Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.212
Filtrar
1.
Appl Radiat Isot ; 207: 111265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432033

RESUMO

This study involved the assessment of 222Rn concentrations in liquid samples (namely serum and urine) obtained from individuals who were smokers and non-smokers across five distinct age groups in the Najaf Governorate of Iraq. The measurements were conducted using a portable digital Air Things device commonly employed for detecting radon gas in residential environments. This device was placed in a container that is placed in liquid samples, which makes it work to capture the existing radon. The mean value of radon concentrations in serum and urine samples for smokers was 5.64 ± 2.80 Bq/m3 and 3.56 ± 2.31 Bq/m3, respectively. While, the mean value of radon concentrations in serum and urine samples for non-smokers was 2.32 ± 0.67 Bq/m3 and 1.61 ± 1.00 Bq/m3, respectively. By comparing the radon concentrations for serum and urine samples with age and smoking groups, the value of P-Value (p < 0.01) was increased significantly statistically. Also, it is found that a positive and good correlation for radon concentrations between serum and urine. Although the levels of radon were found to be under the globally accepted thresholds, the results of 222Rn in all samples of serum and urine in smokers were higher than in non-smokers. Thus, it may be concluded that cigarette smoking is used as a biomarker of the presence of radon gas.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Humanos , Radônio/análise , Poluição do Ar em Ambientes Fechados/análise , Habitação , Poluentes Radioativos do Ar/análise , Meio Ambiente , Monitoramento de Radiação/métodos
2.
J Environ Manage ; 356: 120675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493642

RESUMO

Radon (222Rn) is a radioactive gas that occurs naturally in the soil and is harmful to the environment and health. However, the measuring the amount of radon flowing is challenging. This study reveals the mechanism responsible for radon transportation and concentration variation, the main driving forces acting, and the key factors operating in the vadose zone. In this study, two separate holes were used to monitor the amount of earth-air and radon flowing in and out of the soil in the extremely arid region in China where the Mogao Grottoes are located. Using a closed-system model, the quantity, characteristics, and regularity of the flow of earth-air and radon were thus determined on daily and yearly timescales. The same patterns of variation in earth-air flow and radon concentration were found at the two sites, both depending on the variation in the atmospheric pressure (AP). When the AP decreases, earth-air flows out from the soil with a high radon concentration. Conversely, when the AP increases, earth-air enters into the soil with a low radon concentration. Thus, radon is continuously emitted from the soil. The concentration of radon in the earth-air is proportional to the rate of flow of earth-air and therefore increases as the AP decreases. The radon emission also varies with the seasonal variation in temperature and AP, which is high in summer and low in winter. On a daily timescale, the radon varies in a bimodal manner. Therefore, the net amount of radon emitted from the soil is positively correlated with the amplitude of the AP fluctuation, temperature, soil porosity, and thickness of the vadose zone. The atmospheric pumping is the main driving force responsible for the radon emission. However, the surface closure, landform, cracks, faults, grain size, pore structure, soil adsorption, basal uranium/radium, salts, wind, lunar cycle, latitude and altitude have important effects on the number of radon emission. As such, it provides a scientific basis for the effective utilization of radon and prevention of its emission from soil.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Radônio/análise , Estações do Ano , Temperatura , Vento , Solo , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Ar/análise
3.
J Environ Radioact ; 274: 107410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457870

RESUMO

The aim of this study was to assess the exposures received by firefighters engaged in extinguishing the large-scale wildfires in the most contaminated areas of the Ukrainian part of the Chornobyl Exclusion Zone in 2016 and 2020. The assessments are based on measurements of radionuclide airborne concentrations in the breathing zones of workers and at the aerosol sampling stations of the automated radiation monitoring system operated by SSE Ecocenter. During the wildfires, the radionuclide airborne concentrations increased by orders of magnitude compared to the background levels, reaching maximum values in the firefighting area of 1.20 ± 0.01 Bq m-3 for 90Sr, 0.18 ± 0.01 Bq m-3 for 137Cs, (1.8 ± 0.3) ∙10-4 Bq m-3 for 238Pu, (4.5 ± 0.7) ∙10-4 Bq m-3 for 239-240Pu, and (8.0 ± 1.3) ∙10-3 Bq m-3 for 241Pu. The internal effective doses to firefighters due to inhaled radionuclides did not exceed 2 µSv h-1 and were 3-5 times lower compared to the external dose of gamma radiation. Thus, the time of firefighting in the ChEZ will be limited by the external dose.


