Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
2.
Pharmacol Res Perspect ; 12(2): e1183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491717

RESUMO

We investigated the metabolism and disposition of vornorexant, a novel dual orexin receptor antagonist, in rats and dogs, and clarified in vitro metabolite profiles in humans. Furthermore, we investigated the pharmacokinetics of active metabolites in rats and dogs and their CNS distribution in rats to elucidate its contribution to drug efficacy. [14 C]vornorexant was rapidly and mostly absorbed after the oral administration in rats and dogs. The drug-derived radioactivity, including metabolites, was distributed to major organs such as the liver, kidneys in rats, and was almost eliminated within 24 h post-dose in both species. Metabolite profiling revealed that main clearance mechanism of vornorexant was metabolism via multiple pathways by oxidation. The major circulating components were the cleaved metabolites (M10, M12) in rats, and the unchanged form in dogs, followed by M1, and then M3. Incubation with human hepatocytes resulted in formation of metabolites, including M1, M3, M10, and M12. The metabolic pathways were similar in all tested species. Resulting from the PK and CNS distribution of active metabolites (M1 and M3) with weaker pharmacological activity, the concentration of the unchanged form was higher than that of active metabolites in rat CSF and dog plasma, suggesting that the unchanged form mainly contributed to the drug efficacy. These findings demonstrate that vornorexant is absorbed immediately after administration, and vornorexant and its metabolites are rapidly and completely eliminated in rats and dogs. Thus, vornorexant may have favorable pharmacokinetic profiles as a hypnotic drug to provide rapid onset of action and minimal next-day residual effects in humans.


Assuntos
Antagonistas dos Receptores de Orexina , Compostos Orgânicos , Distúrbios do Início e da Manutenção do Sono , Ratos , Humanos , Animais , Cães , Ratos Sprague-Dawley , Orexinas
3.
J Med Chem ; 67(4): 2337-2348, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38331429

RESUMO

The orexin system consists of two neuropeptides (orexins A and B) and two receptors (OX1 and OX2). Selective OX1 receptor antagonists (SO1RA) are gaining interest for their potential use in the treatment of CNS disorders, including substance abuse, eating, obsessive compulsive, or anxiety disorders. While blocking OX2 reduces wakefulness, the expected advantage of selectively antagonizing OX1 is the ability to achieve clinical efficacy without the promotion of sleep. Herein we report our discovery efforts starting from a dual orexin receptor antagonist and describe a serendipitous finding that triggered a medicinal chemistry program that culminated in the identification of the potent SO1RA ACT-539313. Efficacy in a rat model of schedule-induced polydipsia supported the decision to select the compound as a preclinical candidate. Nivasorexant (20) represents the first SO1RA to enter clinical development and completed a first proof of concept phase II clinical trial in binge eating disorder in 2022.


Assuntos
Neuropeptídeos , Ratos , Animais , Orexinas , Neuropeptídeos/farmacologia , Receptores de Orexina , Morfolinas , Antagonistas dos Receptores de Orexina/farmacologia , Antagonistas dos Receptores de Orexina/uso terapêutico
4.
CNS Drugs ; 38(1): 45-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38246901

