Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
J Biotechnol ; 374: 31-37, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481211

RESUMO

Avian Influenza, the most studied virus, is of high concern due to its zoonotic pandemic potential. In recent years, several influenza vaccines have been used with the broad goal of managing and in certain cases, eliminating the disease. The matrix 2 extracellular domain (M2e), is one of the key targets of the universal influenza vaccine, a liner peptide that is conserved throughout all influenza A subtypes virus. Many recombinant influenza proteins have been expressed in yeast and plants for vaccine development. A remarkable development has been made in the field of biotechnology to explore the potential of microalga as an expression host. In this study, we designed a fusion gene code for M2e peptide and CTB protein as M2e's natural form has a low level of immunogenicity. The fusion gene was cloned in the Chloroplast transformation vector pSRSapI and expressed in the TN72 mutant strain of Chlamydomonas reinhardii. The expression of the targeted protein was confirmed by ECL western blot analysis. A GM1-ELISA was carried out to detect the affinity of fusion protein for GM1 monosialoganglioside and the significant P-value is lower than 0.05. Immunogenicity assay on chicken detected the anti-M2e bodies in chicken serum. This study gives evidence of therapeutic protein production through algae chloroplast and a stable, selection free and low cost oral delivery for universal vaccine against influenza A virus.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Vacinas de Plantas Comestíveis , Gangliosídeo G(M1) , Vacinas contra Influenza/genética , Proteínas Recombinantes , Peptídeos , Proteínas Recombinantes de Fusão/genética , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
2.
Artigo em Inglês | MEDLINE | ID: mdl-35726808

RESUMO

Edible vaccines are cost-effective, easy to take, storable as well as bio-friendly. If they are administered orally, they are capable of lessening the occurrence of several diseases, like HPV, Norwalk virus, as well as Polio. They are obtained by utilizing a specific portion of the plant, which results in the formulation of an attractive encoded protein. These particular encoded proteins enhance the mucosal movement along with diminishing resistance. There are different food items that are utilized in injectable antibodies, for example, wheat, rice, bananas, lettuce, potatoes, and tomatoes, which help overcome all the issues related to conventional antibodies; this demonstrates that palatable immunization is the best substitute for customary antibodies.


Assuntos
Imunização , Vacinas de Plantas Comestíveis , Plantas Geneticamente Modificadas
3.
Curr Pharm Biotechnol ; 24(4): 495-509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35927823

RESUMO

Plants have substantial potential for the development of various biopharmaceuticals. Plants provide a cost-effective and direct source for the production of biopharmaceuticals such as vaccines, antibodies, proteins, enzymes, and hormones. In most cases, purification is an important and expensive step in the production of these substances. The problem can be resolved when it is produced in plants and the whole plant can be consumed. Direct ingestion of plant materials may help in overcoming the purification step. Being produced in seeds, fruits and tubers, it helps in providing more immunization in developing countries at a cheaper rate. Moreover, it can be administered more efficiently than any other dosage forms. This review focuses on various immunization and therapeutic products that are produced in plants along with currently available formulations in each category.


Assuntos
Produtos Biológicos , Vacinas , Plantas Geneticamente Modificadas/metabolismo , Vacinas de Plantas Comestíveis/metabolismo , Sementes
4.
BioDrugs ; 36(5): 573-589, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35821564

RESUMO

The idea of producing vaccines in plants originated in the late 1980s. Initially, it was contemplated that this notion could facilitate the concept of edible vaccines, making them more cost effective and easily accessible. Initial studies on edible vaccines focussed on the use of a variety of different transgenic plant host species for the production of vaccine antigens. However, adequate expression levels of antigens, the difficulties predicted with administration of consistent doses, and regulatory rules required for growth of transgenic plants gave way to the development of vaccine candidates that could be purified and administered parenterally. The field has subsequently advanced with improved expression techniques including a shift from using transgenic to transient expression of antigens, refinement of purification protocols, a deeper understanding of the biological processes and a wealth of evidence of immunogenicity and efficacy of plant-produced vaccine candidates, all contributing to the successful practice of what is now known as biopharming or plant molecular farming. The establishment of this technology has resulted in the development of many different types of vaccine candidates including subunit vaccines and various different types of nanoparticle vaccines targeting a wide variety of bacterial and viral diseases. This has brought further acceptance of plants as a suitable platform for vaccine production and in this review, we discuss the most recent advances in the production of vaccines in plants for human use.


