Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.721
Filtrar
1.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38587486

RESUMO

ß-Coronaviruses remodel host endomembranes to form double-membrane vesicles (DMVs) as replication organelles (ROs) that provide a shielded microenvironment for viral RNA synthesis in infected cells. DMVs are clustered, but the molecular underpinnings and pathophysiological functions remain unknown. Here, we reveal that host fragile X-related (FXR) family proteins (FXR1/FXR2/FMR1) are required for DMV clustering induced by expression of viral non-structural proteins (Nsps) Nsp3 and Nsp4. Depleting FXRs results in DMV dispersion in the cytoplasm. FXR1/2 and FMR1 are recruited to DMV sites via specific interaction with Nsp3. FXRs form condensates driven by liquid-liquid phase separation, which is required for DMV clustering. FXR1 liquid droplets concentrate Nsp3 and Nsp3-decorated liposomes in vitro. FXR droplets facilitate recruitment of translation machinery for efficient translation surrounding DMVs. In cells depleted of FXRs, SARS-CoV-2 replication is significantly attenuated. Thus, SARS-CoV-2 exploits host FXR proteins to cluster viral DMVs via phase separation for efficient viral replication.


Assuntos
COVID-19 , Proteína do X Frágil de Retardo Mental , Lipossomos , Proteínas de Ligação a RNA , SARS-CoV-2 , Humanos , Proliferação de Células , Análise por Conglomerados , COVID-19/metabolismo , COVID-19/virologia , Citoplasma , Proteína do X Frágil de Retardo Mental/metabolismo , Células HeLa , Lipossomos/metabolismo , Organelas , Proteínas de Ligação a RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo
2.
Protein Sci ; 33(4): e4916, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501598

RESUMO

Alongside vaccines and antiviral therapeutics, diagnostic tools are a crucial aid in combating the COVID-19 pandemic caused by the etiological agent SARS-CoV-2. All common assays for infection rely on the detection of viral sub-components, including structural proteins of the virion or fragments of the viral genome. Selective pressure imposed by human intervention of COVID-19 can, however, induce viral mutations that decrease the sensitivity of diagnostic assays based on biomolecular structure, leading to an increase in false-negative results. In comparison, mutations are unlikely to alter the function of viral proteins, and viral machinery is under less selective pressure from vaccines and therapeutics. Accordingly, diagnostic assays that rely on biomolecular function can be more robust than ones that rely on biopolymer structure. Toward this end, we used a split intein to create a circular ribonuclease zymogen that is activated by the SARS-CoV-2 main protease, 3CLpro . Zymogen activation by 3CLpro leads to a >300-fold increase in ribonucleolytic activity, which can be detected with a highly sensitive fluorogenic substrate. This coupled assay can detect low nanomolar concentrations of 3CLpro within a timeframe comparable to that of common antigen-detection protocols. More generally, the concept of detecting a protease by activating a ribonuclease could be the basis of diagnostic tools for other indications.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Vacinas , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Precursores Enzimáticos/genética , Ribonucleases , Pandemias , Proteínas não Estruturais Virais/química , Inibidores de Proteases/química , Antivirais/química
3.
Biochem Biophys Res Commun ; 706: 149728, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479246

RESUMO

Influenza A virus is the cause of a widespread human disease with high morbidity and mortality rates. The influenza virus encodes non-structural protein 1 (NS1), an exceedingly multifunctional virulence component. NS1 plays essential roles in viral replication and evasion of the cellular innate immune system. Protein kinase RNA-activated also known as protein kinase R (PKR) phosphorylates translation initiation factor eIF-2α on serine 51 to inhibit protein synthesis in virus-infected mammalian cells. Consequently, PKR activation inhibits mRNA translation, which results in the assert of both viral protein synthesis and cellular and possibly apoptosis in response to virus infection. Host signaling pathways are important in the replication of influenza virus, but the mechanisms involved remain to be characterized. Herein, the structure of NS1 and PKR complex was determined using Cryo-EM. We found the N91, E94, and G95 residues of PKR bind directly with N188, D125, and K126, respectively, of NS1. Furthermore, the study shows that PKR peptide offers a potential treatment for Influenza A virus infections.