RESUMO

BACKGROUND AND OBJECTIVES: Current treatment guidelines for restless legs syndrome (RLS) recommend treatment be initiated with non-dopaminergic drugs. Given the potential role of orexins in the pathophysiology of RLS, we performed a pilot, proof-of-concept study to investigate the therapeutic effects of suvorexant, a dual orexin receptor antagonist (DORA), on sleep and sensory/motor symptoms in individuals with idiopathic RLS. METHODS: This was a randomized, double-blind, crossover and placebo-controlled study. Inclusion criteria were diagnosis with idiopathic RLS, an International RLS Study Group Severity Rating Scale (IRLS) score > 15, and the absence of significant RLS symptoms before 9 pm. Following washout from any previous central nervous system (CNS)-active drugs, patients were randomized to receive either suvorexant or placebo for two consecutive 2-week treatment periods. Treatment was administered at 9 pm at a fixed dose of 10 mg/day during the first week, and 20 mg during the second week. Primary and coprimary endpoints were wake after sleep onset (WASO) and total sleep time (TST), respectively, while IRLS rating scale score, multiple suggested immobilization tests (m-SIT), and periodic limb movements (PLMs) were secondary endpoints. RLS severity was measured weekly using the IRLS and Clinical Global Improvement (CGI) scales. m-SIT were also performed between 8 pm and midnight at the end of each treatment phase and were followed by a sleep study. RESULTS: A total of 41 participants were randomized, 40 of whom completed the study. Compared with placebo, treatment with suvorexant significantly improved RLS symptoms (according to IRLS total score, CGI, and the m-SIT), PLM during sleep, and PLM with arousal. Improvement of RLS symptoms was greater in those who had not been exposed to dopaminergic agents in the past. Sleep architecture also improved with significant changes in TST, WASO, sleep onset latency, sleep efficiency, non rapid-eye movement stage 1 (N1) %, non rapid-eye movement stage 2 (N2) %, and rapid eye movement (REM) %. Suvorexant was well tolerated in RLS, with few and mild adverse events. CONCLUSIONS: Our results provide the first proof of evidence of the therapeutic efficacy of DORAs in improving sleep and sensory and motor symptoms in RLS. Given orexin's role in pain and sensory processing, potential mechanisms of action are discussed. CLASSIFICATION OF EVIDENCE: The study provides class II evidence supporting the therapeutic efficacy of suvorexant in patients with RLS with sleep disturbance. TRIAL REGISTRATION: EudraCT#: 2017-004580-12.


Assuntos
Azepinas , Síndrome das Pernas Inquietas , Triazóis , Adulto , Humanos , Síndrome das Pernas Inquietas/tratamento farmacológico , Orexinas/farmacologia , Orexinas/uso terapêutico , Antagonistas dos Receptores de Orexina/efeitos adversos , Dopaminérgicos/uso terapêutico , Sono , Método Duplo-Cego , Resultado do Tratamento
6.
Bioorg Med Chem Lett ; 100: 129629, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295907

RESUMO

Modulators of orexin receptors are being developed for neurological illnesses such as sleep disorders, addictive behaviours and other psychiatric diseases. We herein describe the discovery of CVN766, a potent orexin 1 receptor antagonist that has greater than 1000-fold selectivity for the orexin 1 receptor over the orexin 2 receptor and demonstrates low off target hits in a diversity screen. In agreement with its in vitro ADME data, CVN766 demonstrated moderate in vivo clearance in rodents and displayed good brain permeability and target occupancy. This drug candidate is currently being investigated in clinical trials for schizophrenia and related psychiatric conditions.


Assuntos
Revelação , Transtornos Mentais , Humanos , Orexinas , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina
7.
Regul Toxicol Pharmacol ; 148: 105570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286304

RESUMO

The abuse potential of novel CNS-active drug candidates with low specificity for known receptors involved in abuse might be complex to test preclinically relative to an appropriate reference drug of abuse. Suvorexant, a Schedule IV dual orexin receptor antagonist was investigated for its potential use as a reference drug in Drug Discrimination Learning (DDL) studies. Firstly, toxicokinetic properties of suvorexant were determined in male and female rats after single oral doses of 160 and 325 mg/kg in MC and PEG400. Thereafter the subjective effects of suvorexant at 325 mg/kg versus vehicle were evaluated in a DDL paradigm and plasma exposures were measured. Mean maximum plasma exposures in male rats after a single dose of 325 mg/kg suvorexant were 2.5- (MC) to 10.5-fold (PEG400) the human exposure at supratherapeutic doses of 40 mg q.d. (Cmax:1.1 µM), and 4.9- (MC) to 20.8-fold (PEG400) the approved maximum human efficacious dose (20 mg q.d.; 0.557 µM). Training male rats at 325 mg/kg in the DDL study however did not result in discriminative stimulus generalisation versus respective vehicles. Suvorexant, a Schedule IV dual orexin receptor antagonist failed to serve as a robust reference drug of abuse in the DDL paradigm in rats despite appropriate exposures.


