Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.190
Filtrar
1.
Int J Nanomedicine ; 19: 2709-2732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510794

RESUMO

Purpose: Given the escalating prevalence of diabetes, the demand for specific bone graft materials is increasing, owing to the greater tendency towards bone defects and more difficult defect repair resulting from diabetic bone disease (DBD). Melatonin (MT), which is known for its potent antioxidant properties, has been shown to stimulate both osteogenesis and angiogenesis. Methods: MT was formulated into MT@PLGA nanoparticles (NPs), mixed with sodium alginate (SA) hydrogel, and contained within a 3D printing polycaprolactone/ß-Tricalcium phosphate (PCL/ß-TCP) scaffold. The osteogenic capacity of the MT nanocomposite scaffold under diabetic conditions was demonstrated via in vitro and in vivo studies and the underlying mechanisms were investigated. Results: Physicochemical characterization experiments confirmed the successful fabrication of the MT nanocomposite scaffold, which can achieve long-lasting sustained release of MT. The in vitro and in vivo studies demonstrated that the MT nanocomposite scaffold exhibited enhanced osteogenic capacity, which was elucidated by the dual angiogenesis effects activated through the NF-E2-related factor 2/Heme oxygenase 1 (Nrf2/HO-1) signaling pathway, including the enhancement of antioxidant enzyme activity to reduce the oxidative stress damage of vascular endothelial cells (VECs) and directly stimulating vascular endothelial growth factor (VEGF) production, which reversed the angiogenesis-osteogenesis uncoupling and promoted osteogenesis under diabetic conditions. Conclusion: This study demonstrated the research prospective and clinical implications of the MT nanocomposite scaffold as a novel bone graft for treating bone defect and enhancing bone fusion in diabetic individuals.


Assuntos
Fosfatos de Cálcio , Diabetes Mellitus , Melatonina , Nanocompostos , Humanos , Tecidos Suporte/química , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2 , Células Endoteliais , Antioxidantes/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Heme Oxigenase-1 , Indutores da Angiogênese/farmacologia , Estudos Prospectivos , Osteogênese , Transdução de Sinais , Regeneração Óssea
2.
Medicina (Kaunas) ; 59(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138271

RESUMO

Background and Objectives: Dissecting the complex pathological cascade of an ischemic stroke in preclinical models is highly warranted to understand the course of this disease in humans. Neurogenesis and angiogenesis are integral for post-stroke recovery, yet it is not clear how these processes are altered months after an ischemic stroke. In this study, we investigated the changes that take place subacutely after focal cerebral ischemia in experimental adult male mice. Materials and Methods: Male 12-week-old C57BL/6 mice underwent a 60 min long fMCAo or sham surgery. Two months after the procedure, we examined the immunohistochemistry to assess the changes in neuroblast (DCX) and differentiated neuron (NeuN) numbers, as well as the density of the pro-angiogenic factor VEGF. Results: We found decreased neuroblast numbers in both brain hemispheres of the fMCAo mice: by more than 85% in the dentate gyrus and by more than 70% in the subventricular zone. No neuroblasts were found in the contralateral hemisphere of the fMCAO mice or the sham controls, but a small population was detected in the ipsilateral ischemic core of the fMCAo mice. Intriguingly, the number of differentiated neurons in the ipsilateral ischemic core was lower by 20% compared to the contralateral hemisphere. VEGF expression was diminished in both brain hemispheres of the fMCAo mice. Conclusions: Our current report shows that focal cerebral ischemia induces changes in neuroblast numbers and the pro-angiogenic factor VEGF in both cerebral hemispheres 2 months after an fMCAo in mice. Our data show that focal cerebral ischemia induces a long-term regenerative response in both brain hemispheres.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Humanos , Camundongos , Masculino , Animais , Indutores da Angiogênese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Isquemia Encefálica/complicações , Neurônios/metabolismo , Infarto Cerebral/patologia , Isquemia/patologia
3.
Reprod Fertil Dev ; 35(16): 692-707, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37955271

