Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 665
Filtrar
1.
Sci Rep ; 14(1): 2359, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286879

RESUMO

Biotransformation of organic pollutants is crucial for the dissipation of environmental pollutants. While the roles of microorganisms have been extensively studied, the significant contribution of various root exudates are still not very well understood. Through plant growth experiment, coupled with gas and liquid chromatography-mass spectrometry methods, this study examined the effect of the presence of M. sativa on microbial-associated biochemical transformation of petroleum hydrocarbons. The results of this study revealed that the concentration of exudates within the soil matrix is a function of proximity to root surfaces. Similarly, biodegradation was found to correlate with distance from roots, ranging from ≥ 90% within the rhizosphere to < 50% in bulk soil and unplanted control soil. Most importantly, for the first time in a study of an entire petroleum distillate, this study revealed a statistically significant negative correlation between root exudate concentration and residual total petroleum hydrocarbons. While not all the compounds that may influence biodegradation are derived from roots, the results of this study show that the presence of plant can significantly influence biodegradation of hydrocarbon pollutants through such root exudation as organic acids, amino acids, soluble sugars and terpenoids. Therefore, root exudates, including secondary metabolites, offer great prospects for biotechnological applications in the remediation of organic pollutants, including recalcitrant ones.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes do Solo , Poluentes Ambientais/metabolismo , Poluentes do Solo/metabolismo , Rizosfera , Biodegradação Ambiental , Solo , Biotransformação , Exsudatos e Transudatos/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Raízes de Plantas/metabolismo , Microbiologia do Solo , Exsudatos de Plantas/metabolismo
2.
Sci Total Environ ; 912: 169048, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061654

RESUMO

Biodegradable plastics (BPs) have gained increased attention as a promising solution to plastics pollution problem. However, BPs often exhibited limited in situ biodegradation in the soil environment, so they may also release microplastics (MPs) into soils just like conventional non-degradable plastics. Therefore, it is necessary to evaluate the impacts of biodegradable MPs (BMPs) on soil ecosystem. Here, we explored the effects of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) MPs and conventional polyethylene (PE) MPs on soil-plant (pakchoi) system at three doses (0.02 %, 0.2 %, and 2 %, w/w). Results showed that PBAT MPs reduced plant growth in a dose-dependent pattern, while PE MPs exhibited no significant phytotoxicity. High-dose PBAT MPs negatively affected the rhizosphere soil nutrient availability, e.g., decreased available phosphorus and available potassium. Metagenomics analysis revealed that PBAT MPs caused more serious interference with the rhizosphere microbial community composition and function than PE MPs. In particular, compared with PE MPs, PBAT MPs induced greater changes in functional potential of carbon, nitrogen, phosphorus, and sulfur cycles, which may lead to alterations in soil biogeochemical processes and ecological functions. Moreover, untargeted metabolomics showed that PBAT MPs and PE MPs differentially affect plant root exudates. Mantel tests, correlation analysis, and partial least squares path model analysis showed that changes in plant growth and root exudates were significantly correlated with soil properties and rhizosphere microbiome driven by the MPs-rhizosphere interactions. This work improves our knowledge of how biodegradable and conventional non-degradable MPs affect plant growth and the rhizosphere ecology, highlighting that BMPs might pose greater threat to soil ecosystems than non-degradable MPs.


Assuntos
Plásticos Biodegradáveis , Brassica , Microplásticos , Rizosfera , Ecossistema , Plásticos , Exsudatos e Transudatos , Biodegradação Ambiental , Polietileno , Exsudatos de Plantas , Fósforo , Solo
3.
Microbiol Res ; 279: 127564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071833

RESUMO

A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions. In this review, we aimed to provide a synthesis of the latest and most pertinent literature on the diverse biochemical and structural compositions of plant root exudates. Also, this work investigates into their multifaceted role in microbial nutrition and intricate signaling processes within the rhizosphere, which includes quorum-sensing molecules. Specifically, it explores the contributions of low molecular weight compounds, such as carbohydrates, phenolics, organic acids, amino acids, and secondary metabolites, as well as the significance of high molecular weight compounds, including proteins and polysaccharides. It also discusses the state-of-the-art omics strategies that unveil the vital role of root exudates in plant-microbiome interactions, including defense against pathogens like nematodes and fungi. We propose multiple challenges and perspectives, including exploiting plant root exudates for host-mediated microbiome engineering. In this discourse, root exudates and their derived interactions with the rhizospheric microbiota should receive greater attention due to their positive influence on plant health and stress mitigation.