Assuntos
Poluentes Radioativos do Ar , Acidente Nuclear de Chernobyl , Bombeiros , Monitoramento de Radiação , Incêndios Florestais , Humanos , Poluentes Radioativos do Ar/análise
4.
J Environ Radioact ; 273: 107379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310651

RESUMO

Current nuclear facility emergency planning zones (EPZs) are based on outdated distance-based criteria, predating comprehensive dose and risk-informed frameworks. Recent advancements in simulation tools have permitted the development of site-specific, dose, and risk-based consequence-driven assessment frameworks. This study investigated the computation of advanced reactor (AR) EPZs using two atmospheric dispersion models: a straight-line Gaussian plume model (GPM) and a semi-Lagrangian Particle in Cell (PIC). Two case studies were conducted: (1) benchmarking the NRC SOARCA study for the Peach Bottom Nuclear Generating Station and (2) analyzing an advanced INL Heat Pipe Design A microreactor's end-of-cycle inventory. The dose criteria for both cases were 10 mSv at mean weather conditions and 50 mSv at 95th percentile weather conditions at 96 h post-release. Results demonstrated that GPM and PIC estimated similar mean peak dose levels for large boiling water reactors in the farfield case, placing EPZ limits beyond current regulations. For ARs with source terms remaining in the nearfield, PIC modeling without specific nearfield considerations could result in excessively high doses and inaccurate EPZ designations. PIC dispersion demonstrated an order of magnitude higher estimate of nearfield inhalation dose contribution when compared to GPM results. Both models significantly reduced EPZ sizing within the nearfield. Thus, reductions in the AR source term may eliminate the need for a separate EPZ.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Monitoramento de Radiação/métodos , Radioisótopos/análise , Simulação por Computador , Poluentes Radioativos do Ar/análise , Tempo (Meteorologia)
5.
Environ Sci Pollut Res Int ; 31(13): 20277-20292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372915

RESUMO

Indoor radon source potential from unground soil was monitored using prototype devices approaching a dwelling with a cellar basement at 1 depth from the soil-atmosphere interface. Therefore, the radon concentrations in soil gas were monitored at 1 m depth. Integrated radon measurements were performed, and the results correlated with meteorological parameters. The influence of the difference in outdoor and device-soil temperature was considered, and the infiltration rate was calculated. The effect of the soil temperature gradient on the soil radon entry rate was evaluated. The indoor radon entry rate due to the soil gas was 7.0 ± 2.7 Bq m-3 h-1. The radon entry rate was 5.0 ± 0.8 Bq m-3 h-1 due to diffusion. In contrast, the advection-drive flow of soil gas is ranged up to ± 4.0 Bq m-3 h-1. So, the infiltration rate of the model dwelling was 0.7 (± 0.5) × 10-1 h-1 if only the stack effect occurred. The radon levels in tap water were measured, and the radon entry rate was estimated at 1.3 ± 0.7 Bq m-3 h-1. If the ventilation rate is low or seismic faulting appears, the soil radon entry is increased by one order of magnitude. The soil radon appeared like the building materials, having 1/3 of the total indoor radon entry, while outdoor air was slightly lower (28%), with tap water at 5%. The resident's mortality risk occurred at < 2.5% for typical dwellings in temperate climate areas founded on sand-gravel underground. The risk rises to 34% with an extremely low ventilation rate between indoors and outdoors or high radon entry from the soil due to seismic faulting.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Radônio/análise , Poluição do Ar em Ambientes Fechados/análise , Solo , Poluentes Radioativos do Ar/análise , Água , Habitação
6.
Sci Rep ; 14(1): 3640, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409201

