Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.618
Filtrar
1.
Cancer Immunol Res ; 12(4): 387-392, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562082

RESUMO

Cancer prevention and early detection, the first two of the eight primary goals of the National Cancer Plan released in April 2023, are at the forefront of the nation's strategic efforts to reduce cancer incidence and mortality. The Division of Cancer Prevention (DCP) of the NCI is the federal government's principal component devoted to promoting and supporting innovative cancer prevention research. Recent advances in tumor immunology, cancer immunotherapy, and vaccinology strongly suggest that the host immune system can be effectively harnessed to elicit protective immunity against the development of cancer, that is, cancer immunoprevention. Cancer immunoprevention may be most effective if the intervention is given before or early in the carcinogenic process while the immune system remains relatively uncompromised. DCP has increased the emphasis on immunoprevention research in recent years and continues to expand program resources and interagency collaborations designed to facilitate research in the immunoprevention field. These resources support a wide array of basic, translational, and clinical research activities, including discovery, development, and validation of biomarkers for cancer risk assessment and early detection (Early Detection Research Network), elucidation of biological and pathophysiological mechanistic determinants of precancer growth and its control (Translational and Basic Science Research in Early Lesions), spatiotemporal multiomics characterization of precancerous lesions (Human Tumor Atlas Network/Pre-Cancer Atlas), discovery of immunoprevention pathways and immune targets (Cancer Immunoprevention Network), and preclinical and clinical development of novel agents for immunoprevention and interception (Cancer Prevention-Interception Targeted Agent Discovery Program, PREVENT Cancer Preclinical Drug Development Program, and Cancer Prevention Clinical Trials Network).


Assuntos
Antineoplásicos , Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Neoplasias/prevenção & controle , Biomarcadores
2.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611742

RESUMO

Tumor vaccines have been considered a promising therapeutic approach for treating cancer in recent years. With the development of sequencing technologies, tumor vaccines based on neoantigens or genomes specifically expressed in tumor cells, mainly in the form of peptides, nucleic acids, and dendritic cells, are beginning to receive widespread attention. Therefore, in this review, we have introduced different forms of neoantigen vaccines and discussed the development of these vaccines in treating cancer. Furthermore, neoantigen vaccines are influenced by factors such as antigen stability, weak immunogenicity, and biosafety in addition to sequencing technology. Hence, the biological nanomaterials, polymeric nanomaterials, inorganic nanomaterials, etc., used as vaccine carriers are principally summarized here, which may contribute to the design of neoantigen vaccines for improved stability and better efficacy.


Assuntos
Vacinas Anticâncer , Nanoestruturas , Neoplasias , Ácidos Nucleicos , Humanos , Vacinas Anticâncer/uso terapêutico , Medicina de Precisão , Nanoestruturas/uso terapêutico , Neoplasias/terapia
3.
Med ; 5(4): 288-290, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614074

RESUMO

KEYNOTE-9421 is a randomized phase II adjuvant study in patients with resected stage III melanoma investigating a personalized neoantigen mRNA vaccine in combination with anti-PD-1. The study gave a clear signal of superiority for the vaccine plus anti-PD-1 in relapse-free and distant-metastasis-free survival but is not yet conclusive, and important questions remain.


Assuntos
Vacinas Anticâncer , Melanoma , Neoplasias Cutâneas , Humanos , Vacinas Anticâncer/uso terapêutico , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
4.
Front Immunol ; 15: 1371353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605958