Assuntos
Vacinação , Vacinas de Plantas Comestíveis , Antígenos , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Vacinas de Plantas Comestíveis/genética , Vacinas de Subunidades/metabolismo
5.
Phytother Res ; 36(7): 2746-2766, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35499291

RESUMO

The researchers are still doing efforts to develop an effective, reliable, and easily accessible vaccine candidate to protect against COVID-19. As of the August 2020, nearly 30 conventional vaccines have been emerged in clinical trials, and more than 200 vaccines are in various development stages. Nowadays, plants are also considered as a potential source for the production of monoclonal antibodies, vaccines, drugs, immunomodulatory proteins, as well as used as bioreactors or factories for their bulk production. The scientific evidences enlighten that plants are the rich source of oral vaccines, which can be given either by eating the edible parts of plants and/or by oral administration of highly refined proteins. The use of plant-based edible vaccines is an emerging trend as it possesses minimum or no side effects compared with synthetic vaccines. This review article gives insights into different types of vaccines, the use of edible vaccines, advantages of edible vaccines over conventional vaccines, and mechanism of action of edible vaccines. This review article also focuses on the applications of edible vaccines in wide-range of human diseases especially against COVID-19 with emphasis on future perspectives of the use of edible vaccines.


Assuntos
COVID-19 , Vacinas , Administração Oral , COVID-19/prevenção & controle , Humanos , Plantas Geneticamente Modificadas/metabolismo , Vacinas/metabolismo , Vacinas de Plantas Comestíveis/metabolismo
6.
Acta Virol ; 66(1): 95-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35380870

RESUMO

Nine herbaceous plant species were tested for susceptibility to Plum pox virus (PPV) by Agrobacterium-mediated delivery of its infectious cDNA clone. Two of them became infected, namely spinach (local infection) and oilseed poppy (systemic infection). As a control, PPV infection was successfully established in plum seedlings following agroinfiltration, thus providing the first report of agroinfection in Prunus species. According to our results, oilseed poppy can be considered as a candidate host for the production of edible vaccines by a PPV-derived expression vector. Keywords: agroinfiltration; virus host; poppy; spinach.


Assuntos
Vírus Eruptivo da Ameixa , Prunus , Doenças das Plantas , Plantas , Vírus Eruptivo da Ameixa/genética , Vacinas de Plantas Comestíveis
7.
Biotechnol Bioeng ; 119(2): 327-346, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34755343

RESUMO

Vaccination is the most suitable and persuasive healthcare program for the prohibition of various deadly diseases. However, the higher production cost and purification strategies are out of reach for the developing nations. In this scenario, development of edible vaccine turns out to be the most promising alternative for remodeling the pharmaceutical industry with reduced production and purification costs. Generally, oral route of vaccination is mostly preferred due to its safety, compliance, low manufacturing cost and most importantly the ability to induce immunity in both systemic and mucosal sites. Genetically modified microorganisms and plants could efficiently be used as vehicles for edible vaccines. Edible vaccines are supposed to reduce the risk associated with traditional vaccines. Currently, oral vaccines are available in the market for several viral and bacterial diseases like cholera, hepatitis B, malaria, rabies etc. Herein, the review focuses on the breakthrough events in the area of edible vaccines associated with dietary microbes and plants for better control over diseases.


Assuntos
Plantas Geneticamente Modificadas , Vacinas de Plantas Comestíveis , Administração Oral , Animais , Bactérias/genética , Humanos , Imunidade nas Mucosas , Camundongos , Microrganismos Geneticamente Modificados
8.
Cells ; 10(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943868

