Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
1.
Hum Mol Genet ; 33(2): 138-149, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37802886

RESUMO

Spinocerebellar ataxia type 1 is caused by an expansion of the polyglutamine tract in ATAXIN-1. Ataxin-1 is broadly expressed throughout the brain and is involved in regulating gene expression. However, it is not yet known if mutant ataxin-1 can impact the regulation of alternative splicing events. We performed RNA sequencing in mouse models of spinocerebellar ataxia type 1 and identified that mutant ataxin-1 expression abnormally leads to diverse splicing events in the mouse cerebellum of spinocerebellar ataxia type 1. We found that the diverse splicing events occurred in a predominantly cell autonomous manner. A majority of the transcripts with misregulated alternative splicing events were previously unknown, thus allowing us to identify overall new biological pathways that are distinctive to those affected by differential gene expression in spinocerebellar ataxia type 1. We also provide evidence that the splicing factor Rbfox1 mediates the effect of mutant ataxin-1 on misregulated alternative splicing and that genetic manipulation of Rbfox1 expression modifies neurodegenerative phenotypes in a Drosophila model of spinocerebellar ataxia type 1 in vivo. Together, this study provides novel molecular mechanistic insight into the pathogenesis of spinocerebellar ataxia type 1 and identifies potential therapeutic strategies for spinocerebellar ataxia type 1.


Assuntos
Processamento Alternativo , Ataxias Espinocerebelares , Camundongos , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Processamento Alternativo/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Encéfalo/metabolismo , Ataxina-3/metabolismo
2.
Neuron ; 112(3): 362-383.e15, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016472

RESUMO

Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.


Assuntos
Ataxias Espinocerebelares , Animais , Camundongos , Humanos , Ataxina-1/genética , Camundongos Transgênicos , Ataxias Espinocerebelares/metabolismo , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Modelos Animais de Doenças
3.
Hum Genet ; 142(12): 1651-1676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845370

RESUMO

Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.


Assuntos
Proteínas Nucleares , Ataxias Espinocerebelares , Humanos , Animais , Camundongos , Ataxinas , Proteínas Nucleares/genética , Ataxina-1/genética , Proteínas do Tecido Nervoso/genética , Ataxias Espinocerebelares/genética , Ataxia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box
4.
Neuron ; 111(22): 3517-3530, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37863037

RESUMO

One of the more transformative findings in human genetics was the discovery that the expansion of unstable nucleotide repeats underlies a group of inherited neurological diseases. A subset of these unstable repeat neurodegenerative diseases is due to the expansion of a CAG trinucleotide repeat encoding a stretch of glutamines, i.e., the polyglutamine (polyQ) repeat neurodegenerative diseases. Among the CAG/polyQ repeat diseases are Huntington's disease (HD) and spinocerebellar ataxia type 1 (SCA1), in which the expansions are within widely expressed proteins. Although both HD and SCA1 are autosomal dominantly inherited, and both typically cause mid- to late-life-onset movement disorders with cognitive decline, they each are characterized by distinct clinical characteristics and predominant sites of neuropathology. Importantly, the respective affected proteins, Huntingtin (HTT, HD) and Ataxin 1 (ATXN1, SCA1), have unique functions and biological properties. Here, we review HD and SCA1 with a focus on how their disease-specific and shared features may provide informative insights.


Assuntos
Doença de Huntington , Doenças do Sistema Nervoso , Ataxias Espinocerebelares , Humanos , Doença de Huntington/genética , Ataxias Espinocerebelares/genética , Ataxina-1/genética , Proteínas/genética , Repetições de Trinucleotídeos , Doenças do Sistema Nervoso/genética , Estudos de Associação Genética , Expansão das Repetições de Trinucleotídeos/genética
5.
Neurobiol Dis ; 187: 106318, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37802154