RESUMO

Background: BVAC-C, a B cell- and monocyte-based immunotherapeutic vaccine transfected with recombinant HPV E6/E7, was well tolerated in HPV-positive recurrent cervical carcinoma patients in a phase I study. This phase IIa study investigates the antitumor activity of BVAC-C in patients with HPV 16- or 18-positive cervical cancer who had experienced recurrence after a platinum-based combination chemotherapy. Patients and methods: Patients were allocated to 3 arms; Arm 1, BVAC-C injection at 0, 4, 8 weeks; Arm 2, BVAC-C injection at 0, 4, 8, 12 weeks; Arm 3, BVAC-C injection at 0, 4, 8, 12 weeks with topotecan at 2, 6, 10, 14 weeks. Primary endpoints were safety and objective response rate (ORR) as assessed by an independent radiologist according to Response Evaluation Criteria in Solid Tumors version 1.1. Secondary endpoints included the disease control rate (DCR), duration of response (DOR), progression-free survival (PFS), and overall survival (OS). Results: Of the 30 patients available for analysis, the ORR was 19.2% (Arm 1: 20.0% (3/15), Arm 2: 33.3% (2/6), Arm3: 0%) and the DCR was 53.8% (Arm 1: 57.1%, Arm 2: 28.6%, Arm3: 14.3%). The median DOR was 7.5 months (95% CI 7.1-not reported), the median PFS was 5.8 months (95% CI 4.2-10.3), and the median OS was 17.7 months (95% CI 12.0-not reported). All evaluated patients showed not only inflammatory cytokine responses (IFN-γ or TNF-α) but also potent E6/E7-specific T cell responses upon vaccinations. Immune responses of patients after vaccination were correlated with their clinical responses. Conclusion: BVAC-C represents a promising treatment option and a manageable safety profile in the second-line setting for this patient population. Further studies are needed to identify potential biomarkers of response. Clinical trial registration: ClinicalTrials.gov, identifier NCT02866006.


Assuntos
Vacinas Anticâncer , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Papillomavirus Humano 16 , Recidiva Local de Neoplasia/patologia , Vacinas Anticâncer/efeitos adversos
5.
Cancer Res ; 84(7): 953-955, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558128

RESUMO

Personalized vaccines directed to tumor mutations have recently gained significant momentum. On the basis of the concept of stimulating T-cell responses against neoantigens encoded by a tumor's host of personal mutations, these vaccines utilize genome or exome sequencing, mutation calling, and epitope prediction followed by manufacturing of a customized vaccine for each patient. In their 2012 Cancer Research publication, Castle and colleagues provided evidence that vaccinating with long peptide vaccines encompassing neoantigens can generate robust immune responses and induce antitumor activity in a mouse B16F10 melanoma. This approach, harnessing the exquisite specificity of mutations to the tumor and thus providing an effective target for cancer vaccines, was subsequently shown to be safe and immunogenic in a series of small first in man trials in patients with melanoma. The field has accelerated and expanded substantially over the last 5 years, propelled by increasing evidence for vaccine-mediated clinical efficacy, leading to ongoing registrational trials using personalized RNA neoantigen vaccines in patients with melanoma and several other malignancies. See related article by Castle and colleagues, Cancer Res 2012;72:1081-91.


Assuntos
Vacinas Anticâncer , Melanoma , Neoplasias , Humanos , Animais , Camundongos , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/genética , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Mutação , Imunoterapia
6.
Cancer Immunol Res ; 12(4): 382, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562080

RESUMO

Cancer vaccines targeting mutated neoantigens offer promise for prevention of cancer recurrence and for treatment of established cancers. Questions remain about whether vaccines need to target multiple neoantigens and whether they need to target both CD8+ and CD4+ T cells. In this issue, Garzia and colleagues demonstrate the importance of including multiple antigens to stimulate both CD4+ T cells and CD8+ T cells for treatment of established cancer. See related article by Garzia et al., p. 440 (4).


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Antígenos de Neoplasias , Linfócitos T CD4-Positivos , Neoplasias/terapia , Linfócitos T CD8-Positivos
7.
Hum Vaccin Immunother ; 20(1): 2331486, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564321

RESUMO

Cancer is a global health challenge, with changing demographics and lifestyle factors producing an increasing burden worldwide. Screening advancements are enabling earlier diagnoses, but current cancer immunotherapies only induce remission in a small proportion of patients and come at a high cost. Cancer vaccines may offer a solution to these challenges, but they have been mired by poor results in past decades. Greater understanding of tumor biology, coupled with the success of vaccine technologies during the COVID-19 pandemic, has reinvigorated cancer vaccine development. With the first signs of efficacy being reported, cancer vaccines may be beginning to fulfill their potential. Solid tumors, however, present different hurdles than infectious diseases. Combining insights from previous cancer vaccine clinical development and contemporary knowledge of tumor immunology, we ask: who are the 'right' patients, what are the 'right' targets, and which are the 'right' modalities to maximize the chances of cancer vaccine success?


