Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.945
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568976

RESUMO

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Assuntos
Receptores Colinérgicos , Sinapses , Sinapses/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios Motores/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Colinérgicos , Receptores Pré-Sinápticos
2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612683

RESUMO

The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.


Assuntos
Transtorno Depressivo Maior , Neuropeptídeos , Humanos , Dopamina , Área Tegmentar Ventral , Neurotransmissores
3.
Nutrients ; 16(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38613110

RESUMO

The microbiota-gut-brain axis has received increasing attention in recent years through its bidirectional communication system, governed by the ability of gut microorganisms to generate and regulate a wide range of neurotransmitters in the host body. In this research, we delve into the intricate area of microbial endocrinology by exploring the dynamic oscillations in neurotransmitter levels within plasma and brain samples. Our experimental model involved inducing hyperthyroidism in mice after a "probiotic load" timeframe using two strains of probiotics (Lactobacillus acidophilus, Saccharomyces boulardii, and their combination). These probiotic interventions continued throughout the experiment and were intended to uncover potential modulatory effects on neurotransmitter levels and discern if certain probiotic strains exhibit any protection from hyperthyroidism. Moreover, we aimed to outline the eventual connections between the gut microbiota and the hypothalamus-pituitary-thyroid axis. As our study reveals, there are significant fluctuations in crucial neurotransmitters within the hyperthyroidism model, related to the specific probiotic strain or combination. These findings could support future therapeutic approaches, help healthcare professionals choose between different probiotic therapies, and also allow us proceed with caution when administering such treatments, depending on the health status of hyperthyroid patients.


Assuntos
Hipertireoidismo , Probióticos , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Hipertireoidismo/terapia , Encéfalo , Saccharomyces cerevisiae , Neurotransmissores
4.
ACS Nano ; 18(15): 10596-10608, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557034

RESUMO

Continuously monitoring neurotransmitter dynamics can offer profound insights into neural mechanisms and the etiology of neurological diseases. Here, we present a miniaturized implantable fluorescence probe integrated with metal-organic frameworks (MOFs) for deep brain dopamine sensing. The probe is assembled from physically thinned light-emitting diodes (LEDs) and phototransistors, along with functional surface coatings, resulting in a total thickness of 120 µm. A fluorescent MOF that specifically binds dopamine is introduced, enabling a highly sensitive dopamine measurement with a detection limit of 79.9 nM. A compact wireless circuit weighing only 0.85 g is also developed and interfaced with the probe, which was later applied to continuously monitor real-time dopamine levels during deep brain stimulation in rats, providing critical information on neurotransmitter dynamics. Cytotoxicity tests and immunofluorescence analysis further suggest a favorable biocompatibility of the probe for implantable applications. This work presents fundamental principles and techniques for integrating fluorescent MOFs and flexible electronics for brain-computer interfaces and may provide more customized platforms for applications in neuroscience, disease tracing, and smart diagnostics.


Assuntos
Dopamina , Estruturas Metalorgânicas , Ratos , Animais , Dopamina/análise , Estruturas Metalorgânicas/metabolismo , Corantes Fluorescentes/metabolismo , Fluorescência , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurotransmissores/metabolismo
5.
Anal Chem ; 96(15): 6037-6044, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38560885

RESUMO

Dopamine (DA), an essential neurotransmitter, is closely associated with various neurological disorders, whose real-time dynamic monitoring is significant for evaluating the physiological activities of neurons. Electrochemical sensing methods are commonly used to determine DA, but they mostly rely on the redox reaction of its o-phenolic hydroxyl group, which makes it difficult to distinguish it from substances with this group. Here, we design a biomimetic nanozyme inspired by the coordination structure of the copper-based active site of dopamine ß-hydroxylase, which was successfully synthesized via a urea-mediated MOF pyrolysis reconstruction strategy. Experimental studies and theoretical calculations revealed that the nanozyme with Cu-N3 coordination could hydroxylate the carbon atom of the DA ß-site at a suitable potential and that the active sites of this Cu-N3 structure have the lowest binding energy for the DA ß-site. With this property, the new oxidation peak achieves the specific detection of DA rather than the traditional electrochemical signal of o-phenol hydroxyl redox, which would effectively differentiate it from neurotransmitters, such as norepinephrine and epinephrine. The sensor exhibited good monitoring capability in DA concentrations from 0.05 to 16.7 µM, and its limit of detection was 0.03 µM. Finally, the sensor enables the monitoring of DA released from living cells and can be used to quantitatively analyze the effect of polystyrene microplastics on the amount of DA released. The research provides a method for highly specific monitoring of DA and technical support for initial screening for neurocytotoxicity of pollutants.