Assuntos
Microbiota , Raízes de Plantas , Raízes de Plantas/microbiologia , Microbiota/fisiologia , Exsudatos e Transudatos/metabolismo , Exsudatos de Plantas/metabolismo , Percepção de Quorum , Plantas/microbiologia , Rizosfera , Microbiologia do Solo
4.
Sci Rep ; 13(1): 10954, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414773

RESUMO

Prunus armeniaca gum is used as food additive and ethno medicinal purpose. Two empirical models response surface methodology and artificial neural network were used to search for optimized extraction parameters for gum extraction. A four-factor design was implemented for optimization of extraction process for maximum yield which was obtained under the optimized extraction parameter (temperature, pH, extraction time, and gum/water ratio). Micro and macro-elemental composition of gum was determined by using laser induced breakdown spectroscopy. Gum was evaluated for toxicological effect and pharmacological properties. The maximum predicted yield obtained by response surface methodology and artificial neural network was 30.44 and 30.70% which was very close to maximum experimental yield 30.23%. Laser induced breakdown spectroscopic spectra confirmed the presence Calcium, Potassium, Magnesium, Sodium, Lithium, Carbon, Hydrogen, Nitrogen and Oxygen. Acute oral toxicity study showed that gum is non-toxic up to 2000 mg/Kg body weight in rabbits, accompanied by high cytotoxic effects of gum against HepG2 and MCF-7cells by MTT assay. Overall, Aqueous solution of gum showed various pharmacological activities with significant value of antioxidant, antibacterial, anti-nociceptive, anti-cancer, anti-inflammatory and thrombolytic activities. Thus, optimization of parameters using mathematical models cans offer better prediction and estimations with enhanced pharmacological properties of extracted components.


Assuntos
Antioxidantes , Exsudatos de Plantas , Animais , Coelhos , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Gomas Vegetais/química , Água , Exsudatos e Transudatos
5.
Sci Total Environ ; 899: 165590, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37474067

RESUMO

Aquatic plant-derived dissolved organic matter (DOM) in water bodies is an important source of disinfection byproduct (DBP) precursors. It is therefore very important to investigate DBP formation, and the main DBP precursors that enter drinking water during treatment processes. In this study, Lythrum salicaria root extract (LSRE) and Acorus calamus root extract (ACRE) were analyzed. The LSRE and ACRE were chlorinated and disinfected to generate trihalomethanes, haloacetic acids, haloketones, and haloacetaldehydes. The DBP formation potential of LSRE, dominated by humus, was higher than that of Suwannee River natural organic matter (SRNOM), and trichloroacetic acid was the main DBP. It was calculated that 2.09 % of the increased DOC brought by the surface flow wetland planted with emergent aquatic plants, and the contribution rates of TCMFP, DCAAFP and TCAAFP in effluent were 3.34 %, 3.23 % and 3.05 %, respectively. A total of 706 chlorinated-formula were detected by FTICR-MS, among which mono- and di-chlorinated formulae were the most abundant. Macromolecular hydrophobic organics and tannins were the main precursors for LSRE. Unlike LSRE, the DOM composition of ACRE was dominated by protein or aliphatic compounds; therefore, the risk of DBP formation was not as high as that for LSRE. This study is the first to determine the risk of DBP formation associated with aquatic plant root extracts, and confirmed that tannins in plant-derived DOM are more important DBP precursors than lignins.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Exsudatos de Plantas , Áreas Alagadas , Poluentes Químicos da Água/análise , Trialometanos/análise , Exsudatos e Transudatos/química , Raízes de Plantas/química , Desinfetantes/química
6.
J Agric Food Chem ; 71(27): 10269-10276, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37386871

