Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.034
Filtrar
1.
Mol Med ; 30(1): 50, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622518

RESUMO

BACKGROUND: Colorectal cancer standed as a global health challenge, ranking third in cancer incidence and second in cancer-related deaths worldwide. A deeper understanding of the intricate mechanisms driving colorectal cancer development was pressing need. STK16 had garnered attention in recent researches, while its involvement in cancer had been minimally explored. c-MYC had emerged as a key player in cancer biology. Due to its complex structure, multifunctionality, and intricate interactions, directly inhibiting the activity of c-MYC proves to be challenging. Hence, current research was directing efforts towards modulating c-MYC expression levels. METHODS: Immunoblot, Immunohistochemistry and immunoprecipitation assays were conducted to assess the indicated protein expression levels. RT-PCR was performed to detect the corresponding mRNA expression levels. The proliferation, migration, invasion, and colony formation abilities of the specified cancer cells were investigated using CCK8 assays, Brdu assays, transwell assays, and colony formation assays, respectively. Cellular and animal experiments were performed to investigate the correlation between STK16 signaling and c-MYC signaling. RESULTS: STK16 plays a positive regulatory role in the progression of colorectal cancer. Delving into the molecular mechanisms, we unveiled that STK16 phosphorylated c-MYC at serine 452, a pivotal event hindering the ubiquitin-proteasome pathway degradation of c-MYC. Importantly, colorectal cancer proliferation mediated by STK16 was found to be dependent on the phosphorylation of c-MYC at S452. Furthermore, the researchers demonstrated that STK16 knockout or pharmacological inhibition significantly curtailed colorectal cancer proliferation and c-MYC expression in in vivo animal models. CONCLUSION: We discovered that STK16 phosphorylates c-MYC at serine 452, hindering its degradation via the ubiquitin-proteasome pathway. STK16 inhibition, either genetically or pharmacologically, effectively curtails cancer growth and c-MYC expression in vivo. These findings highlight STK16 as a potential therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Animais , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacologia , Neoplasias Colorretais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proliferação de Células , Serina/metabolismo , Ubiquitinas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Cell Mol Life Sci ; 81(1): 169, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589732

RESUMO

Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.


Assuntos
Proteínas Nucleares , Ubiquitina , Ubiquitina/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética , Sumoilação , Expressão Gênica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
3.
Vet Res ; 55(1): 45, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589958

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus that causes acute watery diarrhea, vomiting, and dehydration in newborn piglets. The type III interferon (IFN-λ) response serves as the primary defense against viruses that replicate in intestinal epithelial cells. However, there is currently no information available on how SADS-CoV modulates the production of IFN-λ. In this study, we utilized IPI-FX cells (a cell line of porcine ileum epithelium) as an in vitro model to investigate the potential immune evasion strategies employed by SADS-CoV against the IFN-λ response. Our results showed that SADS-CoV infection suppressed the production of IFN-λ1 induced by poly(I:C). Through screening SADS-CoV-encoded proteins, nsp1, nsp5, nsp10, nsp12, nsp16, E, S1, and S2 were identified as antagonists of IFN-λ1 production. Specifically, SADS-CoV nsp1 impeded the activation of the IFN-λ1 promoter mediated by MAVS, TBK1, IKKε, and IRF1. Both SADS-CoV and nsp1 obstructed poly(I:C)-induced nuclear translocation of IRF1. Moreover, SADS-CoV nsp1 degraded IRF1 via the ubiquitin-mediated proteasome pathway without interacting with it. Overall, our study provides the first evidence that SADS-CoV inhibits the type III IFN response, shedding light on the molecular mechanisms employed by SADS-CoV to evade the host immune response.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Animais , Suínos , Complexo de Endopeptidases do Proteassoma , Interferon lambda , Alphacoronavirus/fisiologia , Ubiquitinas , Infecções por Coronavirus/veterinária
4.
Signal Transduct Target Ther ; 9(1): 85, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575611

RESUMO

NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.