RESUMO

CONTEXT: The appropriate course of angiogenesis in the endometrium is crucial for pregnancy establishment and maintenance. Very little is known about the factors linking vessel formation and immune system functioning. AIMS: We hypothesised that chemerin, an adipokine known for its involvement in the regulation of energy balance and immunological functions, may act as a potent regulator of endometrial angiogenesis during early pregnancy in pigs. METHODS: Porcine endometrial tissue explants were obtained from pregnant pigs on days 10-11, 12-13, 15-16 and 27-28, and on days 10-12 of the oestrous cycle. The explants were in vitro cultured for 24h in the presence of chemerin (100, 200ng/mL) or in medium alone (control). We evaluated the in vitro effect of chemerin on the secretion of vascular endothelial growth factors A-D (VEGF-A-D), placental growth factor (PlGF), basic fibroblast growth factor (bFGF) and angiopoietin 1 and 2 (ANG-1, ANG-2) with the ELISA method. The protein abundance of angiogenesis-related factor receptors, VEGF receptors 1-3 (VEGFR1-3), FGF receptors 1 and 2 (FGFR1-2) and ANG receptor (TIE2) was evaluated with the Western blot (WB) method. We also analysed the influence of chemerin on the phosphorylation of AMPK using WB. KEY RESULTS: We found that in the studied endometrial samples, chemerin up-regulated the secretion of VEGF-A, VEGF-B and PlGF, and protein expression of VEGFR3. The adipokine caused a decrease in VEGF-C, VEGF-D and ANG-1 release. Chemerin effect on bFGF and ANG-2 secretion, and protein content of VEGFR1, VEGFR2, FGFR1, FGFR2 and TIE2 were dependent on the stage of pregnancy. Chemerin was found to down-regulate AMPK phosphorylation. CONCLUSIONS: The obtained in vitro results suggest that chemerin could be an important factor in the early pregnant uterus by its influence on angiogenic factors' secretion and signalling. IMPLICATIONS: The obtained results on the role of chemerin in the process of endometrial angiogenesis may, in the long term perspective, contribute to the elaboration of more effective methods of modifying reproductive processes and maintaining energy homeostasis in farm animals.


Assuntos
Indutores da Angiogênese , Fator A de Crescimento do Endotélio Vascular , Gravidez , Suínos , Feminino , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Placentário/metabolismo , Indutores da Angiogênese/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Endométrio/metabolismo , Adipocinas/metabolismo
4.
Mol Vis ; 29: 87-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859808

RESUMO

Purpose: The retinal pigment epithelium (RPE) is an important tissue for maintaining a healthy retina. Retinal pigment epithelial cells help regulate nutrient transport to photoreceptors and are heavily pigmented to prevent light scattering. These cells also have junction proteins to form monolayers. Monolayers are key players in pathologies such as age-related macular degeneration (AMD), a leading cause of vision loss in older adults. During AMD, RPE cell detachment can occur, resulting in a loss of junctions. Losing junctions can increase the expression of pro-angiogenic vascular endothelial growth factor (VEGF). This overexpression can cause abnormal blood vessel growth or angiogenesis in the retina. Age-related macular degeneration treatments target VEGF to slow angiogenesis progression. However, other proteins, such as angiopoietin-2 (Ang-2) and the tissue inhibitor of metalloproteinase-1 (TIMP-1), may also play important roles, making them potential targets for treatment. Controlling RPE junction formation will help elucidate the relationship between RPE cell detachment and additional angiogenic factor secretion, lead to more therapeutics, and increase the efficacy of current treatments. Methods: Micropatterning was used to control the spatial arrangement of primary porcine RPE cells using polydimethylsiloxane (PDMS) stencils. Patterns were formed into PDMS stencils to mimic 10%, 25%, and 50% overall detachment of the RPE monolayer. Zonula-occludens-1 (ZO-1), Ang-2, and VEGF were visualized using immunocytochemical (ICC) staining. An enzyme-linked immunosorbent assay (ELISA) was used to quantify extracellular Ang-2, VEGF, TIMP-1, and TIMP-2 levels. A rod outer segment (OS) phagocytosis assay was performed to determine how RPE junction loss directly affects photoreceptor support. Results: The growth of primary porcine RPE cells was successfully controlled using stencils. Morphological changes and a decrease in pigmentation were observed, showing a decline in barrier and light absorption functions as degeneration increased. One day after stencil removal, junction proteins were delocalized, and angiogenic factor secretions were correlated with increased levels of detachment. Secretion levels of Ang-2 and TIMP-1 were significantly increased, whereas VEGF and TIMP-2 concentrations were not as affected by varying levels of detachment. OS phagocytosis appeared lower in RPE cells when ZO-1 was affected. Conclusions: These results suggest a correlation between loss of junctions, abnormal angiogenic protein secretion, and reduced OS phagocytosis. Furthermore, Ang-2 and TIMP-1 proteins might be beneficial targets for AMD treatments, and their roles in retinal diseases deserve further investigation.