RESUMO

Tomato (Solanum lycopersicum) plants are susceptible to infection by root-knot nematodes, which cause severe economic losses. Planting resistant tomato plants can reduce nematode damage; however, the effects of resistant tomato root exudates in suppressing Meloidogyne incognita remain insufficiently understood. Here, we determined that the resistant tomato plant Lycopersicon esculentum cv. Xianke-8 (XK8) alleviates nematode damage by downregulating the expression of the essential parasitic nematode gene Mi-flp-18 to reduce the infection and reproduction of M. incognita. Using gas chromatography-mass spectrometry, we identified vanillin as a unique compound (compared to susceptible tomato cultivars) in XK8 root exudates that acts as a lethal trap and inhibitor of egg hatching. Moreover, the soil application of 0.4-4.0 mmol/kg vanillin significantly reduced galls and egg masses. The parasite gene Mi-flp-18 was downregulated upon treatment with vanillin, both in vitro and in pot experiments. Collectively, our results reveal an effective nematicidal compound that can use in feasible and economical strategies to control RKNs.


Assuntos
Solanum lycopersicum , Tylenchoidea , Animais , Exsudatos de Plantas/farmacologia , Exsudatos de Plantas/química , Solanum lycopersicum/genética , Exsudatos e Transudatos , Raízes de Plantas/genética
7.
New Phytol ; 239(6): 2307-2319, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357338

RESUMO

Rhizomicrobiome plays important roles in plant growth and health, contributing to the sustainable development of agriculture. Plants recruit and assemble the rhizomicrobiome to satisfy their functional requirements, which is widely recognized as the 'cry for help' theory, but the intrinsic mechanisms are still limited. In this study, we revealed a novel mechanism by which plants reprogram the functional expression of inhabited rhizobacteria, in addition to the de novo recruitment of soil microbes, to satisfy different functional requirements as plants grow. This might be an efficient and low-cost strategy and a substantial extension to the rhizomicrobiome recruitment theory. We found that the plant regulated the sequential expression of genes related to biocontrol and plant growth promotion in two well-studied rhizobacteria Bacillus velezensis SQR9 and Pseudomonas protegens CHA0 through root exudate succession across the plant developmental stages. Sixteen key chemicals in root exudates were identified to significantly regulate the rhizobacterial functional gene expression by high-throughput qPCR. This study not only deepens our understanding of the interaction between the plant-rhizosphere microbiome, but also provides a novel strategy to regulate and balance the different functional expression of the rhizomicrobiome to improve plant health and growth.


Assuntos
Desenvolvimento Vegetal , Raízes de Plantas , Raízes de Plantas/metabolismo , Exsudatos e Transudatos , Plantas/microbiologia , Solo , Rizosfera , Microbiologia do Solo , Exsudatos de Plantas/metabolismo
8.
Plant Sci ; 331: 111694, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004941

RESUMO

Large amounts of root exudates are released by plant roots into the soil. Due to their importance in regulating the rhizosphere properties, it is necessary to unravel the precise composition and function of exudates at the root-soil interface. However, obtaining root exudates without inducing artefacts is a difficult task. To analyse the low molecular weight molecules secreted by pea roots, a protocol of root exudate collection was developed to perform a metabolomics analysis using Nuclear Magnetic Resonance (NMR). To date a few NMR studies are dedicated to root exudates. Plant culture, exudates collection and sample preparation methods had thus to be adapted to the NMR approach. Here, pea seedlings were hydroponically grown. The obtained NMR fingerprints show that osmotic stress increases the quantity of the exudates but not their diversity. We therefore selected a protocol reducing the harvest time and using an ionic solvent and applied it to the analysis of faba bean exudates. NMR analysis of the metabolic profiles allowed to discriminate between pea and faba bean according to their exudate composition. This protocol is therefore very promising for studying the composition of root exudates from different plant species as well as their evolution in response to different environmental conditions or pathophysiological events.