Assuntos
Proteínas Culina , Neoplasias , Humanos , Proteínas Culina/metabolismo , Ubiquitinas/genética , Ubiquitina-Proteína Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Cell Death Dis ; 15(4): 263, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615011

RESUMO

Abnormal cardiac fibrosis is the main pathological change of post-myocardial infarction (MI) heart failure. Although the E3 ubiquitin ligase FBXL8 is a key regulator in the cell cycle, cell proliferation, and inflammation, its role in post-MI ventricular fibrosis and heart failure remains unknown. FBXL8 was primarily expressed in cardiac fibroblasts (CFs) and remarkably decreased in CFs treated by TGFß and heart subjected to MI. The echocardiography and histology data suggested that adeno-associated viruses (AAV9)-mediated FBXL8 overexpression had improved cardiac function and ameliorated post-MI cardiac fibrosis. In vitro, FBXL8 overexpression prevented TGFß-induced proliferation, migration, contraction, and collagen secretion in CFs, while knockdown of FBXL8 demonstrated opposite effects. Mechanistically, FBXL8 interacted with Snail1 to promote Snail1 degradation through the ubiquitin-proteasome system and decreased the activation of RhoA. Moreover, the FBXL8ΔC3 binding domain was indispensable for Snail1 interaction and degradation. Ectopic Snail1 expression partly abolished the effects mediated by FBXL8 overexpression in CFs treated by TGFß. These results characterized the role of FBXL8 in regulating the ubiquitin-mediated degradation of Snail1 and revealed the underlying molecular mechanism of how MI up-regulated the myofibroblasts differentiation-inducer Snail1 and suggested that FBXL8 may be a potential curative target for improving post-MI cardiac function.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Complexo de Endopeptidases do Proteassoma , Infarto do Miocárdio/genética , Fator de Crescimento Transformador beta , Ubiquitinas
7.
Commun Biol ; 7(1): 413, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594382

RESUMO

Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ataxias Espinocerebelares , Camundongos , Humanos , Animais , Células de Purkinje/fisiologia , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos Transgênicos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ubiquitinas , Citocinas
8.
Physiol Plant ; 176(2): e14240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561015

RESUMO

Under stress conditions, plants modulate their internal states and initiate various defence mechanisms to survive. The ubiquitin-proteasome system is one of the critical modules in these mechanisms, and Plant U-Box proteins play an important role in this process as E3 ubiquitin ligases. Here, we isolated the Plant U-box 24 gene CaPUB24 (Capsicum annuum Plant U-Box 24) from pepper and characterized its functions in response to drought stress. We found that, compared to the other CaPUBs in the same group, the expression of CaPUB24 was significantly induced by drought stress. We also found that CaPUB24 was localized to the nucleus and cytoplasm and had E3 ubiquitin ligase activity. To investigate the biological role of CaPUB24 in response to drought stress further, we generated CaPUB24-silenced pepper plants and CaPUB24-overexpressing Arabidopsis transgenic plants. CaPUB24-silenced pepper plants exhibited enhanced drought tolerance compared to the control plants due to reduced transpirational water loss and increased abscisic acid (ABA) sensitivity. In contrast, CaPUB24-overexpressing Arabidopsis transgenic plants exhibited reduced drought tolerance and ABA-insensitive phenotypes. Our findings suggest that CaPUB24 negatively modulates drought stress response in an ABA-dependent manner.