Assuntos
Dopamina , Oxigenases de Função Mista , Dopamina/química , Fenol , Biomimética , Cobre , Plásticos , Pirólise , Eletrodos , Neurotransmissores , Técnicas Eletroquímicas/métodos
6.
Chemosphere ; 355: 141851, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579950

RESUMO

Fish have common neurotransmitter pathways with humans, exhibiting a significant degree of conservation and homology. Thus, exposure to fluoxetine makes fish potentially susceptible to biochemical and physiological changes, similarly to what is observed in humans. Over the years, several studies demonstrated the potential effects of fluoxetine on different fish species and at different levels of biological organization. However, the effects of parental exposure to unexposed offspring remain largely unknown. The consequences of 15-day parental exposure to relevant concentrations of fluoxetine (100 and 1000 ng/L) were assessed on offspring using zebrafish as a model organism. Parental exposure resulted in offspring early hatching, non-inflation of the swimming bladder, increased malformation frequency, decreased heart rate and blood flow, and reduced growth. Additionally, a significant behavioral impairment was also found (reduced startle response, basal locomotor activity, and altered non-associative learning during early stages and a negative geotaxis and scototaxis, reduced thigmotaxis, and anti-social behavior at later life stages). These behavior alterations are consistent with decreased anxiety, a significant increase in the expression of the monoaminergic genes slc6a4a (sert), slc6a3 (dat), slc18a2 (vmat2), mao, tph1a, and th2, and altered levels of monoaminergic neurotransmitters. Alterations in behavior, expression of monoaminergic genes, and neurotransmitter levels persisted until offspring adulthood. Given the high conservation of neuronal pathways between fish and humans, data show the possibility of potential transgenerational and multigenerational effects of pharmaceuticals' exposure. These results reinforce the need for transgenerational and multigenerational studies in fish, under realistic scenarios, to provide realistic insights into the impact of these pharmaceuticals.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Humanos , Adulto , Peixe-Zebra/metabolismo , Fluoxetina/farmacologia , Larva , Antidepressivos/farmacologia , Perciformes/metabolismo , Neurotransmissores/metabolismo , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Acta Neurobiol Exp (Wars) ; 84(1): 26-34, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587327

RESUMO

Morphine changes neurotransmitter release, including norepinephrine, dopamine, and serotonin. Decynium­22 (D22) inhibits an alternative neurotransmitter removal pathway, namely uptake­2. Uptake­2 includes plasma membrane monoamine transporter (PMAT) and organic cation transporters that have a low affinity, but high capacity for uptake of various monoamines such as norepinephrine, dopamine, and serotonin. This study was done to assess the effect of uptake­2 inhibition on morphine­induced conditioned place preference (CPP) and analgesia. In this study, the effects of morphine and/or D22 on CPP were evaluated following intraperitoneal injection in mice. Afterward, changes in motor activity were evaluated by the open field test. Using the tail­flick model, the effects of D22 and/or morphine were evaluated on the pain threshold. The results showed that 20 mg/kg of morphine induced a place preference response. D22, at the dose of 0.03 mg/kg, caused place avoidance, while at the dose of 0.3 mg/kg, it produced a notable place preference response. Co­administration of D22 and morphine showed that morphine reversed the CPP aversion induced by D22 at the lowest dose. Motor activity did not alter. In the tail­flick test, morphine, at the dose of 3 mg/kg but not 1 mg/kg, increased the pain threshold. D22 induced significant analgesic responses. Co­administration of D22 and morphine caused considerable analgesic effects. The findings revealed that D22 induced both conditioned aversion and preference depending on the dose while morphine induced CPP. Both drugs produced analgesia.