Assuntos
Raízes de Plantas , Vicia faba , Raízes de Plantas/metabolismo , Exsudatos de Plantas/química , Solo/química , Exsudatos e Transudatos/metabolismo , Rizosfera , Plantas/metabolismo , Espectroscopia de Ressonância Magnética
9.
Mol Plant ; 16(5): 849-864, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36935607

RESUMO

Terrestrial plants can affect the growth and health of adjacent plants via interspecific interaction. Here, we studied the mechanism by which plant root exudates affect the recruitment of the rhizosphere microbiome in adjacent plants-with implications for plant protection-using a tomato (Solanum lycopersicum)-potatoonion (Allium cepa var. agrogatum) intercropping system. First, we showed that the intercropping system results in a disease-suppressive rhizosphere microbiome that protects tomato plants against Verticillium wilt disease caused by the soilborne pathogen Verticillium dahliae. Second, 16S rRNA gene sequencing revealed that intercropping with potatoonion altered the composition of the tomato rhizosphere microbiome by promoting the colonization of specific Bacillus sp. This taxon was isolated and shown to inhibit V. dahliae growth and induce systemic resistance in tomato plants. Third, a belowground segregation experiment found that root exudates mediated the interspecific interaction between potatoonion and tomato. Moreover, experiments using split-root tomato plants found that root exudates from potatoonion, especially taxifolin-a flavonoid compound-stimulate tomato plants to recruit plant-beneficial bacteria, such as Bacillus sp. Lastly, ultra-high-pressure liquid chromatography-mass spectrometry analysis found that taxifolin alters tomato root exudate chemistry; thus, this compound acts indirectly in modulating root colonization by Bacillus sp. Our results revealed that this intercropping system can improve tomato plant fitness by changing rhizosphere microbiome recruitment via the use of signaling chemicals released by root exudates of potatoonion. This study revealed a novel mechanism by which interspecific plant interaction modulates the establishment of a disease-suppressive microbiome, thus opening up new avenues of research for precision plant microbiome manipulations.


Assuntos
Microbiota , Solanum lycopersicum , Rizosfera , RNA Ribossômico 16S , Bactérias , Plantas/genética , Exsudatos e Transudatos , Raízes de Plantas/microbiologia , Exsudatos de Plantas/química
10.
Glob Chang Biol ; 29(12): 3476-3488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931867

RESUMO

Root exudates are an important pathway for plant-microbial interactions and are highly sensitive to climate change. However, how extreme drought affects root exudates and the main components, as well as species-specific differences in response magnitude and direction, are poorly understood. In this study, root exudation rates of total carbon (C) and its components (e.g., sugar, organic acid, and amino acid) were measured under the control and extreme drought treatments (i.e., 70% throughfall reduction) by in situ collection of four tree species with different growth rates in a subtropical forest. We also quantified soil properties, root morphological traits, and mycorrhizal infection rates to examine the driving factors underlying variations in root exudation. Our results showed that extreme drought significantly decreased root exudation rates of total C, sugar, and amino acid by 17.8%, 30.8%, and 35.0%, respectively, but increased root exudation rate of organic acid by 38.6%, which were largely associated with drought-induced changes in tree growth rates, root morphological traits, and mycorrhizal infection rates. Specifically, trees with relatively high growth rates were more responsive to drought for root exudation rates compared with those with relatively low growth rates, which were closely related to root morphological traits and mycorrhizal infection rates. These findings highlight the importance of plant growth strategy in mediating drought-induced changes in root exudation rates. The coordinations among root exudation rates, root morphological traits, and mycorrhizal symbioses in response to drought could be incorporated into land surface models to improve the prediction of climate change impacts on rhizosphere C dynamics in forest ecosystems.


Assuntos
Ecossistema , Micorrizas , Raízes de Plantas/metabolismo , Secas , Florestas , Micorrizas/metabolismo , Árvores , Exsudatos e Transudatos/metabolismo , Compostos Orgânicos/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Solo/química , Açúcares/análise , Açúcares/metabolismo , Exsudatos de Plantas/análise , Exsudatos de Plantas/metabolismo
11.
Nat Commun ; 14(1): 1649, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964135

RESUMO

Root exudates are plant-derived, exported metabolites likely shaping root-associated microbiomes by acting as nutrients and signals. However, root exudation dynamics are unclear and thus also, if changes in exudation are reflected in changes in microbiome structure. Here, we assess commonalities and differences between exudates of different plant species, diurnal exudation dynamics, as well as the accompanying methodological aspects of exudate sampling. We find that exudates should be collected for hours rather than days as many metabolite abundances saturate over time. Plant growth in sterile, nonsterile, or sugar-supplemented environments significantly alters exudate profiles. A comparison of Arabidopsis thaliana, Brachypodium distachyon, and Medicago truncatula shoot, root, and root exudate metabolite profiles reveals clear differences between these species, but also a core metabolome for tissues and exudates. Exudate profiles also exhibit a diurnal signature. These findings add to the methodological and conceptual groundwork for future exudate studies to improve understanding of plant-microbe interactions.