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an abnormal expansion of glutamine (Q) encoding CAG repeats in the ATAXIN1 (ATXN1) gene and characterized by progressive cerebellar ataxia, dysarthria, and eventual deterioration of bulbar functions. SCA1 shows severe degeneration of cerebellar Purkinje cells (PCs) and activation of Bergmann glia (BG), a type of cerebellar astroglia closely associated with PCs. Combining electrophysiological recordings, calcium imaging techniques, and chemogenetic approaches, we have investigated the electrical intrinsic and synaptic properties of PCs and the physiological properties of BG in SCA1 mouse model expressing mutant ATXN1 only in PCs. PCs of SCA1 mice displayed lower spontaneous firing rate and larger slow afterhyperpolarization currents (sIAHP) than wildtype mice, whereas the properties of the synaptic inputs were unaffected. BG of SCA1 mice showed higher calcium hyperactivity and gliotransmission, manifested by higher frequency of NMDAR-mediated slow inward currents (SICs) in PC. Preventing the BG calcium hyperexcitability of SCA1 mice by loading BG with the calcium chelator BAPTA restored sIAHP and spontaneous firing rate of PCs to similar levels of wildtype mice. Moreover, mimicking the BG hyperactivity by activating BG expressing Gq-DREADDs in wildtype mice reproduced the SCA1 pathological phenotype of PCs, i.e., enhancement of sIAHP and decrease of spontaneous firing rate. These results indicate that the intrinsic electrical properties of PCs, but not their synaptic properties, were altered in SCA1 mice and that these alterations were associated with the hyperexcitability of BG. Moreover, preventing BG hyperexcitability in SCA1 mice and promoting BG hyperexcitability in wildtype mice prevented and mimicked, respectively, the pathological electrophysiological phenotype of PCs. Therefore, BG plays a relevant role in the dysfunction of the electrical intrinsic properties of PCs in SCA1 mice, suggesting that they may serve as potential targets for therapeutic approaches to treat the spinocerebellar ataxia type 1.


Assuntos
Cálcio , Ataxias Espinocerebelares , Camundongos , Animais , Cálcio/fisiologia , Sinalização do Cálcio , Camundongos Transgênicos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Cerebelo/patologia , Células de Purkinje/patologia , Neuroglia/patologia , Ataxina-1/genética
6.
Neuron ; 111(16): 2523-2543.e10, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37321222

RESUMO

Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify an inhibitory circuit element (molecular layer interneurons [MLINs]) that becomes prematurely hyperexcitable, compromising sensorimotor signals in the cerebellum at early stages. Mutant MLINs express abnormally elevated parvalbumin, harbor high excitatory-to-inhibitory synaptic density, and display more numerous synaptic connections on PNs, indicating an excitation/inhibition imbalance. Chemogenetic inhibition of hyperexcitable MLINs normalizes parvalbumin expression and restores calcium signaling in Sca1 PNs. Chronic inhibition of mutant MLINs delayed PN degeneration, reduced pathology, and ameliorated motor deficits in Sca1 mice. Conserved proteomic signature of Sca1 MLINs, shared with human SCA1 interneurons, involved the higher expression of FRRS1L, implicated in AMPA receptor trafficking. We thus propose that circuit-level deficits upstream of PNs are one of the main disease triggers in SCA1.


Assuntos
Células de Purkinje , Ataxias Espinocerebelares , Camundongos , Humanos , Animais , Células de Purkinje/metabolismo , Parvalbuminas/metabolismo , Proteômica , Camundongos Transgênicos , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Cerebelo/metabolismo , Interneurônios/metabolismo , Degeneração Neural/patologia , Modelos Animais de Doenças , Ataxina-1 , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
7.
Mol Cell ; 83(12): 1961-1963, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327772

RESUMO

Ataxin-2, an RNA-binding protein that is conserved across eukaryotes, is involved in stress granule assembly and age-associated neurodegenerative diseases. In this issue of Molecular Cell, Boeynaems et al.1 identify a short linear motif in ataxin-2 as a condensation switch, providing molecular insights into its essential role in cellular stress response.


Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Doenças Neurodegenerativas/genética , Ataxina-1/metabolismo
8.
Biomolecules ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37238658

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that affects one or two individuals per 100,000. The disease is caused by an extended CAG repeat in exon 8 of the ATXN1 gene and is characterized mostly by a profound loss of cerebellar Purkinje cells, leading to disturbances in coordination, balance, and gait. At present, no curative treatment is available for SCA1. However, increasing knowledge on the cellular and molecular mechanisms of SCA1 has led the way towards several therapeutic strategies that can potentially slow disease progression. SCA1 therapeutics can be classified as genetic, pharmacological, and cell replacement therapies. These different therapeutic strategies target either the (mutant) ATXN1 RNA or the ataxin-1 protein, pathways that play an important role in downstream SCA1 disease mechanisms or which help restore cells that are lost due to SCA1 pathology. In this review, we will provide a summary of the different therapeutic strategies that are currently being investigated for SCA1.


Assuntos
Cerebelo , Ataxias Espinocerebelares , Humanos , Cerebelo/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxina-1/genética , Ataxina-1/metabolismo , Células de Purkinje/patologia
9.
Mol Neurobiol ; 60(6): 3553-3567, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36894829

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease, which belongs to the trinucleotide repeat disease group with a CAG repeat expansion in exon 1 of the ATXN2 gene resulting in an ataxin-2 protein with an expanded polyglutamine (polyQ)-stretch. The disease is late manifesting leading to early death. Today, therapeutic interventions to cure the disease or even to decelerate disease progression are not available yet. Furthermore, primary readout parameter for disease progression and therapeutic intervention studies are limited. Thus, there is an urgent need for quantifiable molecular biomarkers such as ataxin-2 becoming even more important due to numerous potential protein-lowering therapeutic intervention strategies. The aim of this study was to establish a sensitive technique to measure the amount of soluble polyQ-expanded ataxin-2 in human biofluids to evaluate ataxin-2 protein levels as prognostic and/or therapeutic biomarker in SCA2. Time-resolved fluorescence energy transfer (TR-FRET) was used to establish a polyQ-expanded ataxin-2-specific immunoassay. Two different ataxin-2 antibodies and two different polyQ-binding antibodies were validated in three different concentrations and tested in cellular and animal tissue as well as in human cell lines, comparing different buffer conditions to evaluate the best assay conditions. We established a TR-FRET-based immunoassay for soluble polyQ-expanded ataxin-2 and validated measurements in human cell lines including iPSC-derived cortical neurons. Additionally, our immunoassay was sensitive enough to monitor small ataxin-2 expression changes by siRNA or starvation treatment. We successfully established the first sensitive ataxin-2 immunoassay to measure specifically soluble polyQ-expanded ataxin-2 in human biomaterials.


Assuntos
Ataxina-2 , Ataxias Espinocerebelares , Animais , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ataxias Espinocerebelares/genética , Imunoensaio , Progressão da Doença , Ataxina-3/metabolismo , Ataxina-1/metabolismo
10.
Neurobiol Dis ; 178: 106023, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724861

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an adult-onset, dominantly inherited neurodegenerative disease caused by the expanded polyQ tract in the protein ATAXIN1 (ATXN1) and characterized by progressive motor and cognitive impairments. There are no disease-modifying treatments or cures for SCA1. Brain-derived neurotrophic factor (BDNF) plays important role in cerebellar physiology and has shown therapeutic potential for cerebellar pathology in the transgenic mouse model of SCA1, ATXN1[82Q] line that overexpress mutant ATXN1 under a cerebellar Purkinje-cell-specific promoter. Here we demonstrate decreased expression of brain derived neurotrophic factor (BDNF) in the cerebellum and medulla of patients with SCA1. Early stages of disease seem most amenable to therapy. Thus, we next quantified Bdnf expression in Atxn1154Q/2Q mice, a knock-in mouse model of SCA1, during the early symptomatic disease stage in four clinically relevant brain regions: cerebellum, medulla, hippocampus and motor cortex. We found that during the early stages of disease, Bdnf mRNA expression is reduced in the hippocampus and cerebellum, while it is increased in the cortex and brainstem. Importantly, we observed that pharmacological delivery of recombinant BDNF improved motor and cognitive performance, and mitigated pathology in the cerebellum and hippocampus of Atxn1154Q/2Q mice. Our findings demonstrate brain-region specific deficiency of BDNF in SCA1 and show that reversal of low BDNF levels offers the potential for meaningful treatment of motor and cognitive deficits in SCA1.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ataxias Espinocerebelares , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ataxina-1/genética , Ataxina-1/metabolismo , Ataxias Espinocerebelares/metabolismo , Cerebelo/patologia , Camundongos Transgênicos , Células de Purkinje/metabolismo , Modelos Animais de Doenças
11.
J Integr Bioinform ; 20(2)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848492