Assuntos
Dopamina , Morfina , Camundongos , Animais , Morfina/farmacologia , Serotonina , Dor/tratamento farmacológico , Analgésicos , Norepinefrina , Neurotransmissores , Relação Dose-Resposta a Droga
8.
Nat Commun ; 15(1): 2868, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570478

RESUMO

Signal communication mechanisms within the human body rely on the transmission and modulation of action potentials. Replicating the interdependent functions of receptors, neurons and synapses with organic artificial neurons and biohybrid synapses is an essential first step towards merging neuromorphic circuits and biological systems, crucial for computing at the biological interface. However, most organic neuromorphic systems are based on simple circuits which exhibit limited adaptability to both external and internal biological cues, and are restricted to emulate only specific the functions of an individual neuron/synapse. Here, we present a modular neuromorphic system which combines organic spiking neurons and biohybrid synapses to replicate a neural pathway. The spiking neuron mimics the sensory coding function of afferent neurons from light stimuli, while the neuromodulatory activity of interneurons is emulated by neurotransmitters-mediated biohybrid synapses. Combining these functions, we create a modular connection between multiple neurons to establish a pre-processing retinal pathway primitive.


Assuntos
Interneurônios , Neurônios , Humanos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Neurônios Aferentes , Sinapses/fisiologia , Neurotransmissores
9.
Sci Adv ; 10(15): eadl5952, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598639

RESUMO

N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.


Assuntos
Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona , Microscopia Crioeletrônica , Glicina/metabolismo , Neurotransmissores , Mamíferos/metabolismo
10.
ACS Chem Biol ; 19(4): 953-961, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38566504

RESUMO

Synaptotagmin-1 (Syt-1) is a calcium sensing protein that is resident in synaptic vesicles. It is well established that Syt-1 is essential for fast and synchronous neurotransmitter release. However, the role of Ca2+ and phospholipid binding in the function of Syt-1, and ultimately in neurotransmitter release, is unclear. Here, we investigate the binding of Ca2+ to Syt-1, first in the absence of lipids, using native mass spectrometry to evaluate individual binding affinities. Syt-1 binds to one Ca2+ with a KD ∼ 45 µM. Each subsequent binding affinity (n ≥ 2) is successively unfavorable. Given that Syt-1 has been reported to bind anionic phospholipids to modulate the Ca2+ binding affinity, we explored the extent that Ca2+ binding was mediated by selected anionic phospholipid binding. We found that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and dioleoylphosphatidylserine (DOPS) positively modulated Ca2+ binding. However, the extent of Syt-1 binding to phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) was reduced with increasing [Ca2+]. Overall, we find that specific lipids differentially modulate Ca2+ binding. Given that these lipids are enriched in different subcellular compartments and therefore may interact with Syt-1 at different stages of the synaptic vesicle cycle, we propose a regulatory mechanism involving Syt-1, Ca2+, and anionic phospholipids that may also control some aspects of vesicular exocytosis.


Assuntos
Cálcio , Fosfolipídeos , Fosfolipídeos/metabolismo , Cálcio/metabolismo , Sinaptotagmina I/metabolismo , Vesículas Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Exocitose/fisiologia , Neurotransmissores/metabolismo
11.
ACS Chem Biol ; 19(4): 788-797, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38581649

RESUMO

Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.