Assuntos
Arabidopsis , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Secas , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
9.
Neuromolecular Med ; 26(1): 9, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568291

RESUMO

Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent enhancement of the expression of the 20S proteasome core particles (20S CPs) and regulatory particles (RPs) increases proteasome activity, which can promote α-syn clearance in PD. Activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) may reduce oxidative stress by strongly inducing Nrf2 gene expression. In the present study, tetramethylpyrazine nitrone (TBN), a potent-free radical scavenger, promoted α-syn clearance by the ubiquitin-proteasome system (UPS) in cell models overexpressing the human A53T mutant α-syn. In the α-syn transgenic mice model, TBN improved motor impairment, decreased the products of oxidative damage, and down-regulated the α-syn level in the serum. TBN consistently up-regulated PGC-1α and Nrf2 expression in tested models of PD. Additionally, TBN similarly enhanced the proteasome 20S subunit beta 8 (Psmb8) expression, which is linked to chymotrypsin-like proteasome activity. Furthermore, TBN increased the mRNA levels of both the 11S RPs subunits Pa28αß and a proteasome chaperone, known as the proteasome maturation protein (Pomp). Interestingly, specific siRNA targeting of Nrf2 blocked TBN's effects on Psmb8, Pa28αß, Pomp expression, and α-syn clearance. In conclusion, TBN promotes the clearance of α-syn via Nrf2-mediated UPS activation, and it may serve as a potentially disease-modifying therapeutic agent for PD.


Assuntos
Fator 2 Relacionado a NF-E2 , Complexo de Endopeptidases do Proteassoma , Pirazinas , Humanos , Animais , Camundongos , Fator 2 Relacionado a NF-E2/genética , alfa-Sinucleína/genética , Camundongos Transgênicos , Ubiquitinas
10.
Biochem J ; 481(7): 515-545, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572758

RESUMO

Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.


Assuntos
Peptídeo Hidrolases , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética , Ubiquitinas/metabolismo , Dano ao DNA , Endopeptidases/metabolismo , Instabilidade Genômica
11.
Plant Cell Rep ; 43(4): 93, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467927

RESUMO

KEY MESSAGE: VyPUB21 plays a key role during the defense against powdery mildew in grapes. Ubiquitin-ligating enzyme (E3), a type of protein widely found in plants, plays a key role in their resistance to disease. Yet how E3 participates in the disease-resistant response of Chinese wild grapevine (Vitis yeshanensis) remains unclear. Here we isolated and identified a U-box type E3 ubiquitin ligase, VyPUB21, from V. yeshanensis. This gene's expression level rose rapidly after induction by exogenous salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH) and powdery mildew. In vitro ubiquitination assay results revealed VyPUB21 could produce ubiquitination bands after co-incubation with ubiquitin, ubiquitin-activating enzyme (E1), and ubiquitin-conjugating enzyme (E2); further, mutation of the conserved amino acid site in the U-box can inhibit the ubiquitination. Transgenic VyPUB21 Arabidopsis had low susceptibility to powdery mildew, and significantly fewer conidiophores and spores on its leaves. Expression levels of disease resistance-related genes were also augmented in transgenic Arabidopsis, and its SA concentration also significantly increased. VyPUB21 interacts with VyNIMIN and targets VyNIMIN protein hydrolysis through the 26S proteasome system. Thus, the repressive effect of the NIMIN-NPR complex on the late systemic acquired resistance (SAR) gene was attenuated, resulting in enhanced resistance to powdery mildew. These results indicate that VyPUB21 encoding ubiquitin ligase U-box E3 activates the SA signaling pathway, and VyPUB21 promotes the expression of late SAR gene by degrading the important protein VyNIMIN of SA signaling pathway, thus enhancing grape resistance to powdery mildew.


Assuntos
Arabidopsis , Ascomicetos , Vitis , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Ubiquitinas/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética
12.
Int J Biol Macromol ; 264(Pt 1): 130581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447828