Assuntos
Vírus da Influenza A , eIF-2 Quinase , Animais , Humanos , eIF-2 Quinase/metabolismo , Proteínas não Estruturais Virais/química , Vírus da Influenza A/genética , Microscopia Crioeletrônica , Linhagem Celular , Antivirais/metabolismo , Replicação Viral , Mamíferos/metabolismo
4.
Virus Res ; 343: 199356, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490582

RESUMO

Coronaviruses contain one of the largest genomes among the RNA viruses, coding for 14-16 non-structural proteins (nsp) that are involved in proteolytic processing, genome replication and transcription, and four structural proteins that build the core of the mature virion. Due to conservation across coronaviruses, nsps form a group of promising drug targets as their inhibition directly affects viral replication and, therefore, progression of infection. A minimal but fully functional replication and transcription complex was shown to be formed by one RNA-dependent RNA polymerase (nsp12), one nsp7, two nsp8 accessory subunits, and two helicase (nsp13) enzymes. Our approach involved, targeting nsp12 and nsp13 to allow multiple starting point to interfere with virus infection progression. Here we report a combined in-vitro repurposing screening approach, identifying new and confirming reported SARS-CoV-2 nsp12 and nsp13 inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Reposicionamento de Medicamentos , RNA Polimerases Dirigidas por DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo
5.
J Virol ; 98(4): e0125823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546211

RESUMO

Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.


Assuntos
Doenças Transmissíveis , Vírus da Dengue , Dengue , Piperidinas , Viroses , Animais , Camundongos , Vírus da Dengue/fisiologia , Camundongos Endogâmicos ICR , Endopeptidases/farmacologia , Dengue/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Viroses/tratamento farmacológico , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/química
6.
J Virol ; 98(4): e0184423, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436247

RESUMO

Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE: Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Linhagem Celular , Ligação Proteica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Interferons/metabolismo , Antivirais
7.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445884

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Assuntos
COVID-19 , Proteínas não Estruturais Virais , Humanos , Proteínas não Estruturais Virais/metabolismo , Pandemias , Replicação Viral , DNA Helicases/metabolismo , Adenosina Trifosfatases , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Proliferação de Células , RNA Helicases/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética
8.
J Virol ; 98(4): e0157523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38483167

RESUMO

As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target. However, as an integral transmembrane protein, it is challenging to express for structural biology. The C-terminus of nsp3 encompasses all the membrane-spanning, -interacting, and -remodeling elements. By using a cell-free expression system, we successfully produced the C-terminal region of nsp3 (nsp3C) and reconstituted purified nsp3C into phospholipid nanodiscs, opening the way for structural studies. Negative-stain transmission electron microscopy revealed the presence of nsp3C oligomers very similar to the region abutting and spanning the membrane on the cytosolic side of DMVs in a recent subtomogram average of the SARS-CoV-2 nsp3-4 pore (1). AlphaFold-predicted structural models fit particularly well with our experimental data and support a pore-forming hexameric assembly. Altogether, our data give unprecedented clues to understand the structural organization of nsp3, the principal component that shapes the molecular pore that spans the DMVs and is required for the export of RNA in vivo. IMPORTANCE: Membrane remodeling is at the heart of intracellular replication for single-stranded, positive-sense RNA viruses. In the case of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this leads to the formation of a network of double-membrane vesicles (DMVs). Targeting DMV biogenesis offers promising prospects for antiviral therapies. This requires a better understanding of the molecular mechanisms and proteins involved. Three non-structural proteins (nsp3, nsp4, and nsp6) direct the intracellular membrane rearrangements upon SARS-CoV-2 infection. All of them contain transmembrane helices. The nsp3 component, the largest and multi-functional protein of the virus, plays an essential role in this process. Aiming to understand its structural organization, we used a cell-free protein synthesis assay to produce and reconstitute the C-terminal part of nsp3 (nsp3C) including transmembrane domains into phospholipid nanodiscs. Our work reveals the oligomeric organization of one key player in the biogenesis of SARS-CoV-2 DMVs, providing basis for the design of future antiviral strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Retículo Endoplasmático/metabolismo , RNA , Fosfolipídeos , Antivirais , Replicação Viral
9.
J Virol Methods ; 326: 114906, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479084