RESUMO

Repetitive, long-term inhalation of radioactive radon gas is one of the leading causes of lung cancer, with exposure differences being a function of geographic location, built environment, personal demographics, activity patterns, and decision-making. Here, we examine radon exposure disparities across the urban-to-rural landscape, based on 42,051 Canadian residential properties in 2034 distinct communities. People living in rural, lower population density communities experience as much as 31.2% greater average residential radon levels relative to urban equivalents, equating to an additional 26.7 Bq/m3 excess in geometric mean indoor air radon, and an additional 1 mSv/year in excess alpha radiation exposure dose rate to the lungs for occupants. Pairwise and multivariate analyses indicate that community-based radon exposure disparities are, in part, explained by increased prevalence of larger floorplan bungalows in rural areas, but that a majority of the effect is attributed to proximity to, but not water use from, drilled groundwater wells. We propose that unintended radon gas migration in the annulus of drilled groundwater wells provides radon migration pathways from the deeper subsurface into near-surface materials. Our findings highlight a previously under-appreciated determinant of radon-induced lung cancer risk, and support a need for targeted radon testing and reduction in rural communities.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Água Subterrânea , Neoplasias Pulmonares , Monitoramento de Radiação , Radônio , Humanos , Radônio/efeitos adversos , Radônio/análise , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , População Rural , Habitação , Canadá , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia
7.
J Environ Radioact ; 274: 107401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412700

RESUMO

Fifty-five years of radiocarbon variation studies are reviewed with an emphasis on a better understanding of the impacts of the Bohunice nuclear power plant and fossil fuel CO2 on the atmosphere and biosphere of Slovakia. The maximum Δ14C levels in the air up to about 1200‰ were observed during the 1970s at the Zlkovce monitoring station, which after 2005 decreased to <30‰. A relative decrease in the atmospheric Δ14C levels due to increasing levels of fossil CO2 in the atmosphere has also been significant, for example, in Bratislava down to about -330‰, but after 2005 they were only <50‰ below the Jungfraujoch European clean-air level. The tree-ring data, averaging the annual Δ14C levels for several stations in Slovakia, have been in agreement with the atmospheric data, as well as with the newly established clean-air station at Jasná in central Slovakia. Future 14C levels will depend strongly on fossil CO2 levels in the atmosphere, which will change the bomb 14C era to the fossil CO2 era. New investigations of 14C variations in the atmosphere-biosphere-hydrosphere compartments represent a great challenge for radiocarbon science, important for better understanding of environmental processes, climate change, and impacts of human activities on the total environment. This new era of radiocarbon research will also need new developments in radiocarbon analytical technologies, as further progress in accuracy and precision of results (<1‰) will be needed to meet the new radiocarbon challenges.


Assuntos
Poluentes Radioativos do Ar , Poluentes Atmosféricos , Monitoramento de Radiação , Humanos , Eslováquia , Dióxido de Carbono , Poluentes Radioativos do Ar/análise , Centrais Nucleares , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos
8.
PLoS One ; 19(2): e0299072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412163

RESUMO

This study uses CR-39 radon detectors to examine radon distributions, seasonal indoor radon variations, correction factors, and the influence of building materials and characteristics on indoor radon concentration in 120 dwellings. The study also determines the spatial distribution of radon levels using the ArcGIS geostatistical method. Radon detectors were exposed in bedrooms from April to July (RS), August to November (DS); December to March (HS), and January-December (YS) from 2021 to 2022. The result for the radon levels during the weather seasons were; 32.3 to 190.1 Bqm-3 (80.9 ± 3.2 Bq/m3) for (RS), 30.8 to 151.4 Bqm-3 (68.5 ± 2.7 Bqm-3) for HS and 24.8 to 112.9 Bqm-3(61.7 ± 2.1 Bqm-3) for DS, and 25.2 to 145.2 Bq/m3 (69.4 ± 2.7 Bqm-3). The arithmetic mean for April to July season was greater than August to November. The correction factors associated with this study ranged from 0.9 to 1.2. The annual effective dose (AE) associated with radon data was varied from 0.6 to 4.04 mSv/y (1.8 ± 0.1 mSv/y). The April to July period which was characterized by rains recorded the highest correlation coefficient and indoor radon concentration. Distribution and radon mapping revealed radon that the exposure to the occupant is non-uniformly spread across the studied dwellings. 15.4% of the studied data exceeded WHO reference values of 100 Bq/m3. The seasonal variation, dwelling age, and building materials were observed to have a substantial impact on the levels of radon concentration within the buildings.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Radônio/análise , Estações do Ano , Poluição do Ar em Ambientes Fechados/análise , Gana , Tempo (Meteorologia) , Habitação , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise
9.
J Environ Radioact ; 272: 107368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183868