RESUMO

EvoPPI (http://evoppi.i3s.up.pt), a meta-database for protein-protein interactions (PPI), has been upgraded (EvoPPI3) to accept new types of data, namely, PPI from patients, cell lines, and animal models, as well as data from gene modifier experiments, for nine neurodegenerative polyglutamine (polyQ) diseases caused by an abnormal expansion of the polyQ tract. The integration of the different types of data allows users to easily compare them, as here shown for Ataxin-1, the polyQ protein involved in spinocerebellar ataxia type 1 (SCA1) disease. Using all available datasets and the data here obtained for Drosophila melanogaster wt and exp Ataxin-1 mutants (also available at EvoPPI3), we show that, in humans, the Ataxin-1 network is much larger than previously thought (380 interactors), with at least 909 interactors. The functional profiling of the newly identified interactors is similar to the ones already reported in the main PPI databases. 16 out of 909 interactors are putative novel SCA1 therapeutic targets, and all but one are already being studied in the context of this disease. The 16 proteins are mainly involved in binding and catalytic activity (mainly kinase activity), functional features already thought to be important in the SCA1 disease.


Assuntos
Drosophila melanogaster , Ataxias Espinocerebelares , Animais , Humanos , Ataxina-1/genética , Ataxina-1/metabolismo , Drosophila melanogaster/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo
12.
Immunol Cell Biol ; 101(4): 358-367, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681886

RESUMO

B cells play a key mechanistic role in the pathogenesis of multiple sclerosis (MS), a chronic neurological disease of the central nervous system with an autoimmune etiology. B cells contribute to disease initiation and progression by acting as professional antigen-presenting cells as well as via secreting autoantibodies and proinflammatory cytokines. We have recently shown that the polyglutamine protein ataxin-1, which was first linked to the movement disorder spinocerebellar ataxia type 1, also acts as a master regulator of B-cell functions in the context of central nervous system autoimmunity. In fact, ataxin-1-deficient mice display an aggravated manifestation of the MS disease model experimental autoimmune encephalomyelitis along with aberrant B-cell functions. Consistent with this scenario, transcriptomic analysis of Atxn1-null B cells highlighted distinct genetic signatures involved in cell activation, proliferation and antigen presentation. To further characterize the role of ataxin-1, we profiled the noncoding transcriptome controlled by ataxin-1 in the B-cell compartment upon an encephalitogenic challenge. We show that two specific classes of noncoding RNAs, namely, processed pseudogenes and intergenic long noncoding RNAs, are differentially regulated along disease. Furthermore, pathway and protein network analyses on their putative protein-coding gene targets found a significant enrichment in ontologies related to cell mitosis, together with molecular processes relevant to MS such as chitin metabolism. Altogether, these findings shed light on the possible contribution of noncoding RNAs to B-cell biology and MS pathogenesis, and further establish the immunomodulatory role of ataxin-1 in autoimmune demyelination.


Assuntos
Ataxina-1 , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Ataxias Espinocerebelares , Animais , Camundongos , Ataxina-1/genética , Sistema Nervoso Central , Encefalomielite Autoimune Experimental/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo
13.
J Mol Med (Berl) ; 101(3): 223-235, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36629882