Assuntos
Arabidopsis , Microbiota , Raízes de Plantas/metabolismo , Exsudatos de Plantas/metabolismo , Metaboloma , Arabidopsis/genética , Arabidopsis/metabolismo
12.
Curr Microbiol ; 80(4): 110, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36802037

RESUMO

Bacillus amyloliquefaciens TR2, one of plant growth-promoting rhizobacteria (PGPR), is capable of colonizing plant roots in a large population size. However, the interaction of watermelon root exudates and colonization of the strain TR2 has not yet been clearly elucidated. In this investigation, we demonstrated that B. amyloliquefaciens TR2 promoted watermelon plants growth and exhibited biocontrol efficacy against watermelon Fusarium wilt under greenhouse conditions. Collected watermelon root exudates significantly induced chemotaxis, swarming motility, and biofilm formation of the strain TR2. We also tested the components of root exudates (organic acids: malic acid, citric acid, succinic acid, and fumaric acid; amino acids: methionine, glutamic acid, alanine, and aspartic acid; phenolic acid: benzoic acid) and the results showed that a majority of these compounds could promote chemotactic response, swarming motility, and biofilm formation in a different degree. Benzoic acid induced the strongest chemotactic response; however, the swarming motility and biofilm formation of the strain TR2 were maximumly enhanced by supplement of fumaric acid and glutamic acid, respectively. In addition, the root colonization examination indicated that the population of B. amyloliquefaciens TR2 colonized on watermelon root surfaces was dramatically increased by adding concentrated watermelon root exudates. In summary, our studies provide evidence suggesting that root exudates are important for colonization of B. amyloliquefaciens TR2 on plant roots and help us to understand the interaction between plants and beneficial bacteria.


Assuntos
Bacillus amyloliquefaciens , Citrullus , Exsudatos de Plantas/farmacologia , Exsudatos e Transudatos , Glutamatos , Benzoatos , Raízes de Plantas/microbiologia
13.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499572

RESUMO

Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount of nitrogen in the seed crop (per plant) by about twofold. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar, and to analyze the exo-metabolomes and exo-proteomes. Altered root development was observed, with distinct responses depending on the strain, for instance, with respect to root hair development. A first conclusion from these results is that the ability of wheat to establish effective beneficial interactions with PGPRs does not appear to have undergone systematic deep reprogramming during domestication. Exo-metabolome analysis revealed a complex set of secondary metabolites, including nutrient ion chelators, cyclopeptides that could act as phytohormone mimetics, and quorum sensing molecules having inter-kingdom signaling properties. The exo-proteome-comprised strain-specific enzymes, and structural proteins belonging to outer-membrane vesicles, are likely to sequester metabolites in their lumen. Thus, the methodological processes we have developed to collect and analyze bacterial exudates have revealed that PGPRs constitutively exude a highly complex set of metabolites; this is likely to allow numerous mechanisms to simultaneously contribute to plant growth promotion, and thereby to also broaden the spectra of plant genotypes (species and accessions/cultivars) with which beneficial interactions can occur.


Assuntos
Microbiologia do Solo , Triticum , Triticum/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Bactérias , Desenvolvimento Vegetal , Plantas , Nitrogênio/metabolismo , Exsudatos de Plantas/metabolismo
14.
Environ Pollut ; 313: 119989, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028079

