas de Transporte/metabolismo , Receptores CXCR4/metabolismo , Movimento Celular/fisiologia , Células da Medula Óssea/metabolismo
17.
Hum Genomics ; 18(1): 22, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424652

RESUMO

BACKGROUND: To report newly found TSPAN12 mutations with a unique form of familial exudative vitreoretinopathy (FEVR) and find out the possible mechanism of a repeated novel intronic variant in TSPAN12 led to FEVR. RESULTS: Nine TSPAN12 mutations with a unique form of FEVR were detected by panel-based NGS. MINI-Gene assay showed two splicing modes of mRNA that process two different bands A and B, and mutant-type shows replacement with the splicing mode of Exon11 hopping. Construction of wild-type and mutant TSPAN12 vector showed the appearance of premature termination codons (PTC). In vitro expression detection showed significant down-regulated expression level of TSPAN12 mRNAs and proteins in cells transfected with mutant vectors compared with in wild-type group. On the contrary, translation inhibitor CHX and small interfering RNA of UPF1 (si-UPF1) significantly increased mRNA or protein expression of TSPAN12 in cells transfected with the mutant vectors. CONCLUSIONS: Nine mutations in TSPAN12 gene are reported in 9 FEVR patients with a unique series of ocular abnormalities. The three novel TSPAN12 mutations trigger NMD would cause the decrease of TSPAN12 proteins that participate in biosynthesis and assembly of microfibers, which might lead to FEVR, and suggest that intronic sequence analysis might be a vital tool for genetic counseling and prenatal diagnoses.


Assuntos
Códon sem Sentido , Tetraspaninas , Humanos , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/diagnóstico , Tetraspaninas/genética , Tetraspaninas/metabolismo , Linhagem , Mutação , Análise Mutacional de DNA , Transativadores/genética , RNA Helicases/genética
18.
Cells ; 13(2)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275818

RESUMO

Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the formation of specialized microdomains called "tetraspanin-enriched microdomains (TEMs)" or "tetraspanin nanodomains" that are essential for mediating diverse biological processes. TSPAN8 is one of the earliest identified tetraspanin members. It is known to interact with a wide range of molecular partners in different cellular contexts and regulate diverse molecular and cellular events at the plasma membrane, including cell adhesion, migration, invasion, signal transduction, and exosome biogenesis. The functions of cell-surface TSPAN8 are governed by ER targeting, modifications at the Golgi apparatus and dynamic trafficking. Intriguingly, limited evidence shows that TSPAN8 can translocate to the nucleus to act as a transcriptional regulator. The transcription of TSPAN8 is tightly regulated and restricted to defined cell lineages, where it can serve as a molecular marker of stem/progenitor cells in certain normal tissues as well as tumors. Importantly, the oncogenic roles of TSPAN8 in tumor development and cancer metastasis have gained prominence in recent decades. Here, we comprehensively review the current knowledge on the molecular characteristics and regulatory mechanisms defining TSPAN8 functions, and discuss the potential and significance of TSPAN8 as a biomarker and therapeutic target across various epithelial cancers.


Assuntos
Neoplasias , Tetraspaninas , Humanos , Tetraspaninas/genética , Tetraspaninas/metabolismo , Neoplasias/genética , Proteínas de Membrana , Membrana Celular/metabolismo , Adesão Celular
19.
Sci Rep ; 14(1): 2093, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267610

RESUMO

Biochemical approaches revealed that tetraspanins are multi-regulatory proteins forming a web, where they act in tetraspanin-enriched-microdomains (TEMs). A microscopic criterion differentiating between web and TEMs is lacking. Using super-resolution microcopy, we identify co-assemblies between the tetraspanins CD9 and CD81 and CD151 and CD81. CD9 assemblies contain as well the CD9/CD81-interaction partner EWI-2. Moreover, CD9 clusters are proximal to clusters of the CD81-interaction partner CD44 and CD81-/EWI-2-interacting ezrin-radixin-moesin proteins. Assemblies scatter unorganized across the cell membrane; yet, upon EWI-2 elevation, they agglomerate into densely packed arranged-crowds in a process independent from actin dynamics. In conclusion, microscopic clusters are equivalent to biochemical tetraspanin-assemblies, defining in their entirety the tetraspanin web. Cluster-agglomeration enriches tetraspanins, which makes agglomerations to a microscopic complement of TEMs. The microscopic classification of tetraspanin assemblies advances our understanding of this enigmatic protein family, whose members play roles in a plethora of cellular functions, diseases, and pathogen infections.


Assuntos
Actinas , Tetraspaninas , Membrana Celular , Fatores de Transcrição
20.
Discov Med ; 36(180): 61-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273746

RESUMO

BACKGROUND: Activating autophagy promotes the invasion and progression of prostate cancer (PCa). Tetraspanin 1 (TSPAN1) has been found to promote autophagy flux and its up-regulation can enhance the migration of PCa cells. In addition, there is a binding relationship between TSPAN1 and the N6-methyladenosine (m6A) demethylase AlkB homolog 5 (ALKBH5). Therefore, we wanted to know whether ALKBH5 could affect autophagy by regulating TSPAN1 expression, and thereby participate in PCa malignant progression. METHODS: The expression of ALKBH5 and TSPAN1 in PCa was examined by quantitative real-time polymerase chain reaction (qRT-PCR), and the functional tests included cell counting kit-8 and 5-ethynyl-2'-deoxyuridine (EdU) staining assays. The expression of autophagy-related proteins was confirmed by western blot. Detection of the m6A level of TSPAN1 was performed using methylated RNA immunoprecipitation sequencing (MeRIP)-qPCR. RESULTS: ALKBH5 was significantly downregulated in PCa cells (LNCaP, DU145 and PC3 cells; p < 0.001). Overexpression of ALKBH5 inhibited cell viability and the number of EdU-positive cells (p < 0.01, p < 0.001), decreased the ratio of microtubule-associated protein light chain 3B (LC3B)-II/LC3B-I, and promoted P62 protein expression in LNCaP and DU145 cells (p < 0.001). The m6A level of TSPAN1 was high in LNCaP and DU145 cells, but was inhibited by the overexpression of ALKBH5 (p < 0.001). TSPAN1 overexpression promoted cell viability (p < 0.001), increased EdU-positive cells and the LC3B-II/LC3B-I ratio (p < 0.001, p < 0.05), reduced P62 protein expression (p < 0.05, p < 0.001), and reversed the regulation of ALKBH5 overexpression in LNCaP and DU145 cells (p < 0.01, p < 0.001). CONCLUSIONS: Promoting ALKBH5 expression may inhibit PCa autophagy by reducing the m6A level of TSPAN1.


Assuntos
Adenina/análogos & derivados , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Próstata , Autofagia/genética , Sobrevivência Celular , Tetraspaninas/genética , Homólogo AlkB 5 da RNA Desmetilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...