RESUMO

Nuclear factor-κB (NF-κB)-mediated inflammation is a major cause of acute respiratory distress syndrome (ARDS). However, the regulatory mechanisms by which NF-κB transactivates proinflammatory cytokines remain unclear in the pathogenesis of ARDS. Herein, we report that the activating protein 1 (AP1) transcription factor recruits a histone acetyltransferase p300 and a transcriptional regulator C-terminal binding protein 1 (CtBP1) to assemble the CtBP1-p300-AP1 complex, which transactivates the expression of hsa-miR-7-5p in ARDS biopsies. Overexpressed hsa-miR-7-5p binds to the three prime untranslated regions (3'-UTRs) of ataxin 1 (ATXN1), suppressing its expression. Decreased ATXN1 expression relieves its repression of NF-κB, causing the induction of proinflammatory cytokine genes and triggering an inflammatory response. Depletion of CtBP1 or treatments with two CtBP1 inhibitors (NSC95397 and 4-methylthio-2-oxobutanoate (MTOB)) in human macrophages impairs the assembly of the CtBP2-p300-AP1 complex, resulting in decreased hsa-miR-7-5p levels, upregulation of ATXN1, and attenuation of proinflammatory cytokines. A similar regulatory mechanism was observed in lipopolysaccharide-treated mice. Our results reveal that increased hsa-miR-7-5p level mediated by the CtBP1-p300-AP1 complex targets ATXN1 to trigger an NF-κB-dependent inflammatory response. Interfering with this signaling pathway to block the inflammatory response may be a strategy for treating ARDS. KEY MESSAGES : The transcription factor AP1 recruits p300 and CtBP1 to form a transcriptional complex, which transactivates the expression of hsa-miR-7-5p in ARDS biopsies. Overexpressed hsa-miR-7-5p binds to the 3'-UTR of ATXN1, suppressing its expression. The decreased ATXN1 impaired its suppression of NF-κB, causing the induction of proinflammatory cytokine genes and triggering inflammation response. Disruption of the assembly of CtBP2-p300-AP1 complex upregulates ATXN1 and attenuates inflammation.


Assuntos
MicroRNAs , NF-kappa B , Animais , Humanos , Camundongos , Oxirredutases do Álcool/genética , Ataxina-1 , Proteínas Correpressoras/genética , Citocinas , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição , Fator de Transcrição AP-1
14.
Cerebellum ; 22(4): 756-760, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35733029

RESUMO

This is a summary of the virtual presentation given at the 2021 meeting of the Society for Research on the Cerebellum and Ataxias, https://www.meetings.be/SRCA2021/ , where the therapeutic potential of the CCK-CCK1R pathway for treating diseases involving Purkinje cell degeneration was presented. Spinocerebellar ataxia type 1 (SCA1) is one of a group of almost 50 genetic diseases characterized by the degeneration of cerebellar Purkinje cells. The SCA1 Pcp2-ATXN1[30Q]D776 mouse model displays ataxia, i.e. Purkinje cell dysfunction, but lacks progressive Purkinje cell degeneration. RNA-seq revealed increased expression of cholecystokinin (CCK) in cerebella of Pcp2-ATXN1[30Q]D776 mice. Importantly, the absence of Cck1 receptor (CCK1R) in Pcp2-ATXN1[30Q]D776 mice conferred a progressive degenerative disease with Purkinje cell loss. Administration of a CCK1R agonist to Pcp2-AXTN1[82Q] mice reduced Purkinje cell pathology and associated deficits in motor performance. In addition, administration of the CCK1R agonist improved motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Furthermore, CCK1R activation corrected mTORC1 signaling and improved the expression of calbindin in the cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results support the Cck-Cck1R pathway is a potential therapeutic target for the treatment of diseases involving Purkinje neuron degeneration.


Assuntos
Células de Purkinje , Ataxias Espinocerebelares , Camundongos , Animais , Células de Purkinje/fisiologia , Colecistocinina/farmacologia , Colecistocinina/metabolismo , Receptores da Colecistocinina/metabolismo , Ataxina-1/genética , Camundongos Transgênicos , Ataxias Espinocerebelares/genética , Cerebelo/patologia , Ataxia/genética , Modelos Animais de Doenças
15.
Proteins ; 91(3): 380-394, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208132

