Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.441
Filtrar
1.
Cell Commun Signal ; 22(1): 225, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605348

RESUMO

The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2). Clathrin-mediated endocytosis is an essential step in receptor signaling and is of paramount importance for a number of receptors for growth factors involved in angiogenesis. In this study, we further investigated the molecular mechanism underlying EMCN's involvement in the regulation of VEGF-induced endocytosis. In addition, we examined the specificity of EMCN's role in angiogenesis-related cell surface receptor tyrosine kinase endocytosis and signaling. We identified that EMCN interacts with AP2 complex, which is essential for clathrin-mediated endocytosis. Lack of EMCN did not affect clathrin recruitment to the AP2 complex following VEGF stimulation, but it is necessary for the interaction between VEGFR2 and the AP2 complex during endocytosis. EMCN does not inhibit VEGFR1 and FGFR1 internalization or their downstream activities since EMCN interacts with VEGFR2 but not VEGFR1 or FGFR1. Additionally, EMCN also regulates VEGF121-induced VEGFR2 phosphorylation and internalization.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sialomucinas/metabolismo , Endocitose , Clatrina/metabolismo
2.
Res Vet Sci ; 171: 105223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520841

RESUMO

Infectious salmon anaemia virus (ISAV) is a pathogen that causes disease and large mortality in farm-raised Salmo salar L., being considered as a major problem in the salmon industry. However, despite its relevance, there are still numerous knowledge gaps on virus entry and early stages of infection. Previous studies suggested that virus entry into cells occurs via endocytosis, with no description of specific mechanisms. However, it remains unknown if the endocytosis induced by ISAV is a clathrin-dependent or clathrin-independent process. This study aimed to identify cellular mechanisms allowing ISAV entry into Atlantic Salmon head kidney (ASK) cells. Our results showed that ISAV can be found in coated pits and membrane ruffles, the latter being induced by a rearrangement of actin filaments promoted by ISAV infection. Additionally, it was determined that ISAV stimulate the uptake of extracellular fluid in a multiplicity of infection (MOI)-dependent manner. When the clathrin-mediated endocytic pathway was pharmacologically inhibited, ISAV infection was significantly reduced but not entirely inhibited. Similarly, when the Na+/H+ exchanger (NHE), a key component of macropinocytosis, was inhibited, ISAV infection was negatively affected. Our results suggest that ISAV enters cells via both clathrin-mediated endocytosis and most likely macropinocytosis.


Assuntos
Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Animais , Endocitose , Clatrina , Infecções por Orthomyxoviridae/veterinária
3.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542369

RESUMO

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Assuntos
Arrestina , Histamina , Animais , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Histamina/farmacologia , Histamina/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transdução de Sinais
4.
PLoS One ; 19(3): e0300255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512854

RESUMO

Chromodomain helicase DNA binding domain (CHD) proteins, including CHD7 and CHD8, remodel chromatin to enable transcriptional programs. Both proteins are important for proper neural development as heterozygous mutations in Chd7 and Chd8 are causative for CHARGE syndrome and correlated with autism spectrum disorders, respectively. Their roles in mature neurons are poorly understood despite influencing the expression of genes required for cell adhesion, neurotransmission, and synaptic plasticity. The Drosophila homolog of CHD7 and CHD8, Kismet (Kis), promotes neurotransmission, endocytosis, and larval locomotion. Endocytosis is essential in neurons for replenishing synaptic vesicles, maintaining protein localization, and preserving the size and composition of the presynaptic membrane. Several forms of endocytosis have been identified including clathrin-mediated endocytosis, which is coupled with neural activity and is the most prevalent form of synaptic endocytosis, and activity-dependent bulk endocytosis, which occurs during periods of intense stimulation. Kis modulates the expression of gene products involved in endocytosis including promoting shaggy/GSK3ß expression while restricting PI3K92E. kis mutants electrophysiologically phenocopy a liquid facets mutant in response to paradigms that induce clathrin-mediated endocytosis and activity-dependent bulk endocytosis. Further, kis mutants do not show further reductions in endocytosis when activity-dependent bulk endocytosis or clathrin-mediated endocytosis are pharmacologically inhibited. We find that Kis is important in postsynaptic muscle for proper endocytosis but the ATPase domain of Kis is dispensable for endocytosis. Collectively, our data indicate that Kis promotes both clathrin-mediated endocytosis and activity-dependent bulk endocytosis possibly by promoting transcription of several endocytic genes and maintaining the size of the synaptic vesicle pool.