Assuntos
COVID-19 , Vacinas Anticâncer , Neoplasias , Humanos , Pandemias , Neoplasias/prevenção & controle , COVID-19/prevenção & controle , Saúde Global , Imunoterapia/métodos
8.
J Transl Med ; 22(1): 344, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600547

RESUMO

Tumors are mostly characterized by genetic instability, as result of mutations in surveillance mechanisms, such as DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. Defect in one or more of these mechanisms causes additive accumulation of mutations. Some of these mutations are drivers of transformation and are positively selected during the evolution of the cancer, giving a growth advantage on the cancer cells. If such mutations would result in mutated neoantigens, these could be actionable targets for cancer vaccines and/or adoptive cell therapies. However, the results of the present analysis show, for the first time, that the most prevalent mutations identified in human cancers do not express mutated neoantigens. The hypothesis is that this is the result of the selection operated by the immune system in the very early stages of tumor development. At that stage, the tumor cells characterized by mutations giving rise to highly antigenic non-self-mutated neoantigens would be efficiently targeted and eliminated. Consequently, the outgrowing tumor cells cannot be controlled by the immune system, with an ultimate growth advantage to form large tumors embedded in an immunosuppressive tumor microenvironment (TME). The outcome of such a negative selection operated by the immune system is that the development of off-the-shelf vaccines, based on shared mutated neoantigens, does not seem to be at hand. This finding represents the first demonstration of the key role of the immune system on shaping the tumor antigen presentation and the implication in the development of antitumor immunological strategies.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Antígenos de Neoplasias/genética , Vacinas Anticâncer/genética , Mutação/genética , Pontos de Checagem do Ciclo Celular , Imunoterapia , Microambiente Tumoral
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38600667

RESUMO

Human leukocyte antigen (HLA) recognizes foreign threats and triggers immune responses by presenting peptides to T cells. Computationally modeling the binding patterns between peptide and HLA is very important for the development of tumor vaccines. However, it is still a big challenge to accurately predict HLA molecules binding peptides. In this paper, we develop a new model TripHLApan for predicting HLA molecules binding peptides by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. We have found the main interaction site regions between HLA molecules and peptides, as well as the correlation between HLA encoding and binding motifs. Based on the discovery, we make the preprocessing and coding closer to the natural biological process. Besides, due to the input being based on multiple types of features and the attention module focused on the BiGRU hidden layer, TripHLApan has learned more sequence level binding information. The application of transfer learning strategies ensures the accuracy of prediction results under special lengths (peptides in length 8) and model scalability with the data explosion. Compared with the current optimal models, TripHLApan exhibits strong predictive performance in various prediction environments with different positive and negative sample ratios. In addition, we validate the superiority and scalability of TripHLApan's predictive performance using additional latest data sets, ablation experiments and binding reconstitution ability in the samples of a melanoma patient. The results show that TripHLApan is a powerful tool for predicting the binding of HLA-I and HLA-II molecular peptides for the synthesis of tumor vaccines. TripHLApan is publicly available at https://github.com/CSUBioGroup/TripHLApan.git.


Assuntos
Vacinas Anticâncer , Humanos , Ligação Proteica , Peptídeos/química , Antígenos HLA/química , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe I/química , Aprendizado de Máquina
10.
Proc Natl Acad Sci U S A ; 121(11): e2307798120, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437569

RESUMO

Nanoparticle-based RNA delivery has shown great progress in recent years with the approval of two mRNA vaccines for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and a liver-targeted siRNA therapy. Here, we discuss the preclinical and clinical advancement of new generations of RNA delivery therapies along multiple axes. Improvements in cargo design such as RNA circularization and data-driven untranslated region optimization can drive better mRNA expression. New materials discovery research has driven improved delivery to extrahepatic targets such as the lung and splenic immune cells, which could lead to pulmonary gene therapy and better cancer vaccines, respectively. Other organs and even specific cell types can be targeted for delivery via conjugation of small molecule ligands, antibodies, or peptides to RNA delivery nanoparticles. Moreover, the immune response to any RNA delivery nanoparticle plays a crucial role in determining efficacy. Targeting increased immunogenicity without induction of reactogenic side effects is crucial for vaccines, while minimization of immune response is important for gene therapies. New developments have addressed each of these priorities. Last, we discuss the range of RNA delivery clinical trials targeting diverse organs, cell types, and diseases and suggest some key advances that may play a role in the next wave of therapies.