RESUMO

This paper provides an in-depth discussion of the CFD implications to the design/study of interior environments and an overview of the most widely used CFD model for indoor radon and thoron dispersion study. For the design and analysis of indoor environments, CFD is a powerful tool that enables simulation and measurement-based validation. Simulating an indoor environment involves deliberate thought and skilful management of complicated boundary conditions. User and CFD programs can develop results through gradual effort that can be relied upon and applied to the design and study of indoor environments. Radon and thoron are natural radioactive gases and play a crucial role in accurately assessing the radioactive hazard within an indoor environment. This review comprise the work related to measurement and CFD modeling on these radioactive pollutant for indoors.Highlighting the current state of environmental radioactive pollutants and potentially identified areas that require further attention or research regarding investigating factors affecting indoor radioactive pollutants.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Monitoramento de Radiação , Poluentes Radioativos , Radônio , Radônio/análise , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento de Radiação/métodos , Produtos de Decaimento de Radônio/análise , Habitação
10.
J Environ Radioact ; 273: 107383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237239

RESUMO

Many countries are considering nuclear power as a means of reducing greenhouse gas emissions, and the IAEA (IAEA, 2022) has forecasted nuclear power growth rates up to 224% of the 2021 level by 2050. Nuclear power plants release trace quantities of radioxenon, an inert gas that is also monitored because it is released during nuclear explosive tests. To better understand how nuclear energy growth (and resulting Xe emissions) could affect a global nonproliferation architecture, we modeled daily releases of radioxenon isotopes used for nuclear explosion detection in the International Monitoring System (IMS) that is part of the Comprehensive Nuclear Test-Ban Treaty: 131mXe, 133Xe, 133mXe, and 135Xe to examine the change in the number of potential radioxenon detections as compared to the 2021 detection levels. If a 40-station IMS network is used, the potential detections of 133Xe in 2050 would range from 82% for the low-power scenario to 195% for the high-power scenario, compared to the detections in 2021. If an 80-station IMS network is used, the potential detections of 133Xe in 2050 would range from 83% of the 2021 detection rate for the low-power scenario to 209% for the high-power scenario. Essentially no detections of 131mXe and 133mXe are expected. The high growth scenario could lead to a 2.5-fold increase in 135Xe detections, but the total number of detections is still small (on the order of 1 detection per day in the entire network). The higher releases do not pose a health issue, but better automated methods to discriminate between radioactive xenon released from industrial sources and nuclear explosions will be needed to offset the higher workload for people who perform the monitoring.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Humanos , Radioisótopos de Xenônio/análise , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Xenônio/análise , Isótopos
11.
J Environ Radioact ; 273: 107384, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237240

RESUMO

Numerous algorithms have been developed to determine the source characteristics for an atmospheric radionuclide release, e.g., (Bieringer et al., 2017). This study compares three models that have been applied to the data collected by the International Monitoring System operated by the Comprehensive Nuclear-Test-Ban Treaty Organization Preparatory Commission to estimate source event parameters. Each model uses a different approach to estimate the parameters. A deterministic model uses a possible source region (PSR) approach (Ringbom et al., 2014) that is based on the correlation between predicted and measured sample values. A model (now called BAYEST) developed at Pacific Northwest National Laboratory uses a Bayesian formulation (Eslinger et al., 2019, 2020; Eslinger and Schrom, 2016). The FREAR model uses a different Bayesian formulation (De Meutter and Hoffman, 2020; De Meutter et al., 2021a, 2021b). The performance of the three source-location models is evaluated with 100 synthetic release cases for the single xenon isotope, 133Xe. The release cases resulted in detections in a fictitious network with 120 noble gas samplers. All three source-location models use the same sampling data. The two Bayesian models yield more accurate location estimates than the deterministic PSR model, with FREAR having slightly better location performance than BAYEST. Samplers with collection periods of 3, 6, 8, 12, and 24-h were used. Results from BAYEST show that location accuracy improves with each reduction in sample collection length. The BAYEST model is slightly better for estimating the start time of the release. The PSR model has about the same spread in start times as the FREAR model, but the PSR results have a better average start time. The Bayesian source-location algorithms give more accurate results than the PSR approach, and provide release magnitude estimates, while the base PSR model does not estimate the release magnitude. This investigation demonstrates that a reasonably dense sampling grid will sometimes yield poor location and time estimates regardless of the model. The poor estimates generally coincide with cases where there is a much larger distance between the release point and the first detecting sampler than the average sampler spacing.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Teorema de Bayes , Radioisótopos de Xenônio/análise , Algoritmos
12.
J Environ Radioact ; 273: 107371, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241907