Assuntos
Cromatina , Clatrina , Animais , Clatrina/metabolismo , Montagem e Desmontagem da Cromatina , Transmissão Sináptica/fisiologia , Drosophila/metabolismo , Endocitose/genética , DNA Helicases/genética , DNA Helicases/metabolismo
5.
J Plant Physiol ; 295: 154189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432037

RESUMO

Clathrin-mediated endocytosis (CME) is a highly conserved pathway that plays a crucial role in the endocytosis of plasma membrane proteins in eukaryotic cells. The pathway is initiated when the adaptor protein complex 2 (AP2) and TPLATE complex (TPC) work together to recognize cargo proteins and recruit clathrin. This review provides a concise overview of the functions of each subunit of AP2 and TPC, and highlights the involvement of CME in various biological processes, such as pollen development, root development, nutrient transport, extracellular signal transduction, auxin polar transport, hyperosmotic stress, salinity stress, high ammonium stress, and disease resistance. Additionally, the review explores the regulation of CME by phytohormones, clathrin-mediated exocytosis (CMX), and AP2M phosphorylation. It also suggests potential future research directions for CME.


Assuntos
Fenômenos Biológicos , Endocitose , Endocitose/fisiologia , Clatrina/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Desenvolvimento Vegetal
6.
Mol Reprod Dev ; 91(3): e23737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450862

RESUMO

Extracellular vesicles (EVs) play an important role in the development and function of mammalian ovarian follicles. However, the mechanisms by which they are taken up by the follicular granulosa cells remain unclear. In addition, while oocytes play a pivotal role in follicular development, the possible interactions between oocyte-derived paracrine factors (ODPFs) and EV signals are unknown. Therefore, this study aimed to elucidate the mechanism of EV uptake and the effects of ODPFs on EV uptake by follicular somatic mural granulosa cells in mice. Fluorescence-labeled transferrin (TRF) and cholera toxin B (CTB), substrates for clathrin- and caveolae-mediated endocytosis, respectively, were taken up by mural granulosa cells in vitro. Their uptake was inhibited by Pitstop 2 and genistein, inhibitors of clathrin and caveolae pathways, respectively. Mural granulosa cells took up EVs, and this uptake was suppressed by Pitstop 2 and genistein. Moreover, ODPFs promoted the uptake of EVs and CTB, but not TRF, by mural granulosa cells. These results suggest that mural granulosa cells take up EVs through both clathrin- and caveolae-mediated endocytosis and that oocytes may promote caveolae-mediated endocytosis to facilitate the uptake of EVs.


Assuntos
Vesículas Extracelulares , Genisteína , Sulfonamidas , Tiazolidinas , Feminino , Animais , Camundongos , Genisteína/farmacologia , Células da Granulosa , Clatrina , Mamíferos
7.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38445557