Assuntos
Anticorpos , Vacinas Anticâncer , RNA Interferente Pequeno/genética , Terapia Genética , Fígado , SARS-CoV-2/genética
11.
J Immunother Cancer ; 12(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508656

RESUMO

BACKGROUND: The effectiveness of somatic neoantigen-based immunotherapy is often hindered by the limited number of mutations in tumors with low to moderate mutation burden. Focusing on microsatellite-stable colorectal cancer (CRC), this study investigates the potential of tumor-associated circular RNAs (circRNAs) as an alternative source of neoepitopes in CRC. METHODS: Tumor-associated circRNAs in CRC were identified using the MiOncoCirc database and ribo-depletion RNA sequencing of paired clinical normal and tumor samples. Candidate circRNA expression was validated by quantitative real-time PCR (RT-qPCR) using divergent primers. TransCirc database was used for translation prediction. Human leukocyte antigen binding affinity of open reading frames from potentially translatable circRNA was predicted using pVACtools. Strong binders from messenger RNA-encoded proteins were excluded using BlastP. The immunogenicity of the candidate antigens was functionally validated through stimulation of naïve CD8+ T cells against the predicted neoepitopes and subsequent analysis of the T cells through enzyme-linked immunospot (ELISpot) assay, intracellular cytokine staining (ICS) and granzyme B (GZMB) reporter. The cytotoxicity of T cells trained with antigen peptides was further tested using patient-derived organoids. RESULTS: We identified a neoepitope from circRAPGEF5 that is upregulated in CRC tumor samples from MiOncoCirc database, and two neoepitopes from circMYH9, which is upregulated across various tumor samples from our matched clinical samples. The translation potential of candidate peptides was supported by Clinical Proteomic Tumor Analysis Consortium database using PepQuery. The candidate peptides elicited antigen-specific T cells response and expansion, evidenced by various assays including ELISpot, ICS and GZMB reporter. Furthermore, T cells trained with circMYH9 peptides were able to specifically target and eliminate tumor-derived organoids but not match normal organoids. This observation underscores the potential of circRNAs as a source of immunogenic neoantigens. Lastly, circMYH9 was enriched in the liquid biopsies of patients with CRC, thus enabling a detection-to-vaccination treatment strategy for patients with CRC. CONCLUSIONS: Our findings underscore the feasibility of tumor-associated circRNAs as an alternative source of neoantigens for cancer vaccines targeting tumors with moderate mutation levels.


Assuntos
Vacinas Anticâncer , Neoplasias Colorretais , Humanos , RNA Circular/genética , Linfócitos T CD8-Positivos , Antígenos de Neoplasias/genética , Proteômica , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/patologia , Peptídeos
12.
Med Oncol ; 41(5): 90, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522058

RESUMO

Pancreatic cancer is a highly aggressive and often lethal malignancy with limited treatment options. Its late-stage diagnosis and resistance to conventional therapies make it a significant challenge in oncology. Immunotherapy, particularly cancer vaccines, has emerged as a promising avenue for treating pancreatic cancer. Multi-epitope vaccines, designed to target multiple epitopes derived from various antigens associated with pancreatic cancer, have gained attention as potential candidates for improving therapeutic outcomes. In this study, we have explored transcriptomics and protein expression databases to identify potential upregulated proteins in pancreatic cancer cells. After examining a total of 21,054 proteins from various databases, it was discovered that 143 proteins expressed differently in malignant and healthy cells. The CTL, HTL and BCE epitopes were predicted for the shortlisted proteins. 51,840 vaccine constructs were created by concatenating CTL, HTL, and B-cell epitopes in the respective sequences. The best 86 structures were selected from a set of 51,840 designs after they were analyzed for vaxijenicity, allergenicity, toxicity, and antigenicity scores. In further simulation of the immune response using constructs, it was found that 41417, 37961, and 40841 constructs could produce a strong immune response when injected. Further, it was found that construct 37961 showed stronger interaction and stability with TLR-9 as determined from the large-scale molecular dynamics simulations. Moreover, the 37961 construct has shown interactions with TLR-9 suggests its potential in inducing immune response. In addition, construct 37961 has shown 100% predicted solubility in the E. coli expression system. Overall, the study indicates the designed construct 37961 has the potential to induce an anti-tumor immune response and long-standing protection pending further studies.