RESUMO

We investigated the prophylactic and therapeutic effects of the oral administration of transgenic rice seeds expressing a hypoallergenic Bet v 1 derivative of allergic birch pollen conjunctivitis in mice. Transgenic rice seed depositing a chimeric molecule called TPC7 (tree pollen chimera 7) created by DNA shuffling of Bet v 1 family sequences from birch, alder and hazel in protein bodies of endosperm was generated. BALB/c mice were sensitized to birch pollen in alum and challenged with pollen in eyedrops. They were fed TPC7 transgenic or non-transgenic (control) rice seeds for 14 d before sensitization (prophylactic protocol) or 17 d after sensitization (therapeutic protocol). The clinical score and number of conjunctival eosinophils were significantly lower in TPC7-fed mice than in the control mice based on both the prophylactic and therapeutic protocols. Serum concentration of allergen-specific IgE did not differ between TPC7-fed and control groups in either protocol. Prophylactic administration of TPC7 downregulated the production of IL-4 and IFN-γ, whereas therapeutic administration of TPC7 upregulated the production of IFN-γ by allergen-stimulated splenocytes. Prophylactic or therapeutic oral administration of transgenic rice expressing TPC7 suppressed birch pollen-induced allergic conjunctivitis in mice. Feeding transgenic rice is a potentially effective approach as an allergen-specific immunotherapy for allergic conjunctivitis.


Assuntos
Alérgenos/imunologia , Betula/efeitos adversos , Conjuntivite Alérgica/imunologia , Conjuntivite Alérgica/prevenção & controle , Dessensibilização Imunológica , Oryza/genética , Pólen/efeitos adversos , Vacinas de Plantas Comestíveis/imunologia , Administração Oral , Animais , Conjuntivite Alérgica/sangue , Imunoglobulina E/sangue , Interferon gama/metabolismo , Interleucina-4/metabolismo , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Plantas Geneticamente Modificadas , Baço/patologia , Linfócitos T Reguladores/imunologia
10.
EBioMedicine ; 67: 103353, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33971403

RESUMO

BACKGROUND: Current vaccines against Japanese encephalitis virus (JEV) of flaviviruses have some disadvantages, such as the risk of virulent reversion. Non-structural protein NS1 is conserved among flaviviruses and confers immune protection without the risk of antibody-dependent enhancement (ADE). Therefore, NS1 has become a promising vaccine candidate against flaviviruses. METHODS: A NS1-based vaccine (LTB-NS1∆63) with a truncated NS1 protein (NS1∆63) fused to E. coli heat-labile enterotoxin B subunit (LTB) was expressed in E.coli and explored for its ability to induce immune responses. Safety of LTB-NS1∆63 was assessed by determining its toxicity in vitro and in vivo. Protective capability of LTB-NS1∆63 and its-induced antisera was evaluated in the mice challenged with JEV by analyzing mortality and morbidity. FINDINGS: LTB-NS1∆63 induced immune responses to a similar level as LTB-NS1, but more robust than NS1∆63 alone, particularly in the context of oral immunization of mice. Oral vaccination of LTB-NS1∆63 led to a higher survival rate than that of NS1∆63 or live-attenuated JEV vaccine SA14-14-2 in the mice receiving lethal JEV challenge. LTB-NS1∆63 protein also significantly decreases the morbidity of JEV-infected mice. In addition, passive transfer of LTB-NS1∆63-induced antisera provides a protection against JEV infection in mice. INTERPRETATION: NS1∆63 bears JEV NS1 antigenicity. Besides, LTB-NS1∆63 could serve as a novel protein-based mucosa vaccine targeting JEV and other flaviviruses. FUNDING: This work was supported by the National Natural Science Foundation, Jiangxi Province Science and Technology Committee, Education Department of Jiangxi Province.


Assuntos
Toxinas Bacterianas/genética , Encefalite Japonesa/prevenção & controle , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Vacinas contra Encefalite Japonesa/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Linhagem Celular , Cricetinae , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/administração & dosagem , Vacinas contra Encefalite Japonesa/efeitos adversos , Vacinas contra Encefalite Japonesa/genética , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de Plantas Comestíveis , Proteínas não Estruturais Virais/genética
11.
Biotechnol Prog ; 37(3): e3141, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666366

RESUMO

Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52-90 µg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.


Assuntos
Antígenos de Bactérias , Clostridioides difficile/genética , Plantas Geneticamente Modificadas , Esporos Bacterianos/genética , Vacinas de Plantas Comestíveis , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Agricultura Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , /metabolismo , Vacinas de Plantas Comestíveis/genética , Vacinas de Plantas Comestíveis/imunologia , Vacinas de Plantas Comestíveis/metabolismo
12.
Life Sci ; 261: 118343, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858038