Assuntos
Encéfalo , Neurônios , Neurônios/metabolismo , Encéfalo/metabolismo , Neurotransmissores/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(16): e2321447121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593076

RESUMO

The SNAP receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin mediate neurotransmitter release by forming tight SNARE complexes that fuse synaptic vesicles with the plasma membranes in microseconds. Membrane fusion is generally explained by the action of proteins on macroscopic membrane properties such as curvature, elastic modulus, and tension, and a widespread model envisions that the SNARE motifs, juxtamembrane linkers, and C-terminal transmembrane regions of synaptobrevin and syntaxin-1 form continuous helices that act mechanically as semirigid rods, squeezing the membranes together as they assemble ("zipper") from the N to the C termini. However, the mechanism underlying fast SNARE-induced membrane fusion remains unknown. We have used all-atom molecular dynamics simulations to investigate this mechanism. Our results need to be interpreted with caution because of the limited number and length of the simulations, but they suggest a model of membrane fusion that has a natural physicochemical basis, emphasizes local molecular events over general membrane properties, and explains extensive experimental data. In this model, the central event that initiates fast (microsecond scale) membrane fusion occurs when the SNARE helices zipper into the juxtamembrane linkers which, together with the adjacent transmembrane regions, promote encounters of acyl chains from both bilayers at the polar interface. The resulting hydrophobic nucleus rapidly expands into stalk-like structures that gradually progress to form a fusion pore, aided by the SNARE transmembrane regions and without clearly discernible intermediates. The propensity of polyunsaturated lipids to participate in encounters that initiate fusion suggests that these lipids may be important for the high speed of neurotransmitter release.


Assuntos
Fusão de Membrana , Proteínas SNARE , Proteínas SNARE/metabolismo , Simulação de Dinâmica Molecular , Proteínas R-SNARE , Sintaxina 1 , Neurotransmissores , Lipídeos
13.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557486

RESUMO

The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Transdução de Sinais , Encéfalo , Neurotransmissores
14.
Neurology ; 102(9): e209300, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38630946

RESUMO

BACKGROUND AND OBJECTIVES: Biochemical testing of CSF for neurotransmitter metabolites and their cofactors is often used in the diagnostic evaluation of infants with neurologic disorders but requires an invasive, labor-intensive procedure with many potential sources of error. Our aim was to determine the diagnostic yield of CSF testing for biogenic amines (serotonin, norepinephrine, epinephrine, and dopamine) and their cofactors in identifying inborn errors of neurotransmitter metabolism among infants. METHODS: We evaluated all infants aged 1 year or younger who underwent CSF biogenic amine neurotransmitter (CSFNT) testing at Children's Hospital of Philadelphia (CHOP) and Boston Children's Hospital (BCH) between 2008 and 2017 in this cross-sectional study. The primary outcome was the proportion of individuals who received a diagnostic result from CSFNT testing. Secondary assessments included the proportion of infants who obtained a diagnostic result from other types of diagnostic testing. RESULTS: The cohort included 323 individuals (191 from CHOP and 232 from BCH). The median age at presentation was 110 days (range 36-193). The most common presenting features were seizures (71%), hypotonia (47%), and developmental delay (43%). The diagnostic yield of CSFNT testing was zero. When CSF pyridoxal-5-phosphate level was assayed with CSFNT testing, 1 patient had a diagnostic result. An etiologic diagnosis was identified in 163 patients (50%) of the cohort, with genetic testing having the highest yield (120 individuals, 37%). DISCUSSION: Our findings support the case for deimplementation of CSFNT testing as a standard diagnostic test of etiology in infants aged 1 year or younger presenting with neurologic disorders.


Assuntos
Aminas Biogênicas , Dopamina , Criança , Lactente , Humanos , Estudos Transversais , Dopamina/metabolismo , Convulsões , Neurotransmissores
15.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1318-1326, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621979