RESUMO

Neutrophilic asthma is a persistent and severe inflammatory lung disease characterized by neutrophil activation and the mechanisms of which are not completely elucidated. Ubiquitin D (UBD) is a ubiquitin-like modifier participating in infections, immune responses, and tumorigenesis, while whether UBD involves in neutrophilic asthma needs further study. In this study, we initially found that UBD expression was significantly elevated and interleukin 17 (IL-17) signaling was enriched in the endobronchial biopsies of severe asthma along with neutrophils increasing by bioinformatics analysis. We further confirmed that UBD was upregulated in the lung tissues of neutrophilic asthma mouse model. UBD overexpression promoted IL-17 signaling activation. Knockdown of UBD suppressed the activation of IL-17 signaling. UBD interacted with TRAF2 and reduced the total and the K48-linked ubiquitination of TRAF2. However, IL-17 A stimulation increased both the total and the K48-linked ubiquitination of TRAF2. Together, these findings indicated that UBD was upregulated and played a critical role in IL-17 signaling which contributed to a better understanding of the complex mechanisms in neutrophilic asthma.


Assuntos
Asma , Interleucina-17 , Animais , Camundongos , Fator 2 Associado a Receptor de TNF/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Neutrófilos/metabolismo , Ubiquitinas/metabolismo , Inflamação/patologia
13.
J Clin Immunol ; 44(3): 76, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451381

RESUMO

A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.


Assuntos
Síndrome de Behçet , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Humanos , Mutação em Linhagem Germinativa , Haploinsuficiência , Imunomodulação , Ubiquitinas , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/química , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
14.
Curr Opin Oncol ; 36(2): 102-114, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441046

RESUMO

PURPOSE OF REVIEW: In this review, we summarized published articles on the role of tripartite motif (TRIM) family members in the initiation and development of human malignancies. RECENT FINDINGS: The ubiquitin-proteasome system (UP-S) plays a critical role in cellular activities, and UP-S dysregulation contributes to tumorigenesis. One of the key regulators of the UP-S is the tripartite motif TRIM protein family, most of which are active E3 ubiquitin ligases. TRIM proteins are critical for the biological functions of cancer cells, including migration, invasion, metastasis, and therapy resistance. Therefore, it is important to understand how TRIM proteins function at the molecular level in cancer cells. SUMMARY: We provide a comprehensive and up-to-date overview about the role TRIMs play in cancer progression and therapy resistance. We propose TRIM family members as potential new markers and targets to overcome therapy failure.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Proteínas com Motivo Tripartido , Ubiquitinas
15.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546043

RESUMO

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Animais , Feminino , Camundongos , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Oócitos/metabolismo , Ubiquitinas/metabolismo
16.
J Phys Chem A ; 128(12): 2317-2322, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489273

RESUMO

Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature-controlled ion trap or by incomplete dehydration of the folded proteins. In the case of cryogenic condensation, the UV spectra of the complexes exhibit a resolved vibrational structure, which looks similar to the spectrum of bare unfolded ubiquitin. The spectra become, however, broad-band with no structure when complexes of the same size are produced by incomplete dehydration under soft conditions of electrospray ionization. We attribute this spectroscopic dissimilarity to the structural difference of the protein: condensing a few water molecules cannot refold the gas-phase structure of the bare ubiquitin, while the retained water preserves its solution-like folded motif through evaporative cooling. This assessment is firmly confirmed by IR spectroscopy, which reveals the presence of free NH and carboxylic OH stretching vibrations only in the complexes with condensed water.


Assuntos
Desidratação , Água , Humanos , Água/química , Análise Espectral , Proteínas , Ubiquitinas
17.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473923