RESUMO

Multiple endocytic processes operate in cells in tandem to uptake multiple cargoes involved in diverse cellular functions, including cell adhesion and migration. The best-studied clathrin-mediated endocytosis (CME) involves the formation of a well-defined cytoplasmic clathrin coat to facilitate cargo uptake. According to the glycolipid-lectin (GL-Lect) hypothesis, galectin-3 (Gal3) binds to glycosylated membrane receptors and glycosphingolipids (GSLs) to drive membrane bending and tubular membrane invaginations that undergo scission to form a morphologically distinct class of uptake structures, termed clathrin-independent carriers (CLICs). Which components from cytoskeletal machinery are involved in the scission of CLICs remains to be explored. In this study, we propose that dynein is recruited onto Gal3-induced tubular endocytic pits and provides the pulling force for friction-driven scission. The uptake of Gal3 and its cargoes (CD98/CD147) is significantly dependent on dynein activity, whereas only transferrin (CME marker) is slightly affected upon dynein inhibition. Our study reveals that Gal3 and Gal3-dependent (CD98 and CD147) clathrin-independent cargoes require dynein for the clathrin-independent endocytosis.


Assuntos
Endocitose , Galectina 3 , Galectina 3/genética , Endocitose/genética , Transporte Biológico , Clatrina , Dineínas
8.
Nat Commun ; 15(1): 2093, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453931

RESUMO

Adhesions are critical for anchoring cells in their environment, as signaling platforms and for cell migration. In line with these diverse functions different types of cell-matrix adhesions have been described. Best-studied are the canonical integrin-based focal adhesions. In addition, non-canonical integrin adhesions lacking focal adhesion proteins have been discovered. These include reticular adhesions also known as clathrin plaques or flat clathrin lattices, that are enriched in clathrin and other endocytic proteins, as well as extensive adhesion networks and retraction fibers. How these different adhesion types that share a common integrin backbone are related and whether they can interconvert is unknown. Here, we identify the protein stonin1 as a marker for non-canonical αVß5 integrin-based adhesions and demonstrate by live cell imaging that canonical and non-canonical adhesions can reciprocally interconvert by the selective exchange of components on a stable αVß5 integrin scaffold. Hence, non-canonical adhesions can serve as points of origin for the generation of canonical focal adhesions.


Assuntos
Adesões Focais , Integrinas , Integrinas/metabolismo , Adesões Focais/metabolismo , Junções Célula-Matriz/metabolismo , Movimento Celular , Clatrina/metabolismo , Adesão Celular
9.
Nat Commun ; 15(1): 2767, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553473

RESUMO

Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.


Assuntos
Comunicação Celular , Endocitose , Membrana Celular/metabolismo , Clatrina/metabolismo , Lipídeos
10.
Nat Cell Biol ; 26(3): 438-449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347182

RESUMO

Clathrin-mediated endocytosis is an essential cellular internalization pathway involving the dynamic assembly of clathrin and accessory proteins to form membrane-bound vesicles. The evolutionarily ancient TSET-TPLATE complex (TPC) plays an essential, but ill-defined role in endocytosis in plants. Here we show that two highly disordered TPC subunits, AtEH1 and AtEH2, function as scaffolds to drive biomolecular condensation of the complex. These condensates specifically nucleate on the plasma membrane through interactions with anionic phospholipids, and facilitate the dynamic recruitment and assembly of clathrin, as well as early- and late-stage endocytic accessory proteins. Importantly, condensation promotes ordered clathrin assemblies. TPC-driven biomolecular condensation thereby facilitates dynamic protein assemblies throughout clathrin-mediated endocytosis. Furthermore, we show that a disordered region of AtEH1 controls the material properties of endocytic condensates in vivo. Alteration of these material properties disturbs the recruitment of accessory proteins, influences endocytosis dynamics and impairs plant responsiveness. Our findings reveal how collective interactions shape endocytosis.