RESUMO

Radon, an environmental pollutant gas, occurs naturally in soil. Although loess, an essential building material in northwest China, is commonly used, research on radon emissions from loess remains limited. This study aims to address this gap by conducting both field and laboratory experiments to examine the impact of water content on radon emission from loess. The findings reveal that the radon emission rate from loess follows a non-linear pattern with respect to water content, initially increasing and then decreasing. The highest cumulative radon concentration occurs at 14% moisture content, with an emission rate of 0.44 Bq·m-3/g·h. Moreover, high water content significantly inhibits radon emission from loess. These results have practical implications for ensuring "radon safety" in loess buildings.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Radônio/análise , Poluentes Radioativos do Ar/análise , Solo , China
13.
J Environ Radioact ; 273: 107372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262302

RESUMO

A global network of monitoring stations is set up that can measure tiny concentrations of airborne radioactivity as part of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty. If Treaty-relevant detections are made, inverse atmospheric transport modelling is one of the methods that can be used to determine the source of the radioactivity. In order to facilitate the testing of novel developments in inverse modelling, two sets of test cases are constructed using real-world 133Xe detections associated with routine releases from a medical isotope production facility. One set consists of 24 cases with 5 days of observations in each case, and another set consists of 8 cases with 15 days of observations in each case. A series of inverse modelling techniques and several sensitivity experiments are applied to determine the (known) location of the medical isotope production facility. Metrics are proposed to quantify the quality of the source localisation. Finally, it is illustrated how the sets of test cases can be used to test novel developments in inverse modelling algorithms.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Poluentes Radioativos do Ar/análise , Radioisótopos de Xenônio/análise , Monitoramento de Radiação/métodos , Cooperação Internacional , Isótopos
14.
Radiat Prot Dosimetry ; 200(5): 437-447, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38226499

RESUMO

In this study, the activity concentrations of radon (222Rn), thoron (220Rn) and thoron progeny were measured simultaneously in Djeno (Pointe-Noire, Republic of Congo) using RADUET detectors to evaluate the air quality and the radiological risks due to the inhalation of these radionuclides. Activity concentrations of radon progeny were calculated from those of radon. Indoor radon, thoron and progenies followed a lognormal distribution ranging between 20 and 40, 6 and 62, 8 and 17.6 and 0.4 and 19.6 Bq m-3 for radon, thoron, radon progeny and thoron progeny, respectively. Mean values for radon were lower than the worldwide values estimated by the United Nation Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), which are 40 Bq m-3 (arithmetic mean) and 45 Bq m-3 (geometric mean). Radon concentrations in the dwellings under study were below the World Health Organization and the International Commission on Radiological Protection recommended reference levels, which are, respectively, 100 and 300 Bq m-3. The mean concentration of thoron was twice the world average value of 10 Bq m-3 estimated by UNSCEAR. Thoron progeny mean concentration was sharply greater than the typical value (0.3 Bq m-3) for indoor atmosphere provided by UNSCEAR. Annual effective dose ranges were 0.40-0.87 mSv (arithmetic mean, 0.57 ± 0.11 mSv) for radon and 0.10-4.14 mSv (arithmetic mean, 0.55 ± 0.77 mSv) for thoron. The mean value for radon was lower than the value (1.15 mSv) estimated by UNSCEAR, while the mean value for thoron was five times higher than the UNSCEAR value (0.10 mSv). The study showed that the use of the typical equilibrium factor value given by UNSCEAR to compute effective dose led to an error above 80%. Finally, the results of this study showed that the excess relative risk of radon-induced cancer was low, below 2% for the population under 55 y. The results presented in the present study prove that the population of Djeno is exposed to a relatively low potential risk of radon- and thoron-induced cancer.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Neoplasias , Monitoramento de Radiação , Radônio , Radônio/análise , Produtos de Decaimento de Radônio/análise , Poluentes Radioativos do Ar/análise , Congo , Poluição do Ar em Ambientes Fechados/análise , Monitoramento de Radiação/métodos , Habitação , Medição de Risco
15.
J Environ Radioact ; 273: 107389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278089