RESUMO

The present state of understanding the mechanism of Spinocerebellar Ataxia-1, a fatal neurodegenerative disease linked to the protein Ataxin-1 (ATXN1), is baffled by a set of self-contradictory, and hence, inconclusive observations. This fallacy poses a bottleneck to the effective designing of curable drugs as the field is currently missing the specific druggable site. To understand the fundamentals of pathogenesis, we tried to decipher the intricacies of the extremely complicated landscape by targeting the relevant species that supposedly dictate the structure-function paradigm. The atomic-level description and characterization of the dynamism of the systems reveal the existence of structural polymorphism in all the leading stakeholders of the overall system. The very existence of conformational heterogeneity in every species creates numerous possible combinations of favorable interactions because of the variability in segmental cross-talks and hence claims its role in the choice of routes between functional activity and dysfunctional disease-causing aggregation. Despite this emergent configurational diversity, there is a common mode of operative intermolecular forces that dictates the extent of stability of all the multimeric complexes due to the localized population of a specific type of residue. The present research proposes a dynamic switch mechanism between aggregability and functional activity, based on the logical interpretation of the estimated variables, which is practically dictated by the effective concentration of the interacting species involved in the cell.


Assuntos
Doenças Neurodegenerativas , Proteínas Nucleares , Humanos , Ataxina-1/genética , Ataxina-1/química , Ataxina-1/metabolismo , Ataxinas , Proteínas Nucleares/química , Proteínas do Tecido Nervoso/química
16.
Neuron ; 111(4): 481-492.e8, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577402

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative disease in that it is caused by a mutation in a broadly expressed protein, ATXN1; however, only select populations of cells degenerate. The interaction of polyglutamine-expanded ATXN1 with the transcriptional repressor CIC drives cerebellar Purkinje cell pathogenesis; however, the importance of this interaction in other vulnerable cells remains unknown. Here, we mutated the 154Q knockin allele of Atxn1154Q/2Q mice to prevent the ATXN1-CIC interaction globally. This normalized genome-wide CIC binding; however, it only partially corrected transcriptional and behavioral phenotypes, suggesting the involvement of additional factors in disease pathogenesis. Using unbiased proteomics, we identified three ATXN1-interacting transcription factors: RFX1, ZBTB5, and ZKSCAN1. We observed altered expression of RFX1 and ZKSCAN1 target genes in SCA1 mice and patient-derived iNeurons, highlighting their potential contributions to disease. Together, these data underscore the complexity of mechanisms driving cellular vulnerability in SCA1.


Assuntos
Ataxias Espinocerebelares , Camundongos , Animais , Ataxina-1/genética , Ataxias Espinocerebelares/metabolismo , Células de Purkinje/metabolismo , Alelos , Mutação/genética , Cerebelo/metabolismo , Fator Regulador X1/genética , Fator Regulador X1/metabolismo
17.
Neuron ; 111(4): 493-507.e6, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577403

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a dominant trinucleotide repeat neurodegenerative disease characterized by motor dysfunction, cognitive impairment, and premature death. Degeneration of cerebellar Purkinje cells is a frequent and prominent pathological feature of SCA1. We previously showed that transport of ATXN1 to Purkinje cell nuclei is required for pathology, where mutant ATXN1 alters transcription. To examine the role of ATXN1 nuclear localization broadly in SCA1-like disease pathogenesis, CRISPR-Cas9 was used to develop a mouse with an amino acid alteration (K772T) in the nuclear localization sequence of the expanded ATXN1 protein. Characterization of these mice indicates that proper nuclear localization of mutant ATXN1 contributes to many disease-like phenotypes including motor dysfunction, cognitive deficits, and premature lethality. RNA sequencing analysis of genes with expression corrected to WT levels in Atxn1175QK772T/2Q mice indicates that transcriptomic aspects of SCA1 pathogenesis differ between the cerebellum, brainstem, cerebral cortex, hippocampus, and striatum.