Assuntos
Clatrina , Endocitose , Membrana Celular/metabolismo , Clatrina/metabolismo
11.
Nat Cell Biol ; 26(3): 327-328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360893

Assuntos
Clatrina , Endocitose
12.
Virus Res ; 342: 199338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373599

RESUMO

The role of aichivirus A1 (AiV-A1) in acute gastroenteritis remains controversial and in vitro data illustrating its pathogenesis in suitable human models are scarce. Here, we demonstrate that AiV-A1 isolate A846/88 replicates in ApoA1- (absorptive) and Ki-67-positive (proliferative) enterocytes in stem cell-derived human small intestinal epithelium (HIE) as well as in patient biopsy samples, but not in any of the tested human cell lines. The infection did not result in tissue damage and did not trigger type I and type III interferon (IFN) signalling, whereas the control, human coxsackievirus B3 (strain Nancy), triggered both IFNs. To investigate the tissue tropism, we infected a human tracheal/bronchial epithelium model (HTBE) with AiV-A1 isolates A846/88 and kvgh99012632/2010 and, as a control, with rhinovirus A2 (RV-A2). AiV-A1 isolate kvgh99012632/2010, but not isolate A846/88, replicated in HTBE and induced type III IFN and ISGs signalling. By using various pharmacological inhibitors, we elaborated that cellular entry of AiV-A1 depends on clathrin, dynamin, and lipid rafts and is strongly reliant on endosome acidification. Viral particles co-localised with Rab5a-positive endosomes and promoted leakage of endosomal content. Our data shed light on the early events of AiV-A1 infection and reveal that different isolates exhibit distinct tissue tropism. This supports its clinical importance as a human pathogen with the potential to evolve toward broader tissue specificity.


Assuntos
Brônquios , Mucosa Intestinal , Humanos , Enterócitos , Linhagem Celular , Clatrina
13.
Elife ; 132024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381485

RESUMO

The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.


Assuntos
Epilepsia Generalizada , Complexo de Golgi , Vesículas Secretórias , Convulsões Febris , Citoplasma , Membrana Celular , Clatrina
14.
J Cell Biol ; 223(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358349

RESUMO

Different membrane microdomain compositions provide unique environments that can regulate signaling receptor function. We identify microdomains on the endosome membrane of Drosophila endosomes, enriched in lipid-raft or clathrin/ESCRT-0, which are associated with Notch activation by distinct, ligand-independent mechanisms. Transfer of Notch between microdomains is regulated by Deltex and Suppressor of deltex ubiquitin ligases and is limited by a gate-keeper role for ESCRT complexes. Ubiquitination of Notch by Deltex recruits it to the clathrin/ESCRT-0 microdomain and enhances Notch activation by an ADAM10-independent/TRPML-dependent mechanism. This requirement for Deltex is bypassed by the downregulation of ESCRT-III. In contrast, while ESCRT-I depletion also activates Notch, it does so by an ADAM10-dependent/TRPML-independent mechanism and Notch is retained in the lipid raft-like microdomain. In the absence of such endosomal perturbation, different activating Notch mutations also localize to different microdomains and are activated by different mechanisms. Our findings demonstrate the interplay between Notch regulators, endosomal trafficking components, and Notch genetics, which defines membrane locations and activation mechanisms.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas de Membrana , Receptores Notch , Canais de Potencial de Receptor Transitório , Animais , Proteína ADAM10/metabolismo , Clatrina/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Receptores Notch/metabolismo , Ubiquitinação , Proteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo
15.
Bioessays ; 46(4): e2300230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412391

RESUMO

In circulation, T cells are spherical with selectin enriched dynamic microvilli protruding from the surface. Following extravasation, these microvilli serve another role, continuously surveying their environment for antigen in the form of peptide-MHC (pMHC) expressed on the surface of antigen presenting cells (APCs). Upon recognition of their cognate pMHC, the microvilli are initially stabilized and then flatten into F-actin dependent microclusters as the T cell spreads over the APC. Within 1-5 min, clathrin is recruited by the ESCRT-0 component Hrs to mediate release of T cell receptor (TCR) loaded vesicles directly from the plasma membrane by clathrin and ESCRT-mediated ectocytosis (CEME). After 5-10 min, Hrs is displaced by the endocytic clathrin adaptor epsin-1 to induce clathrin-mediated trans-endocytosis (CMTE) of TCR-pMHC conjugates. Here we discuss some of the functional properties of the clathrin machinery which enables it to control these topologically opposite modes of membrane transfer at the immunological synapse, and how this might be regulated during T cell activation.