RESUMO

Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-footed animals. Immunization with inactivated virus vaccine is effective to control the disease. Six-monthly vaccination regimen in endemic regions has proven to be effective. To enable the differentiation of infected animals from those vaccinated, non-structural proteins (NSPs) are excluded during vaccine production. While the antibodies to structural proteins (SPs) could be observed both in vaccinated and infected animals, NSP antibodies are detectable only in natural infection. Quality control assays that detect NSPs in vaccine antigen preparations, are thus vital in the FMD vaccine manufacturing process. In this study, we designed a chemiluminescence dot blot assay to detect the 3A and 3B NSPs of FMDV. It is sensitive enough to detect up to 20 ng of the NSP, and exhibited specificity as it does not react with the viral SPs. This cost-effective assay holds promise in quality control assessment in FMD vaccine manufacturing.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Febre Aftosa/diagnóstico , Febre Aftosa/prevenção & controle , Luminescência , Anticorpos Antivirais , Proteínas não Estruturais Virais , Sensibilidade e Especificidade , Ensaio de Imunoadsorção Enzimática
10.
Mikrochim Acta ; 191(4): 174, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436801

RESUMO

Early diagnosis of dengue infection by detecting the dengue virus non-structural protein 1 (DENV-NS1) is important to the patients to initiate speedy treatment. Enzyme-linked immunosorbent assay (ELISA)-based NS1 detection and RT-PCR are time-consuming and too complex to be employed in remote areas of dengue-endemic countries. Meanwhile, those of NS1 rapid test by lateral flow assay suffer from low detection limit. Electrochemical-based biosensors using screen-printed gold electrodes (SPGEs) have become a reliable detection method to convey both ELISA's high sensitivity and rapid test portability. In this research, we developed an electrochemical biosensor for DENV-NS1 detection by employing polydopamine (PDA)-modified SPGE. The electrodeposition of PDA on the surface of SPGE serves as a bioconjugation avenue for anti-NS1 antibody through a simple and low-cost immobilization procedure. The biosensor performance was evaluated to detect DENV-NS1 protein in PBS and human serum through a differential pulse voltammetric (DPV) technique. The developed sensing platform displayed a low limit of detection (LOD) of 1.63 pg mL-1 and a wide linear range of 10 pg mL-1 to 1 ng mL-1 (R2 ∼ 0.969). The sensing platform also detected DEV-NS1 from four different serotypes in the clinical samples collected from dengue patients in India and Indonesia, with acceptable sensitivity, specificity, and accuracy values of 90.00%, 80.95%, and 87.65%, respectively. This result showcased the facile and versatile method of PDA coating onto the surface of screen-printed gold electrodes for a miniaturized point-of-care (PoC) detection device.


Assuntos
Vírus da Dengue , Dengue , Indóis , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros , Humanos , Dengue/diagnóstico , Eletrodos , Ouro , Proteínas não Estruturais Virais/química
11.
mBio ; 15(4): e0049924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470055

RESUMO

Rotavirus (RV) replication takes place in the viroplasms, cytosolic inclusions that allow the synthesis of virus genome segments and their encapsidation in the core shell, followed by the addition of the second layer of the virion. The viroplasms are composed of several viral proteins, including NSP5, which serves as the main building block. Microtubules, lipid droplets, and miRNA-7 are among the host components recruited in viroplasms. We investigated the interaction between RV proteins and host components of the viroplasms by performing a pull-down assay of lysates from RV-infected cells expressing NSP5-BiolD2. Subsequent tandem mass spectrometry identified all eight subunits of the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for folding at least 10% of the cytosolic proteins. Our confirmed findings reveal that TRiC is brought into viroplasms and wraps around newly formed double-layered particles. Chemical inhibition of TRiC and silencing of its subunits drastically reduced virus progeny production. Through direct RNA sequencing, we show that TRiC is critical for RV replication by controlling dsRNA genome segment synthesis, particularly negative-sense single-stranded RNA. Importantly, cryo-electron microscopy analysis shows that TRiC inhibition results in defective virus particles lacking genome segments and polymerase complex (VP1/VP3). Moreover, TRiC associates with VP2 and NSP5 but not with VP1. Also, VP2 is shown to be essential for recruiting TRiC in viroplasms and preserving their globular morphology. This study highlights the essential role of TRiC in viroplasm formation and in facilitating virion assembly during the RV life cycle. IMPORTANCE: The replication of rotavirus takes place in cytosolic inclusions termed viroplasms. In these inclusions, the distinct 11 double-stranded RNA genome segments are co-packaged to complete a genome in newly generated virus particles. In this study, we show for the first time that the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for the folding of at least 10% of the cytosolic proteins, is a component of viroplasms and is required for the synthesis of the viral negative-sense single-stranded RNA. Specifically, TRiC associates with NSP5 and VP2, the cofactor involved in RNA replication. Our study adds a new component to the current model of rotavirus replication, where TRiC is recruited to viroplasms to assist replication.