RESUMO

The composition of root exudates is modulated by several environmental factors, and it remains unclear how that affects beneficial rhizosphere or inoculated microorganisms under heavy metal (HM) contamination. Therefore, we evaluated the transcriptional response of Pseudomonas putida E36 (a Miscanthus x giganteus isolate with plant growth promotion-related properties) to Cd, Pb and Zn in an in vitro study implementing root exudates from M. x giganteus. To collect root exudates and analyse their composition plants were grown in a pot experiment under HM and control conditions. Our results indicated higher exudation rate for plants challenged with HM. Further, out of 29 organic acids identified and quantified in the root exudates, 8 of them were significantly influenced by HM (e.g., salicylic and terephthalic acid). The transcriptional response of P. putida E36 was significantly affected by the HM addition to the growth medium, increasing the expression of several efflux pumps and stress response-related functional units. The additional supplementation of the growth medium with root exudates from HM-challenged plants resulted in a downregulation of 29% of the functional units upregulated in P. putida E36 as a result of HM addition to the growth medium. Surprisingly, root exudates + HM downregulated the expression of P. putida E36 functional units related to plant colonization (e.g., chemotaxis, motility, biofilm formation) but upregulated its antibiotic and biocide resistance compared to the control treatment without HM. Our findings suggest that HM-induced changes in root exudation pattern may attract beneficial bacteria that are in turn awarded with organic nutrients, helping them cope with HM stress. However, it might affect the ability of these bacteria to colonize plants growing in HM polluted areas. Those findings may offer an insight for future in vivo studies contributing to improvements in phytoremediation measures.


Assuntos
Desinfetantes , Metais Pesados , Pseudomonas putida , Poluentes do Solo , Antibacterianos , Biodegradação Ambiental , Cádmio , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo , Chumbo , Metais Pesados/toxicidade , Exsudatos de Plantas , Raízes de Plantas/metabolismo , Plantas/metabolismo , Poaceae , Pseudomonas putida/metabolismo , Poluentes do Solo/análise
15.
Sci Total Environ ; 851(Pt 1): 158190, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995174

RESUMO

In the rhizosphere, plant root exudates (REs) serve as a bridge between plant and soil functional microorganisms, which play a key role in the redox cycle of iron (Fe). This study examined the effects of periodic flooding and cadmium (Cd) on plant REs, the rhizosphere bacterial community structure, and the formation of root Fe plaques in the typical mangrove plant Kandelia obovata, as well as the relationship between REs and Fe redox cycling bacteria. Based on two-way analysis of variance, flooding and Cd had a considerable effect on the REs of K. obovata. DOC, NH4+-N, NO3--N, dissolved inorganic phosphorus, acetic acid, and malonic acid concentrations in REs of K. obovata increased considerably with the increase of Cd concentration under 5 and 10 h flooding conditions. Fe plaque development in the plant root was stimulated by flooding and Cd, although flooding was more effective. After Cd treatment, the ways in which Fe-oxidizing bacteria (FeOB) and Fe-reducing bacteria (FeRB) were enriched in the rhizosphere and rhizoplane of plants were different. Thiobacillus and Sideroxydans (dominant FeOB) were more abundant in the plant rhizosphere, whereas Acinetobacter (dominant FeRB) was more abundant in the rhizoplane. Cd considerably decreased the relative abundance of unclassified_f_Gallionellaceae in the rhizosphere and rhizoplane but dramatically enhanced the relative abundance of Thiobacillus, Shewanella, and unclassified_f_Geobacteraceae. Unclassified_f_Geobacteraceae and Thiobacillus exhibited substantial positive correlations with citric acid and DOC in REs in the rhizosphere and rhizoplane but strong negative correlations with Sideroxydans. The findings indicate that Cd and flooding treatments may play a role in the production and breakdown of Fe plaque in K. obovata roots by affecting the relative abundance of Fe redox cycling bacteria in the rhizosphere and rhizoplane.


Assuntos
Rhizophoraceae , Poluentes do Solo , Bactérias/metabolismo , Cádmio/análise , Ácido Cítrico/metabolismo , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo , Ferro/análise , Fósforo/análise , Exsudatos de Plantas/análise , Raízes de Plantas/metabolismo , Rizosfera , Plântula/metabolismo , Solo/química , Poluentes do Solo/análise
16.
J Am Soc Mass Spectrom ; 33(9): 1615-1625, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35904879