Assuntos
Degeneração Macular , Fator A de Crescimento do Endotélio Vascular , Animais , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Angiopoietina-2/metabolismo , Indutores da Angiogênese/metabolismo , Degeneração Macular/patologia , Junções Íntimas/metabolismo , Epitélio Pigmentado da Retina/metabolismo
5.
Biomater Adv ; 153: 213521, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356285

RESUMO

Since the introduction of the 45S5-bioactive glass (BG), numerous new BG compositions have been developed. Compared to the 45S5-BG, 1393-BG shows favorable processing properties due to its low crystallization tendency and the 1393-BG-based borosilicate 0106-B1-BG exhibits improved angiogenic properties due to its boron content. Despite their close (chemical) relationship, the biological properties of the mentioned BG composition have not yet been comparatively examined. In this study, the effects of the BGs on proliferation, viability, osteogenic differentiation, and angiogenic factor production of human bone marrow-derived mesenchymal stromal cells were assessed. Scaffolds made of the BGs were introduced in a critical-sized femur defect model in rats in order to analyze their impact on bone defect regeneration. In vitro, 1393-BG and 0106-B1-BG outperformed 45S5-BG with regard to cell proliferation and viability. 1393-BG enhanced osteogenic differentiation; 0106-B1-BG promoted angiogenic factor production. In vivo, 0106-B1-BG and 45S5-BG outperformed 1393-BG in terms of angiogenic and osteoclastic response resulting in improved bone regeneration. In conclusion, the biological properties of BGs can be significantly modified by tuning their composition. Demonstrating favorable processing properties and an equally strong in vivo bone regeneration potential as 45S5-BG, 0106-B1-BG qualifies as a basis to incorporate other bioactive ions to improve its biological properties.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Humanos , Ratos , Indutores da Angiogênese/farmacologia , Medula Óssea , Fêmur , Roedores
6.
Anim Reprod Sci ; 254: 107265, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37270879

RESUMO

In cattle, the establishment of appropriate endometrial vasculature during the estrous cycle is required for preparing a receptive endometrium. This study aimed to investigate 1) mRNA expression of potent pro- and anti-angiogenic factors, 2) protein localization of the anti-angiogenic factor thrombospondin (TSP), and 3) vascularity in the endometrium of repeat breeder (RB) and normally fertile (non-RB) cows. Caruncular and intercaruncular endometrium was collected from RB and non-RB cows during the luteal phase of the estrous cycle. RB cows had greater mRNA expression levels of TSP ligands (TSP1 and TSP2) and receptors (CD36 and CD47) than non-RB cows. Although the mRNA expression levels of most angiogenic factors did not change by repeat breeding, RB cows had greater mRNA expression of fibroblast growth factor receptor 1 (FGFR1), angiopoietin 1 (ANGPT1), and ANGPT2 and a less mRNA expression of vascular endothelial growth factor B (VEGFB) than non-RB cows. By immunohistochemistry, TSP1, TSP2, CD36, and CD47 were detected in the luminal epithelium, glandular epithelium, stromal cells, and blood vessels of the endometrium. Two indexes of vascularity, the number of blood vessels and the percentage of area stained positive for the von Willebrand factor, were lower in the endometrium of RB than in that of non-RB cows. These results demonstrate that RB cows have a greater expression of both ligands and receptors for the anti-angiogenic factor TSP and a reduced vascular distribution in the endometrium compared with non-RB cows, suggesting suppressed endometrial angiogenesis.