Assuntos
Azepinas , Antagonistas dos Receptores de Orexina , Humanos , Ratos , Masculino , Feminino , Animais , Antagonistas dos Receptores de Orexina/farmacologia , Azepinas/toxicidade , Triazóis
8.
Sleep ; 47(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37950346

RESUMO

STUDY OBJECTIVES: Dual orexin receptor antagonists (DORAs) are emerging treatments for insomnia. This meta-analysis study aimed to assess the safety of FDA-approved DORAs (suvorexant, lemborexant, and daridorexant), focusing on narcolepsy-like symptoms associated with these drugs. METHODS: Five prominent databases were searched to identify randomized controlled trials (RCTs) on this topic. Primary safety outcomes included treatment-emergent adverse events (TEAEs), treatment-related TEAEs, TEAEs leading to discontinuation, and serious TEAEs. Excessive daytime sleepiness (EDS), sleep paralysis, and hallucinations were categorized as adverse events (AEs)-related narcolepsy-like symptoms. RESULTS: Eleven RCTs with 7703 patients were included. DORAs were associated with a higher risk of TEAEs (risk ratio [RR], 1.09; 95% confidence interval [CI], 1.03 to 1.15) and treatment-related TEAEs (RR, 1.69; 95% CI: 1.49 to 1.92) when compared to placebo. The DORA group exhibited a significantly higher risk of EDS (RR, 2.15; 95% CI: 1.02 to 4.52) and sleep paralysis (RR, 3.40; 95% CI: 1.18 to 9.80) compared to the placebo group. CONCLUSION: This meta-analysis achieved a comparative evaluation of the clinical safety and tolerability of FDA-approved DORAs for primary insomnia, specifically focusing on AEs-related narcolepsy-like symptoms. This study contributes to understanding the safety profile of FDA-approved DORAs for treating insomnia.


Assuntos
Narcolepsia , Distúrbios do Início e da Manutenção do Sono , Paralisia do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Antagonistas dos Receptores de Orexina/efeitos adversos , Narcolepsia/tratamento farmacológico
9.
Behav Pharmacol ; 35(1): 14-25, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578388

RESUMO

The stressful experiences, by triggering a cascade of hormonal and neural changes, can produce antinociception commonly referred to as stress-induced antinociception (SIA). Orexin neuropeptides have an essential role in stress responses and pain modulation. The dentate gyrus receives orexinergic projections and has been shown to be involved in pain processing. The current study investigated the possible role of orexin-1 and orexin-2 receptors (OX1r and OX2r, respectively) within the dentate gyrus in SIA in a rat model of formalin-induced pain behavior in one hind paw. Male Wistar rats weighing 230-250 g underwent stereotaxic surgery and a cannula was implanted in their brains, above the dentate gyrus region. Either SB334867 or TCS OX2 29 (OX1r and OX2r antagonists, respectively) was microinjected into the dentate gyrus region at a range of doses at 1, 3, 10, and 30 nmol (control group received DMSO 12% as vehicle), 5 min before the forced swim stress (FSS) exposure. The formalin test was performed to assess pain-related behaviors. The results indicated that FSS exposure relieves pain-related behavior in the early and late phases of the formalin test. Blockade of intra-dentate gyrus OX1 or OX2 receptors reduced the antinociceptive responses induced by FSS in the formalin test, with more impact during the late phase. Our findings support the potential role of intra-dentate gyrus orexin receptors as target sites of orexin neurons in painful and stressful situations. Therefore, understanding the exact mechanisms of SIA and the role of the orexinergic system in this phenomenon can lead to identifying the strategies to guide future research and offer a new approach to discovering new pain therapeutic agents.


Assuntos
Hipocampo , Dor , Ratos , Masculino , Animais , Orexinas , Ratos Wistar , Medição da Dor , Dor/tratamento farmacológico , Receptores de Orexina/metabolismo , Hipocampo/metabolismo , Giro Denteado/metabolismo , Formaldeído , Antagonistas dos Receptores de Orexina/farmacologia
10.
Annu Rev Pharmacol Toxicol ; 64: 359-386, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37708433

RESUMO

Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.