Assuntos
Vacinas Anticâncer , Neoplasias Pancreáticas , Humanos , Epitopos/genética , Proteoma , Escherichia coli , Receptor Toll-Like 9 , Neoplasias Pancreáticas/genética
13.
Cell Biochem Funct ; 42(2): e3978, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515237

RESUMO

Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.


Assuntos
Vacinas Anticâncer , Neoplasias Ovarianas , Humanos , Feminino , Vacinas Baseadas em Ácido Nucleico , Neoplasias Ovarianas/tratamento farmacológico , Antígenos de Neoplasias , Vacinas Anticâncer/uso terapêutico
14.
Int J Hematol ; 119(4): 399-406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427208

RESUMO

INTRODUCTION: The peptide-based cancer vaccine targeting Wilms' tumor 1 (WT1) is a promising immunotherapeutic strategy for hematological malignancies. It remains unclear how long and to what extent the WT1-specific CD8 + cytotoxic T cell (CTL) persist after WT1 peptide vaccination. METHODS: The WT1 peptide vaccine was administered with written consent to a patient with CML in the chronic phase who did not respond well to imatinib, and the patient was followed for 12 years after vaccination. Immune monitoring was performed by specific amplification of WT1-specific CTLs using a mixed lymphocyte peptide culture. T-cell receptors (TCRs) of amplified WT1-specific CTLs were analyzed using next-generation sequencing. This study was approved by the Institutional Review Board of our institution. RESULT: WT1-specific CTLs, which were initially detected during WT1 peptide vaccination, persisted at a frequency of less than 5 cells per 1,000,000 CD8 + T cells for more than 10 years. TCR repertoire analysis confirmed the diversity of WT1-specific CTLs 11 years after vaccination. CTLs exhibited WT1 peptide-specific cytotoxicity in vitro. CONCLUSION: The WT1 peptide vaccine induced an immune response that persists for more than 10 years, even after cessation of vaccination in the CML patient.


Assuntos
Vacinas Anticâncer , Linfócitos T Citotóxicos , Humanos , Vacinas Anticâncer/uso terapêutico , Proteínas WT1 , Vacinas de Subunidades , Peptídeos , Receptores de Antígenos de Linfócitos T , Vacinação
15.
Nat Commun ; 15(1): 2570, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519525

RESUMO

The critical roles of CD4+ T cells have been understudied for cancer vaccines. Here we report long-term clinical outcomes of a randomized multicenter phase II clinical trial (NCT00118274), where patients with high-risk melanoma received a multipeptide vaccine targeting CD8+ T cells (12MP) and were randomized to receive either of two vaccines for CD4+ (helper) T cells: 6MHP (6 melanoma-specific helper peptides), or tet (a nonspecific helper peptide from tetanus toxoid). Cyclophosphamide (Cy) pre-treatment was also assessed. Primary outcomes for T cell responses to 12MP, 6MHP, and tet were previously reported, suggesting immunogenicity of both vaccines but that CD8 T cell responses to 12MP were lower when tet was replaced with 6MHP. Here, in post-hoc analyses, we report durable prolongation of overall survival by adding 6MHP instead of tet. That benefit was experienced only by male patients. A favorable interaction of 6MHP and Cy is also suggested. Multivariable Cox regression analysis of the intent-to-treat population identify vaccine arm (12MP + 6MHP+Cy) and patient sex (male) as the two significant predictors of enhanced survival. These findings support the value of adding cognate T cell help to cancer vaccines and also suggest a need to assess the impact of patient sex on immune therapy outcomes.