RESUMO

The plant rhizosphere is a complex and dynamic chemical environment where the exchange of molecular signals between plants, microbes, and fungi drives the development of the entire biological system. Exogenous compounds in the rhizosphere are known to affect plant-microbe organization, interactions between organisms, and ultimately, growth and survivability. The function of exogenous compounds in the rhizosphere is still under much investigation, specifically with respect to their roles in plant growth and development, the assembly of the associated microbial community, and the spatiotemporal distribution of molecular components. A major challenge for spatiotemporal measurements is developing a nondisruptive and nondestructive technique capable of analyzing the exogenous compounds contained within the environment. A methodology using liquid microjunction-surface sampling probe-mass spectrometry (LMJ-SSP-MS) and microfluidic devices with attached microporous membranes was developed for in situ, spatiotemporal measurement of amino acids (AAs) from bacterial biofilms and plant roots. Exuded arginine was measured from a living Pantoea YR343 biofilm, which resulted in a chemical image indicative of biofilm growth within the device. Spot sampling along the roots of Populus trichocarpa with the LMJ-SSP-MS resulted in the detection of 15 AAs. Variation in AA concentrations across the root system was observed, indicating that exudation is not homogeneous and may be linked to local rhizosphere architecture and different biological processes along the root.


Assuntos
Aminoácidos , Exsudatos de Plantas , Aminoácidos/análise , Bactérias , Biofilmes , Exsudatos e Transudatos/química , Espectrometria de Massas , Exsudatos de Plantas/análise , Exsudatos de Plantas/metabolismo , Raízes de Plantas/química
17.
Proc Natl Acad Sci U S A ; 119(22): e2116021119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617429

RESUMO

For thousands of years, the unique physicochemical properties of plant exudates have defined uses in material culture and practical applications. Native Australian plant exudates, including resins, kinos, and gums, have been used and continue to be used by Aboriginal Australians for numerous technical and cultural purposes. A historic collection of well-preserved native Australian plant exudates, assembled a century ago by plant naturalists, gives a rare window into the history and chemical composition of these materials. Here we report the full hierarchical characterization of four genera from this collection, Xanthorrhoea, Callitris, Eucalyptus, and Acacia, from the local elemental speciation, to functional groups and main molecular markers. We use high-resolution X-ray Raman spectroscopy (XRS) to achieve bulk-sensitive chemical speciation of these plant exudates, including insoluble, amorphous, and cross-linked fractions, without the limitation of invasive and/or surface specific methods. Combinatorial testing of the XRS data allows direct classification of these complex natural species as terpenoid, aromatic, phenolic, and polysaccharide materials. Differences in intragenera chemistry was evidenced by detailed interpretation of the XRS spectral features. We complement XRS with Fourier-transform infrared (FT-IR) spectroscopy, gas chromatography­mass spectrometry (GC-MS), and pyrolysis­GC-MS (Py-GC-MS). This multimodal approach provides a fundamental understanding of the chemistry of these natural materials long used by Aboriginal Australian peoples.


Assuntos
Acacia , Asphodelaceae , Eucalyptus , Pinales , Exsudatos de Plantas , Acacia/química , Austrália , Eucalyptus/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pinales/química , Exsudatos de Plantas/química , Terpenos/análise , Asphodelaceae/química
18.
Phytopathology ; 112(9): 1886-1893, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35297645

RESUMO

Bacillus spp. can exert plant growth-promoting effects and biocontrol effects after effective colonization, and bacterial chemotaxis toward plant root exudates is the initial step to colonize. Under biotic stress, plants are able to alter their root exudates to attract or avoid different types of microbes. Hence, Bacillus chemotaxis toward root exudates after pathogen infection is crucial for exerting their beneficial effects. In this study, the Bacillus amyloliquefaciens OR2-30 strain, which exhibited greater chemotaxis ability toward maize root exudates after Fusarium graminearum infection, was screened from 156 rhizosphere microorganisms. The infected maize root exudates were further confirmed to improve the swarming and biofilm formation ability of the OR2-30 strain. Chemotaxis, swarming, and biofilm formation ability were able to influence bacterial colonization. Indeed, the the OR2-30 strain displayed more effective colonization ability in the maize rhizosphere after F. graminearum inoculation. Moreover, lipopeptides produced by OR2-30 were identified as iturins and responsible for suppressing F. graminearum growth. Further study showed that lipopeptides suppressed the growth of F. graminearum by inhibiting conidia formation and germination, inducing reactive oxygen species production and causing cell death in mycelium. Eventually, the OR2-30 strain increased maize resistance against F. graminearum. These results suggested that maize root exudates could recruit B. amyloliquefacines OR2-30 after F. graminearum infection, and that OR2-30 then suppresses the F. graminearum by producing lipopeptides, such as iturins, to protect maize.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Fusarium , Bacillus/fisiologia , Exsudatos e Transudatos/metabolismo , Fusarium/fisiologia , Lipopeptídeos/análise , Lipopeptídeos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Exsudatos de Plantas/farmacologia , Raízes de Plantas/microbiologia , Zea mays/microbiologia
19.
BMC Plant Biol ; 22(1): 64, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123400