Assuntos
Doença de Alzheimer , Antagonistas dos Receptores de Orexina , Humanos , Idoso , Idoso de 80 Anos ou mais , Orexinas/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Antagonistas dos Receptores de Orexina/uso terapêutico , Receptores de Orexina , Sono/fisiologia , Doença de Alzheimer/tratamento farmacológico
11.
Behav Brain Res ; 459: 114772, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-37995966

RESUMO

Previous studies have shown that stressful stimuli induced an adaptive response of reduced nociception, known as stress-induced analgesia (SIA). Since orexin neuropeptides are involved in pain modulation, and orexin neurons, primarily located in the lateral hypothalamus (LH), project to various hippocampal regions, such as the dentate gyrus (DG), the current study aimed to examine the role of orexin receptors within the DG region in the restraint SIA in the animal model of chronic pain. One hundred-thirty adult male Wistar rats (230-250 g) were unilaterally implanted with a cannula above the DG region. Animals were given SB334867 or TCS OX2 29 (1, 3, 10, and 30 nmol, 0.5 µl/rat) into the DG region as orexin-1 receptor (OX1r) and orexin-2 receptor (OX2r) antagonists, respectively, five min before exposure to a 3-hour restraint stress (RS) period. Animals were then undergone the formalin test to assess pain-related behaviors as the animal model of chronic pain. The results showed that RS produces an analgesic response during the early and late phases of the formalin test. However, intra-DG microinjection of OX1r and OX2r antagonists attenuated the restraint SIA. OX2r antagonist was more potent than OX1r antagonist in the early phase of the formalin test, while OX1r antagonist was little more effective in the late phase. Predominantly, it could be concluded that the orexinergic system in the DG region might act as a potential endogenous pain control system and a novel target for treating stress-related disorders.


Assuntos
Analgesia , Dor Crônica , Ratos , Masculino , Animais , Receptores de Orexina/metabolismo , Orexinas/farmacologia , Ratos Wistar , Carbacol/farmacologia , Hipocampo/metabolismo , Giro Denteado/metabolismo , Modelos Animais , Antagonistas dos Receptores de Orexina/farmacologia , Ureia/farmacologia , Benzoxazóis/farmacologia , Naftiridinas/farmacologia
12.
Neuropharmacology ; 245: 109815, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38114045

RESUMO

Orexin is a neurotransmitter produced by a small group of hypothalamic neurons. Besides its well-known role in the regulation of the sleep-wake cycle, the orexin system was shown to be relevant in several physiological functions including cognition, mood and emotion modulation, and energy homeostasis. Indeed, the implication of orexin neurotransmission in neurological and psychiatric diseases has been hypothesized via a direct effect exerted by the projections of orexin neurons to several brain areas, and via an indirect effect through orexin-mediated modulation of sleep and wake. Along with the growing evidence concerning the use of dual orexin receptor antagonists (DORAs) in the treatment of insomnia, studies assessing their efficacy in insomnia comorbid with psychiatric and neurological diseases have been set in order to investigate the potential impact of DORAs on both sleep-related symptoms and disease-specific manifestations. This narrative review aimed at summarizing the current evidence on the use of DORAs in neurological and psychiatric conditions comorbid with insomnia, also discussing the possible implication of modulating the orexin system for improving the burden of symptoms and the pathological mechanisms of these disorders. Target searches were performed on PubMed/MEDLINE and Scopus databases and ongoing studies registered on Clinicaltrials.gov were reviewed. Despite some contradictory findings, preclinical studies seemingly support the possible beneficial role of orexin antagonism in the management of the most common neurological and psychiatric diseases with sleep-related comorbidities. However, clinical research is still limited and further studies are needed for corroborating these promising preliminary results.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Orexinas/farmacologia , Antagonistas dos Receptores de Orexina/uso terapêutico , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/fisiologia , Sono
13.
Behav Brain Res ; 458: 114741, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37931704