RESUMO

INTRODUCTION: It is well known that immune system is highly specific to protect the body against various environmental pathogens. The concept of conventional vaccination has overcome the pandemic situation of several infectious diseases outbreak. AREA COVERED: The recent idea of immunization through oral route (edible vaccine) is vital alternatives over conventional vaccines. Edible vaccines are composed of antigenic protein introduced into the plant cells which induce these altered plants to produce the encoded protein. Edible vaccine has no way of forming infection and safety is assured as it only composed of antigenic protein and is devoid of pathogenic genes. Edible vaccines have significant role in stimulating mucosal immunity as they come in contact with digestive tract lining. They are safe, cost-effective, easy-to-administer and have reduced manufacturing cost hence have a dramatic impact on health care in developing countries. EXPERT OPINION: The edible vaccine might be the solution for the potential hazard associated with the parenteral vaccines. In this review we discuss the detailed study of pros, cons, mechanism of immune stimulation, various outbreaks that might be controlled by edible vaccines with the possible future research and applied application of edible vaccine.


Assuntos
Imunidade nas Mucosas/imunologia , Imunização , Vacinas de Plantas Comestíveis/administração & dosagem , Administração Oral , Animais , Análise Custo-Benefício , Humanos , Vacinas de Plantas Comestíveis/efeitos adversos , Vacinas de Plantas Comestíveis/imunologia
13.
N Biotechnol ; 59: 74-79, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32688060

RESUMO

The lack of immunization in developing countries is undoubtedly the most serious consequence of the difficulty in accessing traditional vaccination systems. The World Health Organization (WHO) has aimed to find low-cost vaccines, which are accessible to the population and are easy to store and distribute without the need for refrigeration. There is literature support that orally administered edible vaccines are promising agents to reduce the incidence of diseases such as hepatitis and diarrhoea, especially in the developing world. This article focuses on the study of the suitability of edible vaccines as biopharmaceuticals in the context of the 2030 Agenda for Sustainable Development, allowing to comprehensively address both malnutrition and the degree of immunization, mainly in the child population in developing countries. This is embedded within the scope of a new concept promulgated by the UN and FAO called' Therapeutic Food' or 'Ready to Use Therapeutic Food'. Biopharmaceuticals such as edible processed vaccines have the potential to play an important role in increasing global health to achieve the 2030 - Sustainable Development Goals (SDGs), and beyond, as a solution to the dual problem of malnutrition and immunoprophylaxis as part of a sustainable bioeconomy. This article reviews their most promising applications, as well as the problems of a scientific and socioeconomic nature, including the complex current legislation that restricts their implementation.


Assuntos
Produtos Biológicos/economia , Biotecnologia/economia , Saúde Global/economia , Vacinas de Plantas Comestíveis/economia , Humanos
14.
Braz J Med Biol Res ; 53(2): e8749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31994600

RESUMO

For a long time, vaccines have been the main mode of defense and protection against several bacterial, viral, and parasitic diseases. However, the process of production and purification makes them expensive and unaffordable to many developing nations. An edible vaccine is when the antigen is expressed in the edible part of the plant. This reduces the cost of production of the vaccine because of ease of culturing. In this article, various types of edible vaccines that include algal and probiotics in addition to plants are discussed. Various diseases against which research has been carried out are also reviewed. This article focused on the conception of edible vaccines highlighting the various ways by which vaccines can be delivered.


Assuntos
Controle de Doenças Transmissíveis/métodos , Vacinas de Plantas Comestíveis , Biotecnologia/métodos , Humanos , Plantas Geneticamente Modificadas/genética , Vacinas de Plantas Comestíveis/administração & dosagem , Vacinas de Plantas Comestíveis/química , Vacinas de Plantas Comestíveis/imunologia
15.
Mol Biotechnol ; 62(2): 79-90, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31758488

RESUMO

Vaccines are biological preparations that improve immunity to particular diseases and form an important innovation of 19th century research. It contains a protein that resembles a disease-causing microorganism and is often made from weak or killed forms of the microbe. Vaccines are agents that stimulate the body's immune system to recognize the antigen. Now, a new form of vaccine was introduced which will have the power to mask the risk side of conventional vaccines. This type of vaccine was produced from plants which are genetically modified. In the production of edible vaccines, the gene-encoding bacterial or viral disease-causing agent can be incorporated in plants without losing its immunogenic property. The main mechanism of action of edible vaccines is to activate the systemic and mucosal immunity responses against a foreign disease-causing organism. Edible vaccines can be produced by incorporating transgene in to the selected plant cell. At present edible vaccine are developed for veterinary and human use. But the main challenge faced by edible vaccine is its acceptance by the population so that it is necessary to make aware the society about its use and benefits. When compared to other traditional vaccines, edible vaccines are cost effective, efficient and safe. It promises a better prevention option from diseases.