Assuntos
Ataxina-1 , Ataxias Espinocerebelares , Transcriptoma , Animais , Camundongos , Ataxina-1/genética , Ataxina-1/metabolismo , Encéfalo/metabolismo , Cerebelo/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Fenótipo , Transporte Proteico/genética , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo
18.
Stem Cell Res ; 66: 102975, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459834

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by CAG repeat mutations in the ATXN1 gene. In this study, we generated an induced pluripotent stem cell line (iPSC) by using non-integrating Sendai virus (SeV) from peripheral blood mononuclear cells(PBMCs)of SCA1 patient harboring a CAG repeat mutation in the ATXN1 gene. The induced patient-specific iPSC line with a normal karyotype and expresses pluripotent markers, it also shows differentiation totipotency and tridermogenesis in vitro. It may be an excellent model for studying spinocerebellar ataxia type 1 (SCA1) in vitro and will be beneficial for studying SCA1 pathogenesis and therapeutic intervention strategies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ataxias Espinocerebelares , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares , Ataxina-1/genética , Ataxina-1/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Mutação/genética
19.
Brain ; 146(6): 2332-2345, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36352508

RESUMO

Spinocerebellar ataxias are neurodegenerative diseases, the hallmark symptom of which is the development of ataxia due to cerebellar dysfunction. Purkinje cells, the principal neurons of the cerebellar cortex, are the main cells affected in these disorders, but the sequence of pathological events leading to their dysfunction is poorly understood. Understanding the origins of Purkinje cells dysfunction before it manifests is imperative to interpret the functional and behavioural consequences of cerebellar-related disorders, providing an optimal timeline for therapeutic interventions. Here, we report the cascade of events leading to Purkinje cells dysfunction before the onset of ataxia in a mouse model of spinocerebellar ataxia 1 (SCA1). Spatiotemporal characterization of the ATXN1[82Q] SCA1 mouse model revealed high levels of the mutant ATXN1[82Q] weeks before the onset of ataxia. The expression of the toxic protein first caused a reduction of Purkinje cells intrinsic excitability, which was followed by atrophy of Purkinje cells dendrite arborization and aberrant glutamatergic signalling, finally leading to disruption of Purkinje cells innervation of climbing fibres and loss of intrinsic plasticity of Purkinje cells. Functionally, we found that deficits in eyeblink conditioning, a form of cerebellum-dependent motor learning, precede the onset of ataxia, matching the timeline of climbing fibre degeneration and reduced intrinsic plasticity. Together, our results suggest that abnormal synaptic signalling and intrinsic plasticity during the pre-ataxia stage of spinocerebellar ataxias underlie an aberrant cerebellar circuitry that anticipates the full extent of the disease severity. Furthermore, our work indicates the potential for eyeblink conditioning to be used as a sensitive tool to detect early cerebellar dysfunction as a sign of future disease.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Camundongos , Animais , Camundongos Transgênicos , Ataxias Espinocerebelares/tratamento farmacológico , Ataxia , Cerebelo , Células de Purkinje/patologia , Modelos Animais de Doenças , Ataxina-1/genética , Ataxina-1/metabolismo
20.
Sci Rep ; 12(1): 20285, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434031

RESUMO

SCAs are autosomal dominant neurodegenerative disorders caused by a gain-of-function protein with toxic activities, containing an expanded polyQ tract in the coding region. There are no treatments available to delay the onset, stop or slow down the progression of these pathologies. In this work we focus our attention on SCA1 which is one of the most common genotypes circulating in Italy. Here, we develop a CRISPR/Cas9-based approach to reduce both forms of the ATXN1 protein, normal and mutated with expanded polyQ. We started with the screening of 10 different sgRNAs able to target Exon 8 of the ATXN1 gene. The two most promising sgRNAs were validated in fibroblasts isolated from SCA1 patients, following the identification of the best transfection method for this type of cell. Our silencing approach significantly downregulated the expression of ataxin1, due to large deletions and the introduction of small changes in the ATXN1 gene, evidenced by NGS analysis, without major effects on cell viability. Furthermore, very few significant guide RNA-dependent off-target effects were observed. These preliminary results not only allowed us to identify the best transfection method for SCA1 fibroblasts, but strongly support CRISPR/Cas9 as a promising approach for the treatment of expanded polyQ diseases. Further investigations will be needed to verify the efficacy of our silencing system in SCA1 neurons and animal models.


Assuntos
Ataxias Espinocerebelares , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/metabolismo , Mutação com Ganho de Função , Sistemas CRISPR-Cas , Ataxina-1/genética , Ataxina-1/metabolismo , Itália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...