RESUMO

In Harghita and Covasna County (Romania) are many mofettes. The mofette is mainly CO2 composed low temperature volcanic gas emanation. The mofettes can contain important quantities of radon. In these regions of Romania, the mofettes have long been used on curative purposes. We proposed monitoring the seasonal variation of radon activity concentration (RAC) in 10 frequented mofettes. Measurements in mofettes have shown radon concentrations ranging from a few hundred to several thousand becquerels per cubic meter (Bq/m³). The same trend can be observed for most mofettes. In the spring and summer months, the radon activity concentration values are higher than in the autumn and winter period. We found that a moderate negative relationship can be observed between the RAC and atmospheric pressure variations. From the average RAC values measured above the gas level in the indoor air of the mofettes, the annual effective dose received by the patients during a treatment session and by the mofette workers (if any) was calculated. The annual effective dose of inhaled radon received by patients during a treatment session does not exceed the annual dose limit for the population (1 mSv), but in mofettes with staff, the effective dose they receive can be significant, which already requires attention.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Humanos , Radônio/análise , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Estações do Ano , Romênia , Habitação
16.
J Environ Radioact ; 272: 107349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061191

RESUMO

The purpose of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is to establish a legally binding ban on nuclear weapon test explosions or any other nuclear explosions. The Preparatory Commission for the CTBT Organization (CTBTO PrepCom) is developing the International Monitoring System (IMS) that includes a global network of 80 stations to monitor for airborne radionuclides upon entry into force of the CTBT. All 80 radionuclide stations will monitor for particulate radionuclides and at least half of the stations will monitor for radioxenon. The airborne radionuclide monitoring is an important verification technology both for the detection of a radionuclide release and in the determination of whether the release event originates from a nuclear explosion as opposed to an industrial use of nuclear materials. Nuclear power plants and many medical isotope production facilities release radioxenon into the atmosphere. Low levels of a few particulate isotopes, such as iodine, may also be released. Detections of multiple isotopes are useful for screening the radionuclide samples for relevance to the Treaty. This paper examines the anticipated joint detections in the IMS of noble gas and particulate isotopes from underground nuclear explosions where breaches in the underground containment vents from low levels to up to 1% of the radionuclide inventory of the resulting fission products to the atmosphere. Detection probabilities are based on 844 simulated release events spaced out at 17 release locations and one year in time. Six different release (venting) scenarios, including two fractionated scenarios, were analyzed. When ranked by detection probability, 11 particulate isotopes and one noble gas isotope (133Xe) appear in the top 20 isotopes for all six release scenarios. Using the 11 particulate isotopes and the one noble gas isotope, the IMS has nearly the same detection probability as when 45 particulate and 4 noble gas isotopes are used. Thus, a limited list of relevant radionuclides may be sufficient for treaty verification purposes. The probability that at least one particulate and at least one radioxenon isotope would be detected in the IMS from the release events ranged from 0.15 to 0.86 depending on the release scenario.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radioisótopos de Xenônio/análise , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Radioisótopos , Aerossóis
17.
Isotopes Environ Health Stud ; 60(1): 74-89, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37975234