RESUMO

In order to study the neuroprotective mechanism of cinnamaldehyde on reserpine-induced Parkinson's disease(PD) rat models, 72 male Wistar rats were randomly divided into blank group, model group, Madopar group, and cinnamaldehyde high-, medium-, and low-dose groups. Except for the blank group, the other groups were intraperitoneally injected with reserpine of 0.1 mg·kg~(-1) once every other morning, and cinnamaldehyde and Madopar solutions were gavaged every afternoon. Open field test, rotarod test, and oral chewing movement evaluation were carried out in the experiment. The brain was taken and fixed. The positive expression of dopamine receptor D1(DRD1) was detected by TSA, and the changes in neurotransmitters such as dopamine(DA) and 3,4-dihydroxyphenylacetic acid(DOPAC) in the brain were detected by enzyme-linked immunosorbent assay(ELISA). The protein and mRNA expression levels of tyrosine hydroxylase(TH) and α-synuclein(α-Syn) in substantia nigra(SN) were detected by RT-PCR and Western blot. The results showed that after the injection of reserpine, the hair color of the model group became yellow and dirty; the arrest behavior was weakened, and the body weight was reduced. The spontaneous movement and exploration behavior were reduced, and the coordination exercise ability was decreased. The number of oral chewing was increased, but the cognitive ability was decreased, and the proportion of DRD1 positive expression area in SN was decreased. The expression of TH protein and mRNA was down-regulated, and that of α-Syn protein and mRNA was up-regulated. After cinnamaldehyde intervention, it had an obvious curative effect on PD model animals. The spontaneous movement behavior, the time of staying in the rod, the time of movement, the distance of movement, and the number of standing times increased, and the number of oral chewing decreased. The proportion of DRD1 positive expression area in SN increased, and the protein and mRNA expression levels of α-Syn were down-regulated. The protein and mRNA expression levels of TH were up-regulated. In addition, the levels of DA, DOPAC, and homovanillic acid(HVA) neurotransmitters in the brain were up-regulated. This study can provide a new experimental basis for clinical treatment and prevention of PD.


Assuntos
Acroleína/análogos & derivados , Doença de Parkinson , Ratos , Masculino , Animais , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Reserpina/efeitos adversos , Reserpina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ratos Wistar , Substância Negra/metabolismo , RNA Mensageiro/metabolismo , Neurotransmissores/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Hum Brain Mapp ; 45(5): e26657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544486

RESUMO

Although Postpartum depression (PPD) and PPD with anxiety (PPD-A) have been well characterized as functional disruptions within or between multiple brain systems, however, how to quantitatively delineate brain functional system irregularity and the molecular basis of functional abnormalities in PPD and PPD-A remains unclear. Here, brain sample entropy (SampEn), resting-state functional connectivity (RSFC), transcriptomic and neurotransmitter density data were used to investigate brain functional system irregularity, functional connectivity abnormalities and associated molecular basis for PPD and PPD-A. PPD-A exhibited higher SampEn in medial prefrontal cortex (MPFC) and posterior cingulate cortex (PPC) than healthy postnatal women (HPW) and PPD while PPD showed lower SampEn in PPC compared to HPW and PPD-A. The functional connectivity analysis with MPFC and PPC as seed areas revealed decreased functional couplings between PCC and paracentral lobule and between MPFC and angular gyrus in PPD compared to both PPD-A and HPW. Moreover, abnormal SampEn and functional connectivity were associated with estrogenic level and clinical symptoms load. Importantly, spatial association analyses between functional changes and transcriptome and neurotransmitter density maps revealed that these functional changes were primarily associated with synaptic signaling, neuron projection, neurotransmitter level regulation, amino acid metabolism, cyclic adenosine monophosphate (cAMP) signaling pathways, and neurotransmitters of 5-hydroxytryptamine (5-HT), norepinephrine, glutamate, dopamine and so on. These results reveal abnormal brain entropy and functional connectivities primarily in default mode network (DMN) and link these changes to transcriptome and neurotransmitters to establish the molecular basis for PPD and PPD-A for the first time. Our findings highlight the important role of DMN in neuropathology of PPD and PPD-A.