RESUMO

Extinction of conditioned fear is considered a fundamental process in the recovery from posttraumatic stress disorder and anxiety disorders. Sleep, especially rapid-eye-movement (REM) sleep, has been implicated in promoting extinction memory. The orexin system contributes to the regulation of sleep and wakefulness and emotional behaviors. In rodents, administrations of an orexin receptor antagonist following fear extinction training enhanced consolidation of extinction memory. Although orexin antagonists increase sleep, including REM sleep, the possible contribution of sleep to the effects of orexin antagonists on extinction memory has not been examined. Therefore, this study examined the effects of suvorexant, a dual orexin receptor antagonist, on extinction memory and sleep and their associations in mice. C57BL/6 mice underwent sleep recording for 24 h before and after contextual fear conditioning with footshocks and extinction learning during the early light phase or early dark phase. Mice were systemically injected with either 25 mg/kg of suvorexant or vehicle immediately after the extinction session. We found that suvorexant neither altered sleep nor improved extinction memory recall compared with vehicle. The higher percentages of REM sleep during the post-extinction dark phase were associated with lower extinction memory recall and greater freezing responses to the fear context. Results also indicate that animals did not reach complete extinction of fear with the fear extinction training protocol used in this study. These findings suggest that promoting REM sleep may not enhance fear extinction memory when extinction of fear is incomplete.


Assuntos
Terapia Implosiva , Antagonistas dos Receptores de Orexina , Camundongos , Animais , Antagonistas dos Receptores de Orexina/farmacologia , Orexinas , Extinção Psicológica/fisiologia , Medo/fisiologia , Camundongos Endogâmicos C57BL , Sono/fisiologia
14.
Br J Pharmacol ; 181(9): 1474-1493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38129941

RESUMO

BACKGROUND AND PURPOSE: We evaluated the hypothesis that central orexin application could counteract motion sickness responses through regulating neural activity in target brain areas. EXPERIMENTAL APPROACH: Thec effects of intracerebroventricular (i.c.v.) injection of orexin-A and SB-334867 (OX1 antagonist) on motion sickness-induced anorexia, nausea-like behaviour (conditioned gaping), hypoactivity and hypothermia were investigated in rats subjected to Ferris wheel-like rotation. Orexin-A responsive brain areas were identified using Fos immunolabelling and were verified via motion sickness responses after intranucleus injection of orexin-A, SB-334867 and TCS-OX2-29 (OX2 antagonist). The efficacy of intranasal application of orexin-A versus scopolamine on motion sickness symptoms in cats was also investigated. KEY RESULTS: Orexin-A (i.c.v.) dose-dependently attenuated motion sickness-related behavioural responses and hypothermia. Fos expression was inhibited in the ventral part of the dorsomedial hypothalamus (DMV) and the paraventricular nucleus (PVN), but was enhanced in the ventral part of the premammillary nucleus ventral part (PMV) by orexin-A (20 µg) in rotated animals. Motion sickness responses were differentially inhibited by orexin-A injection into the DMV (anorexia and hypoactivity), the PVN (conditioned gaping) and the PMV (hypothermia). SB-334867 and TCS-OX2-29 (i.c.v. and intranucleus injection) inhibited behavioural and thermal effects of orexin-A. Orexin-A (60 µg·kg-1) and scopolamine inhibited rotation-induced emesis and non-retching/vomiting symptoms, while orexin-A also attenuated anorexia with mild salivation in motion sickness cats. CONCLUSION AND IMPLICATIONS: Orexin-A might relieve motion sickness through acting on OX1 and OX2 receptors in various hypothalamus nuclei. Intranasal orexin-A could be a potential strategy against motion sickness.


Assuntos
Benzoxazóis , Hipotermia , Enjoo devido ao Movimento , Naftiridinas , Ureia/análogos & derivados , Ratos , Gatos , Animais , Orexinas/farmacologia , Receptores de Orexina/metabolismo , Anorexia/metabolismo , Hipotálamo/metabolismo , Enjoo devido ao Movimento/tratamento farmacológico , Enjoo devido ao Movimento/metabolismo , Escopolamina/metabolismo , Escopolamina/farmacologia , Antagonistas dos Receptores de Orexina/metabolismo , Antagonistas dos Receptores de Orexina/farmacologia
15.
J Psychopharmacol ; 37(12): 1249-1260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059356