RESUMO

Advanced computational fluid dynamics (CFD) simulations are essential for predicting airflow in ventilated spaces and assessing indoor air quality. In this study, a focus was set on techniques for the reduction of indoor radon-222 activity concentration [Rn], and it is demonstrated how true-to-scale 3D CFD models can predict the evolution of complex ventilation experiments. A series of ventilation experiments in an unoccupied flat on the ground floor of a residential block in Bad Schlema (Saxony, Germany) were performed. Specifically, the 'Cross-ventilation 100 %' experiment resulted in room-specific [Rn] reductions from ∼3000 to ∼300 Bq m-3. We quantitatively interpreted the results of the ventilation experiment using a CFD model with a k-ϵ turbulent stationary flow model characterised by the used decentralised ventilation system. The model was coupled with a transient transport model simulating indoor [Rn]. In a first approach, the model overestimated the decrease in the starting of the experiment and the steady state. Adjusting the model parameters inflowing radon and inlet velocity the model results are in a good agreement with the experimental values. In conclusion, this paper demonstrates the potential of CFD modelling as a suitable tool in evaluating and optimising ventilation systems for an effective reduction of elevated [Rn].


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Hidrodinâmica , Modelos Teóricos , Radônio/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Radioativos do Ar/análise , Habitação
18.
Environ Sci Pollut Res Int ; 31(1): 565-578, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012488

RESUMO

The relationship between soil radon and meteorological parameters in a region can provide insight into natural processes occurring between the lithosphere and the atmosphere. Understanding this relationship can help models establish more realistic results, rather than depending on theoretical consequences. Radon variation can be complicated to model due to the various physical variables which can affect it, posing a limitation in atmospheric studies. To predict Rn variation from meteorological parameters, a hybrid mod el called multiANN, which is a combination of multi-regression and artificial neural network (ANN) models, is established. The model was trained with 70% of the data and tested on the remaining 30%, and its robustness was tested using the Monte-Carlo method. The regions with low performance are identified and possibly related to seismic events. This model can be a good candidate for predicting Rn concentrations from meteorological parameters and establishing the lower boundary conditions in seismo-ionospheric coupling models.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Radônio/análise , Solo , Conceitos Meteorológicos , Poluentes Radioativos do Ar/análise
19.
J Environ Radioact ; 272: 107331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008047

RESUMO

By introducing the parameters of radon exhalation rate and radon diffusion coefficient, the distribution of radon concentration field on ramp under the condition of superposition of temperature field and flow field is simulated. The simulation results show that the distribution of radon concentration in the ramp under the condition of low-speed ventilation is greatly affected by the temperature field and flow field, and the change of radon exhalation caused by temperature is the main factor leading to the change of radon concentration in the ramp. The change of temperature will cause the overall increase of radon concentration in the ramp. Under the condition of constant flow field, the radon concentration in the chamber is more than two times higher than the average radon concentration in the ramp. Some areas severely exceeded the limit.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Radônio/análise , Temperatura , Vento , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise
20.
J Environ Radioact ; 272: 107346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043218

RESUMO

It is well known that one of the most important risk factors in underground environment is the harmful effects of radon. The reasons for strong seasonal fluctuations in radon content in underground environments remain not fully understood. The purpose of this article is to improve existing ideas about this phenomenon. The article presents the results of a study of radon transport in two different underground spaces - the Beshtaugorskiy uranium mine (North Caucasus) and the Kungur Ice Cave (Middle Ural). We have used the direct measurements of the equilibrium equivalent concentration (EEC) of radon progeny in air, as well as the air flow velocity. A very wide range and strong seasonal variations in the radon levels have been recorded in both cases. The EEC has a range of 11-6653 by Bq m-3 and 10-89,020 Bq m-3 in the Kungur cave and the Beshtaugorskiy mine, respectively. It has been established that seasonal fluctuations in radon levels both in the mine and in the cave are caused by the same process - convective air circulation in the underground space due to the temperature difference between the mountain massif and the atmosphere (so called chimney effect). Overall, these results indicate that due to convective air circulation, underground spaces are periodically intensively ventilated with atmospheric air, and then, on the contrary, they are filled with radon-enriched air that seeps into caves or adits from rocks and ores. In both cases, the EEC of radon progeny exceeds the permissible level for the population and workers. The results of this study highlight the need for the development of measures to limit the presence of people in the surveyed underground spaces.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Urânio , Humanos , Radônio/análise , Poluentes Radioativos do Ar/análise , Estações do Ano , Gelo , Produtos de Decaimento de Radônio , Cavernas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...