RESUMO

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) are a group of important symbiotic microorganisms found in ecosystems. Maize is the second most produced food crop globally. To investigate the mechanisms by which mycorrhizal symbiosis improves maize yields, the effects of mycorrhizal symbiosis on root vigor, nutrient accumulation in various tissues, and root exudates were investigated. We propose the following hypothesis: The secretion of organic acids in root exudates has antagonistic or synergistic effects, which are related to the rhizosphere environment. AMF symbiosis will enhance this effect. RESULT: Rhizophagus aggreatus, Claroideoglomus etunicatum, and Funneliformis mosseae were used to inoculate maize plants separately; meanwhile, maize was inoculated with the above three fungi together for another processing. The plant tissues were sampled at five growth stages: V12 (twelve-leaf), VT (Tassel), R1 (Silking), R2 (Blister), and R4 (Dough stage). The root vigor, and nutrient content in different maize organs and organic acids in root exudates were determined in these stages. The results show that mycorrhizal symbiosis significantly improved the root vigor of maize, especially for plants inoculated with F. mosseae. AMF symbiosis significantly increased N, P, and K accumulation. Mixed inoculation with arbuscular mycorrhizal fungi significantly promoted the accumulation of N and K in maize. P accumulation was significantly promoted by C. etunicatum inoculation. Mycorrhizal symbiosis reduced the levels of protocatechuic, vanillic, citric, and ferulic acid in maize root exudates and increased the levels of p-hydroxybenzoic and caffeic acid. Except for syringic, chlorogenic and succinic acid, the levels of other organic acids in root exudates were higher in plants inoculated with F. mosseae than in other treatments. CONCLUSION: This study demonstrates that mycorrhizal symbiosis improves root vigor and promotes nutrient accumulation at various sites; in addition, mycorrhizal symbiosis affects the content of organic acids in root exudates.


Assuntos
Micorrizas/crescimento & desenvolvimento , Exsudatos de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Simbiose/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Raízes de Plantas/microbiologia
20.
PLoS One ; 17(1): e0262671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077467

RESUMO

Alterations in the frequency and intensity of drought events are expected due to climate change and might have consequences for plant metabolism and the development of plant antagonists. In this study, the responses of spring wheat (Triticum aestivum) and one of its major pests, the aphid Sitobion avenae, to different drought regimes were investigated, considering different time points and plant parts. Plants were kept well-watered or subjected to either continuous or pulsed drought. Phloem exudates were collected twice from leaves and once from ears during the growth period and concentrations of amino acids, organic acids and sugars were determined. Population growth and survival of the aphid S. avenae were monitored on these plant parts. Relative concentrations of metabolites in the phloem exudates varied with the time point, the plant part as well as the irrigation regime. Pronounced increases in relative concentrations were found for proline, especially in pulsed drought-stressed plants. Moreover, relative concentrations of sucrose were lower in phloem exudates of ears than in those of leaves. The population growth and survival of aphids were decreased on plants subjected to drought and populations grew twice as large on ears compared to leaves. Our study revealed that changes in irrigation frequency and intensity modulate plant-aphid interactions. These effects may at least partly be mediated by changes in the metabolic composition of the phloem sap.


Assuntos
Afídeos , Floema/metabolismo , Exsudatos de Plantas/metabolismo , Folhas de Planta/metabolismo , Triticum , Aminoácidos/análise , Animais , Carboidratos/análise , Desidratação , Herbivoria , Floema/parasitologia , Exsudatos de Plantas/química , Folhas de Planta/parasitologia , Fatores de Tempo , Triticum/metabolismo , Triticum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...