Assuntos
Vacinas Anticâncer , Melanoma , Humanos , Masculino , Adjuvantes Imunológicos , Linfócitos T CD8-Positivos , Melanoma/tratamento farmacológico , Peptídeos , Feminino
16.
Int Immunopharmacol ; 131: 111876, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493688

RESUMO

Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate among cancers. The development of CRC involves both genetic and epigenetic abnormalities, and recent research has focused on exploring the ex-transcriptome, particularly post-transcriptional modifications. RNA-binding proteins (RBPs) are emerging epigenetic regulators that play crucial roles in post-transcriptional events. Dysregulation of RBPs can result in aberrant expression of downstream target genes, thereby affecting the progression of colorectal tumors and the prognosis of patients. Recent studies have shown that RBPs can influence CRC pathogenesis and progression by regulating various components of the tumor microenvironment (TME). Although previous research on RBPs has primarily focused on their direct regulation of colorectal tumor development, their involvement in the remodeling of the TME has not been systematically reported. This review aims to highlight the significant role of RBPs in the intricate interactions within the CRC tumor microenvironment, including tumor immune microenvironment, inflammatory microenvironment, extracellular matrix, tumor vasculature, and CRC cancer stem cells. We also highlight several compounds under investigation for RBP-TME-based treatment of CRC, including small molecule inhibitors such as antisense oligonucleotides (ASOs), siRNAs, agonists, gene manipulation, and tumor vaccines. The insights gained from this review may lead to the development of RBP-based targeted novel therapeutic strategies aimed at modulating the TME, potentially inhibiting the progression and metastasis of CRC.


Assuntos
Vacinas Anticâncer , Neoplasias Colorretais , Humanos , Microambiente Tumoral , Proteínas de Ligação a RNA/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Matriz Extracelular
17.
Front Immunol ; 15: 1350208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533510

RESUMO

Colorectal cancer (CRC) is the third most common cancer globally and presents a significant challenge owing to its high mortality rate and the limitations of traditional treatment options such as surgery, radiotherapy, and chemotherapy. While these treatments are foundational, they are often poorly effective owing to tumor resistance. Immunotherapy is a groundbreaking alternative that has recently emerged and offers new hope for success by exploiting the body's own immune system. This article aims to provide an extensive review of clinical trials evaluating the efficacy of various immunotherapies, including CRC vaccines, chimeric antigen receptor T-cell therapies, and immune checkpoint inhibitors. We also discuss combining CRC vaccines with monoclonal antibodies, delve into preclinical studies of novel cancer vaccines, and assess the impact of these treatment methods on patient outcomes. This review seeks to provide a deeper understanding of the current state of CRC treatment by evaluating innovative treatments and their potential to redefine the prognosis of patients with CRC.


Assuntos
Vacinas Anticâncer , Neoplasias Colorretais , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva , Resultado do Tratamento
18.
Front Immunol ; 15: 1368103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444861

RESUMO

Background: Metastatic endometrial cancer (mEC) continues to have a poor prognosis despite the introduction of several novel therapies including immune checkpoints inhibitors. Dendritic cell (DC) vaccination is known to be a safe immunotherapeutic modality that can induce immunological and clinical responses in patients with solid tumors. Platinum-based chemotherapy is known to act synergistically with immunotherapy by selectively depleting suppressive immune cells. Therefore, we investigated the immunological efficacy of combined chemoimmunotherapy with an autologous DC vaccine and carboplatin/paclitaxel chemotherapy. Study design: This is a prospective, exploratory, single-arm phase I/II study (NCT04212377) in 7 patients with mEC. The DC vaccine consisted of blood-derived conventional and plasmacytoid dendritic cells, loaded with known mEC antigens Mucin-1 and Survivin. Chemotherapy consisted of carboplatin/paclitaxel, given weekly for 6 cycles and three-weekly for 3 cycles. The primary endpoint was immunological vaccine efficacy; secondary endpoints were safety and feasibility. Results: Production of DC vaccines was successful in five out of seven patients. These five patients started study treatment and all were able to complete the entire treatment schedule. Antigen-specific responses could be demonstrated in two of the five patients who were treated. All patients had at least one adverse event grade 3 or higher. Treatment-related adverse events grade ≥3 were related to chemotherapy rather than DC vaccination; neutropenia was most common. Suppressive myeloid cells were selectively depleted in peripheral blood after chemotherapy. Conclusion: DC vaccination can be safely combined with carboplatin/paclitaxel in patients with metastatic endometrial cancer and induces antigen-specific responses in a minority of patients. Longitudinal immunological phenotyping is suggestive of a synergistic effect of the combination.