Assuntos
Rotavirus , Rotavirus/genética , Compartimentos de Replicação Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Microscopia Crioeletrônica , Replicação Viral/fisiologia , RNA , Peptídeos
12.
PLoS Pathog ; 20(3): e1012093, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512999

RESUMO

Rift Valley fever virus (RVFV) is a viral zoonosis that causes severe disease in ruminants and humans. The nonstructural small (NSs) protein is the primary virulence factor of RVFV that suppresses the host's antiviral innate immune response. Bioinformatic analysis and AlphaFold structural modeling identified four putative LC3-interacting regions (LIR) motifs (NSs 1-4) in the RVFV NSs protein, which suggest that NSs interacts with the host LC3-family proteins. Using, isothermal titration calorimetry, X-ray crystallography, co-immunoprecipitation, and co-localization experiments, the C-terminal LIR motif (NSs4) was confirmed to interact with all six human LC3 proteins. Phenylalanine at position 261 (F261) within NSs4 was found to be critical for the interaction of NSs with LC3, retention of LC3 in the nucleus, as well as the inhibition of autophagy in RVFV infected cells. These results provide mechanistic insights into the ability of RVFV to overcome antiviral autophagy through the interaction of NSs with LC3 proteins.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/metabolismo , Autofagia , Antivirais/metabolismo
13.
Biosens Bioelectron ; 254: 116218, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518559

RESUMO

Biodetection for non-invasive diagnostics of fluids, especially urine, remains a challenge to scientists due to low target concentrations. And biological complexes of the detection target may contain contaminants that also interfere with any assay. Dengue non-structural 1 protein (Dengue NS1) is an important biomarker for dengue hemorrhagic fever and dengue shock syndrome. Here, we developed an Au-decorated nanowire platform and applied it with a sandwich fluorophore-linked immunosorbent well plate assay (FLISA) to detect Dengue NS1 in urine. For the platform, we fabricated zinc oxide (ZnO) nanowires to provide a high surface area and then coated them with gold nanoparticles (ZnO/Au nanowires) to simply modify the Dengue NS1 antibody and enhance the fluorescence intensity. Our platform employs a sandwich FLISA that exhibits high sensitivity, specifically detecting Dengue NS1 with a limit of detection (LOD) of 1.35 pg/mL. This LOD was 4500-fold lower than the LOD of a commercially available kit for Dengue NS1 enzyme-linked immunosorbent assay. We believe that our ZnO/Au nanowire platform has the potential to revolutionize the field of non-invasive diagnostics for dengue.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Dengue , Nanopartículas Metálicas , Nanofios , Óxido de Zinco , Humanos , Dengue/diagnóstico , Ouro , Sensibilidade e Especificidade , Proteínas não Estruturais Virais , Antígenos Virais , Ensaio de Imunoadsorção Enzimática , Imunoadsorventes , Anticorpos Antivirais
14.
Nat Commun ; 15(1): 2108, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453923

RESUMO

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has evoked a worldwide pandemic. As the emergence of variants has hampered the neutralization capacity of currently available vaccines, developing effective antiviral therapeutics against SARS-CoV-2 and its variants becomes a significant challenge. The main protease (Mpro) of SARS-CoV-2 has received increased attention as an attractive pharmaceutical target because of its pivotal role in viral replication and proliferation. Here, we generated a de novo Mpro-inhibitor screening platform to evaluate the efficacies of Mpro inhibitors based on Mpro cleavage site-embedded amyloid peptide (MCAP)-coated gold nanoparticles (MCAP-AuNPs). We fabricated MCAPs comprising an amyloid-forming sequence and Mpro-cleavage sequence, mimicking in vivo viral replication process mediated by Mpro. By measuring the proteolytic activity of Mpro and the inhibitory efficacies of various drugs, we confirmed that the MCAP-AuNP-based platform was suitable for rapid screening potential of Mpro inhibitors. These results demonstrated that our MCAP-AuNP-based platform has great potential for discovering Mpro inhibitors and may accelerate the development of therapeutics against COVID-19.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Ouro/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais , Peptídeos , Peptídeo Hidrolases , Antivirais/farmacologia , Simulação de Acoplamento Molecular
15.
PLoS Pathog ; 20(3): e1011794, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483968