Assuntos
Produtos Biológicos/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Organismos Geneticamente Modificados/imunologia , Plantas Geneticamente Modificadas/imunologia , Vacinas de Plantas Comestíveis/imunologia , Administração Oral , Agrobacterium/genética , Agrobacterium/imunologia , Animais , Biolística/métodos , Clorófitas/genética , Clorófitas/imunologia , Técnicas de Transferência de Genes , Humanos , Insetos/genética , Insetos/imunologia , Lactobacillales/genética , Lactobacillales/imunologia , Agricultura Molecular , Vírus de Plantas/genética , Vírus de Plantas/imunologia , Leveduras/genética , Leveduras/imunologia
16.
Plant Mol Biol ; 102(1-2): 159-169, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820286

RESUMO

KEY MESSAGE: A plant-based multiepitopic protein (LTBentero) containing epitopes from ETEC, S. typhimurium, and V. parahaemolyticus was produced in plants cells and triggered systemic and intestinal humoral responses in immunized mice. Around 200 million people suffer gastroenteritis daily and more than 2 million people die annually in developing countries due to such pathologies. Vaccination is an alternative to control this global health issue, however new low-cost vaccines are needed to ensure proper vaccine coverage. In this context, plants are attractive hosts for the synthesis and delivery of subunit vaccines. Therefore, in this study a plant-made multiepitopic protein named LTBentero containing epitopes from antigens of enterotoxigenic E. coli, S. typhimurium, and V. parahaemolyticus was produced and found immunogenic in mice. The LTBentero protein was expressed in tobacco plants at up to 5.29 µg g-1 fresh leaf tissue and was deemed immunogenic when administered to BALB/c mice either orally or subcutaneously. The plant-made LTBentero antigen induced specific IgG (systemic) and IgA (mucosal) responses against LTB, ST, and LptD epitopes. In conclusion, multiepitopic LTBentero was functionally produced in plant cells, being capable to trigger systemic and intestinal humoral responses and thus it constitutes a promising oral immunogen candidate in the fight against enteric diseases.


Assuntos
Toxinas Bacterianas/imunologia , Epitopos/imunologia , Imunização , Proteínas de Plantas/imunologia , Proteínas Recombinantes/imunologia , Vacinas de Plantas Comestíveis/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/imunologia , Epitopos/genética , Feminino , Regulação da Expressão Gênica de Plantas , Imunoglobulina A , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/metabolismo , Vacinação , Vacinas de Plantas Comestíveis/genética
17.
Mol Immunol ; 118: 132-141, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31881424

RESUMO

Control of Infectious bursal disease virus (IBDV) in endemic countries has been based on early immunization of chicks using conventional live or inactivated vaccines that became not fully effectual and have biosafety concerns. This endeavor seeks generating a recombinant chimeric protein merging the projection domain (PD) of IBDV VP2 capsid with the fragment crystallizable (Fc) of avian IgY (FcIgY), in maize as a prospective poultry edible vaccine. The PD sequence was built on the basis of very virulent IBDV isolates circulating in Egypt. After optimization of codon-usage in maize, sequences of PD and FcIgY were effectively expressed in two elites of yellow maize via bombardment transformation in immature embryos. Chimeric protein amount in stable transgenic samples ranged from1.36% to 3.03% of the total soluble protein based on tissue age and maize cultivar. IBDV VP2 coding sequence was amplified from viral RNA, cloned, and expressed in E. coli. A group of Balb/C mice were hyper-immunized with purified recombinant VP2 protein for raising anti- recombinant VP2 antibodies (anti-rVP2 Ab). Proper expression in maize and immunoreactivity of the chimeric protein (PD-FcIgY) to chicken anti- IBDV and anti-rVP2 Ab were confirmed by both direct and indirect double antibody sandwich (DAS)-ELISAs as well as western blotting. Seeds of regenerated transgenic maize will be validated for chickens as edible vaccination in further studies.