Assuntos
Vacinas Anticâncer , Neoplasias do Endométrio , Humanos , Feminino , Carboplatina/uso terapêutico , Estudos Prospectivos , Neoplasias do Endométrio/tratamento farmacológico , Vacinas Anticâncer/efeitos adversos , Células Dendríticas , Vacinação
19.
Hum Vaccin Immunother ; 20(1): 2323256, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38544385

RESUMO

Cell-based therapeutic cancer vaccines use autologous patient-derived tumor cells, allogeneic cancer cell lines or autologous antigen presenting cells to mimic the natural immune process and stimulate an adaptive immune response against tumor antigens. The primary objective of this study is to perform a systematic literature review with an embedded meta-analysis of all published Phase 2 and 3 clinical trials of cell-based cancer vaccines in human subjects. The secondary objective of this study is to review trials demonstrating biological activity of cell-based cancer vaccines that could uncover additional hypotheses, which could be used in the design of future studies. We performed the systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The final review included 36 studies - 16 single-arm studies, and 20 controlled trials. Our systematic review of the existing literature revealed largely negative trials and our meta-analysis did not show evidence of clinical benefit from cell-based cancer-vaccines. However, as we looked beyond the stringent inclusion criteria of our systematic review, we identified significant examples of biological activity of cell-based cancer vaccines that are worth highlighting. In conclusion, the existing literature on cell-based cancer vaccines is highly variable in terms of cancer type, vaccine therapies and the clinical setting with no overall statistically significant clinical benefit, but there are individual successes that represent the promise of this approach. As cell-based vaccine technology continues to evolve, future studies can perhaps fulfill the potential that this exciting field of anti-cancer therapy holds.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Imunidade Adaptativa
20.
Ann R Coll Surg Engl ; 106(4): 321-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555869

RESUMO

Genomics is a crucial part of managing surgical disease. This review focuses on some of the genomic advances that are available now and looks to the future of their application in surgical practice. Whole-genome sequencing enables unbiased coverage across the entire human genome of approximately three billion base pairs. Newer technologies, such as those that permit long-read sequence analysis, provide additional information in longer phased fragment and base pair epigenomic (methylomic) data. Whole-genome sequencing is currently available in England for cancers in children, teenagers and young adults, central nervous system tumours, sarcoma and haematological malignancies. Circulating tumour DNA (ctDNA), immunotherapy and pharmacogenomics have emerged as groundbreaking approaches in the field of cancer treatment. These are now revolutionising the way oncologists and surgeons approach curative cancer surgery. Cancer vaccines offer an innovative approach to reducing recurrence after surgery by priming the immune system to trigger an immune response. The Cancer Vaccine Launch Pad project facilitates cancer vaccine studies in England. The BNT122-01 trial is recruiting patients with ctDNA-positive high-risk colorectal cancer after surgery to assess the impact of cancer vaccines. The evolving landscape of cancer treatment demands a dynamic and integrated approach from the surgical multidisciplinary team. Immunotherapy, ctDNA, pharmacogenomics, vaccines, mainstreaming and whole-genome sequencing are just some of the innovations that have the potential to redefine the standards of care. The continued exploration of these innovative diagnostics and therapies, the genomic pathway evolution and their application in diverse cancer types highlights the transformative impact of precision medicine in surgery.


Assuntos
Vacinas Anticâncer , DNA Tumoral Circulante , Neoplasias , Cirurgiões , Criança , Humanos , Adolescente , DNA Tumoral Circulante/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...