RESUMO

Lewy body diseases (LBDs) feature α-synuclein (α-syn)-containing Lewy bodies, with misfolded α-syn potentially propagating as seeds. Using a seeding amplification assay, we previously reported distinct α-syn seeding in LBD cases based on the area under seeding curves. This study revealed that LBD cases showing different α-syn seeding kinetics have distinct proteomics profiles, emphasizing disruptions in mitochondria and lipid metabolism in high-seeder cases. Though the mechanisms underlying LBD development are intricate, the factors influencing α-syn seeding activity remain elusive. To address this and complement our previous findings, we conducted targeted transcriptome analyses in the substantia nigra using the nanoString nCounter assay together with histopathological evaluations in high (n = 4) and low (n = 3) nigral α-syn seeders. Neuropathological findings (particularly the substantia nigra) were consistent between these groups and were characterized by neocortical LBD associated with Alzheimer's disease neuropathologic change. Among the 1811 genes assessed, we identified the top 20 upregulated and downregulated genes and pathways in α-syn high seeders compared with low seeders. Notably, alterations were observed in genes and pathways related to transmembrane transporters, lipid metabolism, and the ubiquitin-proteasome system in the high α-syn seeders. In conclusion, our findings suggest that the molecular behavior of α-syn is the driving force in the neurodegenerative process affecting the substantia nigra through these identified pathways. These insights highlight their potential as therapeutic targets for attenuating LBD progression.


Assuntos
Doença por Corpos de Lewy , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença por Corpos de Lewy/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Metabolismo dos Lipídeos , Ubiquitinas/metabolismo
18.
Gene ; 904: 148215, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38307218

RESUMO

BACKGROUND: A growing body of research indicates that colorectal cancer (CRC) is significantly influenced by the ubiquitin-proteasome system. Nevertheless, reliable immune landscapes and ubiquitin-associated prognostic markers are still scarce. METHODS: We systematically analyzed the RNA-seq data of 2,830 ubiquitin-related genes from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A CRC prognostic risk model was developed based on ubiquitin-associated gene signatures. In-depth multi-dimensional analyses were performed on ubiquitin-related subgroups with high and low risk. Drug response sensitivity for high-risk CRC patients was also predicted. RESULTS: A total of 131 ubiquitin-related differentially expressed genes were retrieved, of which 9 prognostic genes for CRC were ultimately identified and further validated by our clinical CRC tumor and adjacent normal samples. The expression pattern of these 9 ubiquitin-associated genes was found to be strongly related to overall survival, immune cell fractions, and immune-related genes of CRC patients. CRC patients stratified by the ubiquitin prognostic model exhibited distinct clinicopathological characteristics and immune landscapes. A comprehensive framework for personalized medicine prediction identified regorafenib and sorafenib as the most promising therapeutic agents for high ubiquitin-related risk CRC patients, which was confirmed in cell viability assays. CONCLUSIONS: Ubiquitin characteristics can reflect CRC prognosis and help develop innovative biomarkers for precision treatment.


Assuntos
Neoplasias Colorretais , Imunoterapia , Humanos , Sobrevivência Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Citoplasma , Ubiquitinas
20.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391905

RESUMO

Saccharomyces cerevisiae proliferates by budding, which includes the formation of a cytoplasmic protrusion called the 'bud', into which DNA, RNA, proteins, organelles, and other materials are transported. The transport of organelles into the growing bud must be strictly regulated for the proper inheritance of organelles by daughter cells. In yeast, the RING-type E3 ubiquitin ligases, Dma1 and Dma2, are involved in the proper inheritance of mitochondria, vacuoles, and presumably peroxisomes. These organelles are transported along actin filaments toward the tip of the growing bud by the myosin motor protein, Myo2. During organelle transport, organelle-specific adaptor proteins, namely Mmr1, Vac17, and Inp2 for mitochondria, vacuoles, and peroxisomes, respectively, bridge the organelles and myosin. After reaching the bud, the adaptor proteins are ubiquitinated by the E3 ubiquitin ligases and degraded by the proteasome. Targeted degradation of the adaptor proteins is necessary to unload vacuoles, mitochondria, and peroxisomes from the actin-myosin machinery. Impairment of the ubiquitination of adaptor proteins results in the failure of organelle release from myosin, which, in turn, leads to abnormal dynamics, morphology, and function of the inherited organelles, indicating the significance of proper organelle unloading from myosin. Herein, we summarize the role and regulation of E3 ubiquitin ligases during organelle inheritance in yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peroxissomos/metabolismo , Miosinas/metabolismo , Ubiquitinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...