RESUMO

Infection by chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes severe polyarthralgia and polymyalgia, which can last in some people for months to years. Chronic CHIKV disease signs and symptoms are associated with the persistence of viral nucleic acid and antigen in tissues. Like humans and nonhuman primates, CHIKV infection in mice results in the development of robust adaptive antiviral immune responses. Despite this, joint tissue fibroblasts survive CHIKV infection and can support persistent viral replication, suggesting that they escape immune surveillance. Here, using a recombinant CHIKV strain encoding the fluorescent protein VENUS with an embedded CD8+ T cell epitope, SIINFEKL, we observed a marked loss of both MHC class I (MHC-I) surface expression and antigen presentation by CHIKV-infected joint tissue fibroblasts. Both in vivo and ex vivo infected joint tissue fibroblasts displayed reduced cell surface levels of H2-Kb and H2-Db MHC-I proteins while maintaining similar levels of other cell surface proteins. Mutations within the methyl transferase-like domain of the CHIKV nonstructural protein 2 (nsP2) increased MHC-I cell surface expression and antigen presentation efficiency by CHIKV-infected cells. Moreover, expression of WT nsP2 alone, but not nsP2 with mutations in the methyltransferase-like domain, resulted in decreased MHC-I antigen presentation efficiency. MHC-I surface expression and antigen presentation was rescued by replacing VENUS-SIINFEKL with SIINFEKL tethered to ß2-microglobulin in the CHIKV genome, which bypasses the requirement for peptide processing and TAP-mediated peptide transport into the endoplasmic reticulum. Collectively, this work suggests that CHIKV escapes the surveillance of antiviral CD8+ T cells, in part, by nsP2-mediated disruption of MHC-I antigen presentation.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Animais , Camundongos , Apresentação de Antígeno , Replicação Viral , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Epitopos de Linfócito T , Peptídeos/metabolismo
16.
J Chem Inf Model ; 64(6): 1984-1995, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38472094

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main Protease (Mpro) is an enzyme that cleaves viral polyproteins translated from the viral genome and is critical for viral replication. Mpro is a target for anti-SARS-CoV-2 drug development, and multiple Mpro crystals complexed with competitive inhibitors have been reported. In this study, we aimed to develop an Mpro consensus pharmacophore as a tool to expand the search for inhibitors. We generated a consensus model by aligning and summarizing pharmacophoric points from 152 bioactive conformers of SARS-CoV-2 Mpro inhibitors. Validation against a library of conformers from a subset of ligands showed that our model retrieved poses that reproduced the crystal-binding mode in 77% of the cases. Using models derived from a consensus pharmacophore, we screened >340 million compounds. Pharmacophore-matching and chemoinformatics analyses identified new potential Mpro inhibitors. The candidate compounds were chemically dissimilar to the reference set, and among them, demonstrating the relevance of our model. We evaluated the effect of 16 candidates on Mpro enzymatic activity finding that seven have inhibitory activity. Three compounds (1, 4, and 5) had IC50 values in the midmicromolar range. The Mpro consensus pharmacophore reported herein can be used to identify compounds with improved activity and novel chemical scaffolds against Mpro. The method developed for its generation is provided as an open-access code (https://github.com/AngelRuizMoreno/ConcensusPharmacophore) and can be applied to other pharmacological targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia , Farmacóforo , Consenso , Proteínas não Estruturais Virais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química
17.
Cell Rep ; 43(3): 113891, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38427561

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hinders host gene expression, curbing defenses and licensing viral protein synthesis and virulence. During SARS-CoV-2 infection, the virulence factor non-structural protein 1 (Nsp1) targets the mRNA entry channel of mature cytoplasmic ribosomes, limiting translation. We show that Nsp1 also restrains translation by targeting nucleolar ribosome biogenesis. SARS-CoV-2 infection disrupts 18S and 28S ribosomal RNA (rRNA) processing. Expression of Nsp1 recapitulates the processing defects. Nsp1 abrogates rRNA production without altering the expression of critical processing factors or nucleolar organization. Instead, Nsp1 localizes to the nucleolus, interacting with precursor-rRNA and hindering its maturation separately from the viral protein's role in restricting mature ribosomes. Thus, SARS-CoV-2 Nsp1 limits translation by targeting ribosome biogenesis and mature ribosomes. These findings revise our understanding of how SARS-CoV-2 Nsp1 controls human protein synthesis, suggesting that efforts to counter Nsp1's effect on translation should consider the protein's impact from ribosome manufacturing to mature ribosomes.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Ribossômico/metabolismo , COVID-19/metabolismo , Ribossomos/metabolismo , Proteínas Virais/metabolismo , Proteínas não Estruturais Virais/metabolismo
18.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474240