Assuntos
Depressão Pós-Parto , Humanos , Feminino , Depressão Pós-Parto/diagnóstico por imagem , Rede de Modo Padrão , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Giro do Cíngulo/diagnóstico por imagem , Ansiedade/diagnóstico por imagem , Neurotransmissores
17.
Analyst ; 149(8): 2328-2337, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488040

RESUMO

Monitoring the concentration fluctuations of neurotransmitters in vivo is valuable for elucidating the chemical signals that underlie brain functions. Microdialysis sampling is a widely used tool for monitoring neurochemicals in vivo. The volume requirements of most techniques that have been coupled to microdialysis, such as HPLC, result in fraction collection times of minutes, thus limiting the temporal resolution possible. Further the time of analysis can become long for cases where many fractions are collected. Previously we have used direct analysis of dialysate by low-flow electrospray ionization-tandem mass spectrometry (ESI-MS/MS) on a triple quadrupole mass spectrometer to monitor acetylcholine, glutamate, and γ-amino-butyric acid to achieve multiplexed in vivo monitoring with temporal resolution of seconds. Here, we have expanded this approach to adenosine, dopamine, and serotonin. The method achieved limits of detection down to 2 nM, enabling basal concentrations of all these compounds, except serotonin, to be measured in vivo. Comparative analysis with LC-MS/MS showed accurate results for all compounds except for glutamate, possibly due to interference for this compound in vivo. Pairing this analysis with droplet microfluidics yields 11 s temporal resolution and can generate dialysate fractions down to 3 nL at rates up to 3 fractions per s from a microdialysis probe. The system is applied to multiplexed monitoring of neurotransmitter dynamics in response to stimulation by 100 mM K+ and amphetamine. These applications demonstrate the suitability of the droplet ESI-MS/MS method for monitoring short-term dynamics of up to six neurotransmitters simultaneously.


Assuntos
Microfluídica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Microdiálise/métodos , Serotonina , Ácido Glutâmico , Neurotransmissores/análise , Soluções para Diálise
18.
Eur J Med Res ; 29(1): 205, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539252

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease as a result of the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The fundamental features of PD are motor and non-motor symptoms. PD symptoms develop due to the disruption of dopaminergic neurotransmitters and other neurotransmitters such as γ-aminobutyric acid (GABA). The potential role of GABA in PD neuropathology concerning the motor and non-motor symptoms of PD was not precisely discussed. Therefore, this review intended to illustrate the possible role of GABA in PD neuropathology regarding motor and non-motor symptoms. The GABA pathway is essential in regulating the inhibitory tone to prevent excessive stimulation of the cerebral cortex. Degeneration of dopaminergic neurons in PD is linked with reducing GABAergic neurotransmission. Decreasing GABA activity promotes mitochondrial dysfunction and oxidative stress, which are highly related to PD neuropathology. Hence, restoring GABA activity by GABA agonists may attenuate the progression of PD motor symptoms. Therefore, dysregulation of GABAergic neurons in the SNpc contributes to developing PD motor symptoms. Besides, PD non-motor symptoms are also related to the dysfunction of the GABAergic pathway, and amelioration of this pathway may reduce PD non-motor symptoms. In conclusion, the deregulation of the GABAergic pathway in PD might be intricate in developing motor and non-motor symptoms. Improving this pathway might be a novel, beneficial approach to control PD symptoms.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Ácido gama-Aminobutírico/fisiologia , Neurotransmissores
19.
Anal Chim Acta ; 1301: 342465, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553123