RESUMO

BACKGROUND: Drugs that act on the central nervous system (CNS) and have sedative effects can lead to abuse in humans. New CNS-active drugs often require evaluation of their abuse potential in dedicated animal models before marketing approval. Daridorexant is a new dual orexin receptor antagonist (DORA) with sleep-promoting properties in animals and humans. It was approved in 2022 in the United States and Europe for the treatment of insomnia disorder. AIMS: Nonclinical evaluation of abuse potential of daridorexant using three specific rat models assessing reinforcement, interoception, and withdrawal. METHODS: Reinforcing effects of daridorexant were assessed in an operant rat model of intravenous drug self-administration. Similarity of interoceptive effects to those of the commonly used sleep medication zolpidem was tested in an operant drug discrimination task. Withdrawal signs indicative of physical dependence were evaluated upon sudden termination of chronic daridorexant treatment. Rat experiments were conducted at a dose range resulting in daridorexant plasma concentrations equaling or exceeding those achieved at the clinically recommended dose of 50 mg in humans. RESULTS: Daridorexant had no reinforcing effects, was dissimilar to zolpidem in the drug discrimination task, and did not induce any withdrawal-related signs upon treatment discontinuation that would be indicative of physical dependence. OUTCOMES: Daridorexant showed no signs of abuse or dependence potential in rats. Our data indicate that daridorexant, like other DORAs, has a low potential for abuse in humans.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Transtornos Relacionados ao Uso de Substâncias , Humanos , Ratos , Animais , Antagonistas dos Receptores de Orexina/farmacologia , Antagonistas dos Receptores de Orexina/uso terapêutico , Zolpidem , Imidazóis , Pirrolidinas , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
17.
J Psychopharmacol ; 37(12): 1261-1264, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982383

RESUMO

For abuse potential assessment, U.S. Food and Drug Administration (FDA) requests that new, brain-penetrating drugs are ideally compared with approved drugs that share the mechanism of action and are judged to have abuse liability by the Drug Enforcement Agency. For development of the dual orexin receptor antagonist (DORA) daridorexant, the FDA recommended conducting a rat drug discrimination paradigm against the approved, schedule IV, DORA suvorexant. Surprisingly, at suvorexant plasma levels up to three-fold the maximum concentration at the highest approved human dose, rats did not learn to discriminate the suvorexant stimulus from vehicle.


Assuntos
Azepinas , Antagonistas dos Receptores de Orexina , Humanos , Ratos , Animais , Antagonistas dos Receptores de Orexina/farmacologia , Azepinas/farmacologia , Triazóis/farmacologia , Encéfalo
20.
Neuropharmacology ; 239: 109685, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579870

RESUMO

Chronic opioid use disturbs circadian rhythm and sleep, encouraging opioid use and relapse. The orexin (OX) system is recruited by opioids and regulates physiological processes including sleep. Dual OX receptor antagonists (DORAs), developed for insomnia treatment, may relieve withdrawal-associated sleep disturbances. This study investigated whether DORA-12, a recently developed DORA, reduces physiological activity disturbances during oxycodone abstinence and consequently prevents oxycodone-seeking behavior. Male and female Wistar rats were trained to intravenously self-administer oxycodone (0.15 mg/kg, 21 sessions; 8 h/session) in the presence of a contextual/discriminative stimulus (SD). The rats were subsequently housed individually (22 h/day) to monitor activity, food and water intake. They received DORA-12 (0-30 mg/kg, p.o.) after undergoing daily 1-h extinction training (14 days). After extinction, the rats were tested for oxycodone-seeking behavior elicited by the SD. Hypothalamus sections were processed to assess oxycodone- or DORA-12-associated changes to the OX cell number. In males, oxycodone-associated increases in activity during the light-phase, reinstatement, and decreases in the number of OX cells observed in the vehicle-treated group were not observed with DORA-12-treatment. Oxycodone-associated increases in light-phase food and water intake were not observed by day 14 of 3 mg/kg DORA-12-treatment and dark-phase water intake was increased across treatment days. In females, OX cell number was unaffected by oxycodone or DORA-12. Three and 30 mg/kg DORA-12 increased females' day 7 dark-phase activity and decreased reinstatement. Thirty mg/kg DORA-12 reduced oxycodone-associated increases in light-phase food and water intake. The results suggest that DORA-12 improves oxycodone-induced disruptions to physiological activities and reduces relapse.


Assuntos
Analgésicos Opioides , Oxicodona , Feminino , Ratos , Masculino , Animais , Oxicodona/farmacologia , Analgésicos Opioides/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Orexina , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...