Assuntos
Clatrina , Linfócitos T , Clatrina/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Comunicação
16.
J Biol Chem ; 300(3): 105677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272225

RESUMO

The emerging roles of O-GlcNAcylation, a distinctive post-translational modification, are increasingly recognized for their involvement in the intricate processes of protein trafficking and secretion. This modification exerts its influence on both conventional and unconventional secretory pathways. Under healthy and stress conditions, such as during diseases, it orchestrates the transport of proteins within cells, ensuring timely delivery to their intended destinations. O-GlcNAcylation occurs on key factors, like coat protein complexes (COPI and COPII), clathrin, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and GRASP55 (Golgi reassembly stacking protein of 55 kDa) that control vesicle budding and fusion in anterograde and retrograde trafficking and unconventional secretion. The understanding of O-GlcNAcylation offers valuable insights into its critical functions in cellular physiology and the progression of diseases, including neurodegeneration, cancer, and metabolic disorders. In this review, we summarize and discuss the latest findings elucidating the involvement of O-GlcNAc in protein trafficking and its significance in various human disorders.


Assuntos
Clatrina , Proteínas SNARE , Humanos , Acetilglucosamina/metabolismo , Clatrina/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico/fisiologia , Proteínas SNARE/metabolismo , Animais , Acetilação , Glucose/metabolismo
17.
Am J Reprod Immunol ; 91(1): e13803, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282606

RESUMO

Ureaplasma parvum is a mycoplasma commonly associated with female reproductive pathologies, such as preterm birth and infertility. It can survive intracellularly and utilize exosomes to propagate infection and its virulence factors. This study explored the differential protein composition of exosomes derived from normal and U. parvum-infected cells. We also investigated the impact of U. parvum on exosome biogenesis in ectocervical epithelial cells. Ectocervical epithelial (ECTO) cells were infected with U. parvum, and immunocytochemical staining was performed using U. parvum-specific marker multiple banded antigen (mba) and exosome marker CD9. NanoLC-MS/MS analysis was conducted to identify differentially expressed proteins in exosomes. Ingenuity Pathway Analysis (IPA) was performed to identify affected canonical pathways and biological functions associated with the protein cargo of exosomes. Western blot analysis of ECTO cells validated the proteomic findings in ECTO cells. U. parvum exhibited colonization of ECTO cells and colocalization with CD9-positive intraluminal vesicles. Proteomic analysis revealed decreased protein abundance and distinct protein profiles in exosomes derived from U. parvum-infected ECTO cells. Differentially expressed proteins were associated with clathrin-mediated endocytosis and various signaling pathways indicative of infection, inflammation, and cell death processes. Additionally, U. parvum infection altered proteins involved in exosome biogenesis. In ECTO cells, U. parvum infection significantly decreased clathrin, ALIX, CD9, and CD63 and significantly increased TSG101, Rab5, Rab35, and UGCG. These findings contribute to our understanding of the infection mechanism and shed light on the importance of exosome-mediated communication in the pathophysiology of diseases affecting the cervix, such as cervicitis and preterm birth.


Assuntos
Exossomos , Nascimento Prematuro , Infecções por Ureaplasma , Humanos , Recém-Nascido , Feminino , Colo do Útero , Proteômica , Espectrometria de Massas em Tandem , Ureaplasma/fisiologia , Células Epiteliais , Clatrina
18.
Brain Res ; 1827: 148746, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184164