RESUMO

BACKGROUND: Most biological molecular complexes consist of multiple functional domains, yet rationally constructing such multifunctional complexes is challenging. Aptamers, the nucleic acid-based functional molecules, can perform multiple tasks including target recognition, conformational changes, and enzymatic activities, while being chemically synthesizable and tunable, and thus provide a basis for engineering enhanced functionalities through combination of multiple units. However, the conventional approach of simply combining aptamer units in a serial manner is susceptible to undesired crosstalk or interference between the aptamer units and to false interactions with non-target molecules; besides, the approach would require additional mechanisms to separate the units if they are desired to function independently. It is clearly a challenge to develop multi-aptamer complexes that preserve independent functions of each unit while avoiding undesired interference and non-specific interactions. RESULTS: By directly in vitro selecting a 'trans' aptamer complex, we demonstrate that one aptamer unit ('utility module') can remain hidden or 'inactive' until a target analyte triggers the other unit ('sensing module') and separates the two aptamers. Since the operation of the utility module occurs free from the sensing module, unnecessary crosstalk between the two units can be avoided. Because the utility module is kept inactive until separated from the complex, non-specific interactions of the hidden module with noncognate targets can be naturally prevented. In our demonstration, the sensing module was selected to detect serotonin, a clinically important neurotransmitter, and the target-binding-induced structure-switching of the sensing module reveals and activates the utility module that turns on a fluorescence signal. The aptamer complex exhibited a moderately high affinity and an excellent specificity for serotonin with ∼16-fold discrimination against common neurotransmitter molecules, and displayed strong robustness to perturbations in the design, disallowing nonspecific reactions against various challenges. SIGNIFICANCE: This work represents the first example of a trans aptamer complex that was in vitro selected de novo. The trans aptamer complex selected by our strategy does not require chemical modifications or immediate optimization processes to function, because the complex is directly selected to perform desired functions. This strategy should be applicable to a wide range of functional nucleic acid moieties, which will open up diverse applications in biosensing and molecular therapeutics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ácidos Nucleicos , Aptâmeros de Nucleotídeos/química , Serotonina , Neurotransmissores , Técnica de Seleção de Aptâmeros
20.
J Ethnopharmacol ; 327: 118048, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484955

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sleep problems, according to Traditional Chinese medicine (TCM) philosophy, are attributed to the imbalance between yin and yang. Zhumian Granules, also known as Sleep-aid Granules or ZG, are a traditional Chinese herbal remedy specifically designed to alleviate insomnia. This formula consists of many components, including Wu Wei Zi (Schisandrae Chinensis Fructus), Suan Zao Ren (Ziziphi Spinosae Semen), and other medicinal plants. According to the pharmacology of Traditional Chinese Medicine (TCM), Wu Wei Zi and Suan Zao Ren have the ability to relax the mind and promote sleep. When taken together, they may balance the opposing forces of yin and yang. Therefore, ZG may potentially be used as a therapeutic treatment for insomnia. AIM OF THE STUDY: This research was specifically developed to establish a strong empirical basis for the subsequent advancement and utilization of ZG in the management of insomnia. This research aimed to gather empirical data to support the effectiveness of ZG, thereby providing useful insights into its potential therapeutic advantages for persons with insomnia. MATERIALS AND METHODS: This study utilized Zhumian Granules (ZG), a traditional Chinese herbal decoction, to examine its sedative and hypnotic effects on mice with PCPA-induced insomnia. The effects were assessed using the pentobarbital-induced sleep test (PIST), Morris water maze test (MWM), and autonomic activity test. The levels of neurotransmitters in each group of mice were evaluated using UPLC-QQQ-MS. The impact of ZG on the quantity and structure of hippocampal neurons was seen in brain tissue slices using immunofluorescence labeling. RESULTS: ZG was shown to possess active sedative properties, effectively lowering the distance of movement and lengthening the duration of sleep. ZG mitigated the sleeplessness effects of PCPA by elevating the levels of 5-hydroxytryptamine (5-HT), 4-aminobutyric acid (GABA), and 5-hydroxyindoleacetic acid (5-HIAA), while reducing the levels of dopamine (DA) and norepinephrine (NE), as well as decreasing neuronal death. CONCLUSIONS: This research confirmed the sedative and hypnotic properties of ZG and elucidated its probable mechanism involving neurotransmitters.


Assuntos
Schisandra , Distúrbios do Início e da Manutenção do Sono , Camundongos , Animais , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Medicina Tradicional Chinesa , Hipnóticos e Sedativos/farmacologia , Ácido gama-Aminobutírico , Serotonina , Neurotransmissores , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...