RESUMO

Advanced methods of treatment are needed to fight the threats of virus-transmitted diseases and pandemics. Often, they are based on an improved biophysical understanding of virus replication strategies and processes in their host cells. For instance, an essential component of the replication of the hepatitis C virus (HCV) proceeds under the influence of nonstructural HCV proteins (NSPs) that are anchored to the endoplasmatic reticulum (ER), such as the NS5A protein. The diffusion of NSPs has been studied by in vitro fluorescence recovery after photobleaching (FRAP) experiments. The diffusive evolution of the concentration field of NSPs on the ER can be described by means of surface partial differential equations (sufPDEs). Previous work estimated the diffusion coefficient of the NS5A protein by minimizing the discrepancy between an extended set of sufPDE simulations and experimental FRAP time-series data. Here, we provide a scaling analysis of the sufPDEs that describe the diffusive evolution of the concentration field of NSPs on the ER. This analysis provides an estimate of the diffusion coefficient that is based only on the ratio of the membrane surface area in the FRAP region to its contour length. The quality of this estimate is explored by a comparison to numerical solutions of the sufPDE for a flat geometry and for ten different 3D embedded 2D ER grids that are derived from fluorescence z-stack data of the ER. Finally, we apply the new data analysis to the experimental FRAP time-series data analyzed in our previous paper, and we discuss the opportunities of the new approach.


Assuntos
Retículo Endoplasmático , Hepatite C , Humanos , Retículo Endoplasmático/metabolismo , Hepacivirus/metabolismo , Replicação Viral , Difusão , Proteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo
19.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345251

RESUMO

Dengue virus (DENV) infection, which is transmitted by Aedes mosquitoes, is a major public health concern in tropical and subtropical countries. With an annual incidence of approximately 10 million cases and 20,000-25,000 deaths, particularly among children, there is an urgent need for practical diagnostic tools. The presence of dengue non-structural protein 1 (NS1) during early infection has been linked to cytokine release, vascular leakage, and endothelial dysfunction, making it a potential marker for severe dengue. Paper-based immunoassays such as lateral flow assays (LFAs) and microfluidic paper-based analytical devices (PADs) have gained popularity as diagnostic tests due to their simplicity, rapidity, inexpensiveness, specificity, and ease of interpretation. However, conventional paper-based immunoassays for dengue NS1 detection typically rely on visual inspection, yielding only qualitative results. To address this limitation and enhance sensitivity, we proposed a highly portable NS1 dengue detection assay on a Paper-based Analytical Device (PAD), namely, DEN-NS1-PAD, that integrates a smartphone application as a colorimetric and quantitative reader. The development system enables direct quantification of NS1 concentrations in clinical samples. Serum and blood samples obtained from patients were utilized to demonstrate the system prototype performance. The results were obtained immediately and can be employed for clinical assessment, both in well-equipped healthcare facilities and resource-limited settings. This innovative combination of a paper-based immunoassay with a smartphone application offers a promising approach for enhanced detection and quantification of dengue NS1 antigen. By augmenting sensitivity beyond the capabilities of the naked eye, this system holds great potential for improving clinical decision-making in dengue management, particularly in remote or underserved areas.


Assuntos
Dengue , Smartphone , Criança , Humanos , Colorimetria , Proteínas não Estruturais Virais , Imunoensaio , Antígenos Virais , Dengue/diagnóstico , Sensibilidade e Especificidade , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Antivirais
20.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 419-433, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38369830

RESUMO

Coronaviruses pose significant threats to animal and human health, leading to the development of various infectious diseases. It is critical to develop effective vaccines and antiviral medicines to prevent and treat these diseases. The coronavirus genome encodes several types of proteins, including structural, nonstructural, and accessory proteins. Among them, nonstructural protein 13 (NSP13) helicase plays a crucial role in regulating viral replication and the innate immune response of the host. Therefore, it serves as a vital target for the development of anti-coronavirus drugs. This paper presents a comprehensive review of NSP13 research, covering its source, structure, sequence conservation, unwinding mechanism, enzyme inhibitors, protein interaction, and immune regulation. Additionally, the paper analyzes the current challenges in NSP13 research and aims to provide a theoretical foundation for the development of broad-spectrum antiviral drugs targeting NSP13.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Humanos , DNA Helicases/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral , RNA Helicases/genética , RNA Helicases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...