Assuntos
Galinhas/imunologia , Imunoglobulinas/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , Vacinas de Plantas Comestíveis/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Infecções por Birnaviridae/imunologia , Proteínas do Capsídeo/imunologia , Egito , Escherichia coli/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Aves Domésticas/imunologia , Estudos Prospectivos , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Vacinação/métodos , Vacinas de Produtos Inativados/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Zea mays
18.
Acta Virol ; 63(3): 245-252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507189

RESUMO

Plants have been as medicinal mediators for centuries. Recent trends in agro-biotechnology however, improved the therapeutic roles of plants to a significant level and introduced plant-based oral vaccine which can arouse an immune response in consumer. Although conventional vaccines against infectious diseases have been administrated for years the discovery of plant-based oral vaccines can potentially replace them completely in the future. The probable limitations in conventional vaccines are found to be overcome by plant-based oral vaccines. Humans and animals will no longer be dependent upon local or systemic administration of vaccines but they will just receive the vaccines as a routine food. For the purpose, gene of interest is introduced into plant through transformation, and expression of specific antigen is obtained in plant products which are then consumed by humans or animals. Therefore, plants can serve as bioreactors or bio-factories for production of edible vaccines. A detailed overview about edible vaccines, methods for edible vaccine production, candidate bioreactors and future perspectives of edible vaccines has been summarized in current article. The future of vaccination seems to be present within plant-based vaccination system. Keywords: vaccine; edible vaccine; infectious diseases; antigen; edible crops; oral immunization.


Assuntos
Controle de Doenças Transmissíveis , Vacinação , Vacinas , Administração Oral , Animais , Humanos , Plantas Geneticamente Modificadas , Vacinação/métodos , Vacinas/administração & dosagem , Vacinas de Plantas Comestíveis
19.
J Immunol Res ; 2019: 8303648, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949518

RESUMO

Vaccines are recognized worldwide as one of the most important tools for combating infectious diseases. Despite the tremendous value conferred by currently available vaccines toward public health, the implementation of additional vaccine platforms is also of key importance. In fact, currently available vaccines possess shortcomings, such as inefficient triggering of a cell-mediated immune response and the lack of protective mucosal immunity. In this regard, recent work has been focused on vaccine delivery systems, as an alternative to injectable vaccines, to increase antigen stability and improve overall immunogenicity. In particular, novel strategies based on edible or intradermal vaccine formulations have been demonstrated to trigger both a systemic and mucosal immune response. These novel vaccination delivery systems offer several advantages over the injectable preparations including self-administration, reduced cost, stability, and elimination of a cold chain. In this review, the latest findings and accomplishments regarding edible and intradermal vaccines are described in the context of the system used for immunogen expression, their molecular features and capacity to induce a protective systemic and mucosal response.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Absorção Cutânea , Vacinação/métodos , Vacinas de Plantas Comestíveis , Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Administração Oral , Animais , Ensaios Clínicos como Assunto , Doenças Transmissíveis/imunologia , Técnicas de Transferência de Genes , Humanos , Imunidade Celular , Imunidade nas Mucosas/imunologia , Imunogenicidade da Vacina , Camundongos , Vacinas/imunologia
20.
Iran J Allergy Asthma Immunol ; 18(5): 511-522, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32245295

RESUMO

Human epithelial growth factor receptor2 (Her2) and polymorphic epithelial mucin (MUC1) are tumor-associated antigens that have been extensively investigated in adenocarcinomas. Generally, each of these molecules was used separately for diagnosis of adenocarcinomas and as an injective vaccines in cancer therapy researches, but not in the chimeric form as an edible immunogen. In this study, Her2, MUC1, and a novel fusion structure were expressed in the seeds and hairy roots of transgenic plants appropriately. The mice groups were immunized either by feeding of transgenic seeds or hairy roots. All immunized groups showed a considerable rise in anti-glycoprotein serum IgG and IgA, and IFNÉ£ cytokine. However, the animals received chimeric protein showed significant higher immune responses in comparison to ones received one of these immunogen. The results indicated that the oral immunization of an animal model with transgenic plants could effectively elicit immune responses against two major tumor-associated antigens.


Assuntos
Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Mucina-1/imunologia , Receptor ErbB-2/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vacinas de Plantas Comestíveis/imunologia , Animais , Neoplasias da Mama/metabolismo , Feminino , Imunização/métodos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Raízes de Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Sementes/imunologia , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...