RESUMO

Synapses are essential for facilitating the transmission of information between neurons and for executing neurophysiological processes. Following the exocytosis of neurotransmitters, the synaptic vesicle may quickly undergo endocytosis to preserve the structural integrity of the synapse. When converting adipose-derived stromal cells (ADSCs) into neurons, the ADSCs have already demonstrated comparable morphology, structure, and electrophysiological characteristics to neurons. Nevertheless, there is currently no published study on the endocytotic function of neurons that are produced from ADSCs. This study aimed to examine synaptic endocytosis in neurons derived from ADSCs by qualitatively and quantitatively analyzing the presence of Ap-2, Clathrin, Endophilin, Dynamin, and Hsc70, which are the key proteins involved in clathrin-mediated endocytosis (CME), as well as by using FM1-43 and cadmium selenide quantum dots (CdSe QDs). Additionally, single-cell RNA sequencing (scRNA-seq) was used to look at the levels of both neuronal markers and markers related to CME at the same time. The results of this study provide evidence that synapses in neurons produced from ADSCs have a role in endocytosis, mainly through the CME route.


Assuntos
Clatrina , Endocitose , Adulto , Humanos , Exocitose , Neurônios , Células Estromais
19.
Vet Microbiol ; 290: 109989, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266371

RESUMO

ADP-ribosylation factor 6 (ARF6) is a small G protein with extensive functions, including regulation of cellular membrane transport and viral infection. Infectious bursal disease (IBD) is caused by infectious bursal disease virus (IBDV), which mainly invades the bursa of Fabricius and causes low immunity in poultry. Our study demonstrated that IBDV infection could promote the expression of ARF6; however, the underlying mechanism remains unclear. Herein, the function of ARF6 in IBDV infection was explored, and it was revealed that viral replication was significantly promoted by ARF6 overexpression and hampered by siRNA-mediated inhibition of ARF6. Using two site mutants of ARF6 (ARF6-T27N and ARF6-Q67L), we found that IBDV replication was repressed by ARF6-T27N, indicating that ARF6 promotes IBDV replication. Further exploration of its mechanism revealed that ARF6 affects the copy number of IBDVs entering cells. A clathrin inhibitor (pitstop 2) impeded the early replication of IBDV, even when ARF6 was overexpressed. These results indicated that ARF6 promotes viral replication by affecting the internalization of IBDV, which may involve clathrin-dependent endocytosis. Our findings improve the understanding of the processes governing IBDV infection and provide insights into its prevention and control.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Clatrina/metabolismo , Fator 6 de Ribosilação do ADP , Internalização do Vírus , Endocitose , Replicação Viral , Galinhas , Infecções por Birnaviridae/veterinária , Bolsa de Fabricius
20.
Cell Mol Life Sci ; 81(1): 43, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217571

RESUMO

Adherent cells ensure membrane homeostasis during de-adhesion by various mechanisms, including endocytosis. Although mechano-chemical feedbacks involved in this process have been studied, the step-by-step build-up and resolution of the mechanical changes by endocytosis are poorly understood. To investigate this, we studied the de-adhesion of HeLa cells using a combination of interference reflection microscopy, optical trapping and fluorescence experiments. We found that de-adhesion enhanced membrane height fluctuations of the basal membrane in the presence of an intact cortex. A reduction in the tether force was also noted at the apical side. However, membrane fluctuations reveal phases of an initial drop in effective tension followed by saturation. The area fractions of early (Rab5-labelled) and recycling (Rab4-labelled) endosomes, as well as transferrin-labelled pits close to the basal plasma membrane, also transiently increased. On blocking dynamin-dependent scission of endocytic pits, the regulation of fluctuations was not blocked, but knocking down AP2-dependent pit formation stopped the tension recovery. Interestingly, the regulation could not be suppressed by ATP or cholesterol depletion individually but was arrested by depleting both. The data strongly supports Clathrin and AP2-dependent pit-formation to be central to the reduction in fluctuations confirmed by super-resolution microscopy. Furthermore, we propose that cholesterol-dependent pits spontaneously regulate tension under ATP-depleted conditions.


Assuntos
Clatrina , Invaginações Revestidas da Membrana Celular , Humanos , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Células HeLa , Endocitose/fisiologia , Colesterol/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...