Assuntos
Antígeno CD47 , Fator B de Crescimento do Endotélio Vascular , Feminino , Bovinos , Animais , Fator B de Crescimento do Endotélio Vascular/metabolismo , Antígeno CD47/metabolismo , Indutores da Angiogênese/metabolismo , Ligantes , Endométrio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Mediators Inflamm ; 2023: 1958046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138666

RESUMO

Introduction: Angiogenesis contributes to the pathophysiology of cardiovascular disease (CVD). Some cardiovascular drugs used in the treatment of CVD have an effect on the process of angiogenesis. Methods: Transgenic Tg (flk1: EGFP) zebrafish embryos were used to identify the effects of some cardiovascular drugs on angiogenesis during vertebral development in vivo. Zebrafish embryos at a one-cell stage or two-cell stage were cultured with embryo medium containing cardiovascular drugs at a final solvent concentration of 0.5% (V/V) dimethyl sulfoxide (DMSO) for 24 hours in 24-well plates. Results: We found that 6 drugs including isosorbide mononitrate, amlodipine, bisoprolol fumarate, carvedilol, irbesartan, and rosuvastatin calcium may affect angiogenesis by vascular endothelial growth factor (VEGF) signaling pathway. Conclusion: These new findings of some cardiovascular drugs should improve the treatment of cardiovascular diseases.


Assuntos
Fármacos Cardiovasculares , Neovascularização Fisiológica , Animais , Animais Geneticamente Modificados , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra , Indutores da Angiogênese/farmacologia
8.
ACS Biomater Sci Eng ; 9(5): 2647-2662, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097124

RESUMO

Chronic wounds are a major healthcare challenge owing to their complex healing mechanism and number of impediments to the healing process, like infections, unregulated inflammation, impaired cellular functions, poor angiogenesis, and enhanced protease activity. Current topical care strategies, such as surgical debridement, absorption of exudates, drug-loaded hydrogels for infection and inflammation management, and exogenous supply of growth factors for angiogenesis and cell proliferation, slow the progression of wounds and reduce patient suffering but suffer from low overall cure rates. Therefore, we have developed a proteolytically stable, multifunctional nanoparticle loaded-peptide gel with inherent anti-inflammatory, antibacterial, and pro-angiogenic properties to provide a favorable wound healing milieu by restoring impaired cellular functions. We have fabricated a self-assembled, lauric acid-peptide conjugate gel, LA-LLys-DPhe-LLys-NH2, loaded with yttrium oxide (Y2O3) nanoparticles (NLG). Gel formed a nanofibrous structure, and nanoparticles were passively entrapped within the network. The surface morphology, stability, viscoelastic, and self-healing characteristics of gels were characterized. It showed a high stability against degradation by proteolytic enzymes and highly potent antibacterial activities against E. coli and S. aureus due to the presence of positively charged side chains of lysine in the peptide chain. It also exhibited an excellent antioxidant activity as well as ability to stimulate cell proliferation in murine fibroblast (L929) cells and human umbilical vein endothelial cells (HUVECs). The incorporation of nanoparticles promoted angiogenesis by upregulating pro-angiogenic genes, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF2), and epidermal growth factor (EGFR), and the gel caused complete wound closure in cells. In summary, the Y2O3 nanoparticle-loaded lauric acid-peptide conjugate gel is able to elicit the desired tissue regeneration responses and, therefore, has a strong potential as a matrix for the treatment of chronic wounds.


Assuntos
Nanopartículas Metálicas , Humanos , Linhagem Celular , Animais , Nanopartículas Metálicas/química , Peptídeos Opioides/química , Di-Hidrotestosterona/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Cicatrização , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Sobrevivência Celular
9.
Biochimie ; 212: 76-84, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37062469

RESUMO

When tumoral cell expansion exceeds the vascular supply, regions of hypoxia or low oxygen concentration are generated promoting the formation of new vessels through cell proliferation and migration. Viral G protein-coupled receptor (vGPCR) is associated to Kaposi's sarcoma pathology and induces a paracrine transformation when is stably expressed in murine endothelial cells activating hypoxia-induced transcription factors. Previously, we reported the antiproliferative actions of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in endothelial cells transformed by the vGPCR (SVEC-vGPCR). Herein, we further investigated if pro-angiogenic factors as AP-1, HIF-1α and VEGF are modulated by 1α,25(OH)2D3. We found by qRT-PCR analysis that the mRNA level of JunB, a negative regulator of cell proliferation, was similarly increased at all-time points tested after 1α,25(OH)2D3 treatment in SVEC-vGPCR cells. Also, mRNA levels of the pro-angiogenic factor c-Fos, which induces tumor invasion, were only decreased during one short period treatment. In addition, Hif-1α mRNA and protein levels were significantly reduced after 1α,25(OH)2D3 treatment in a VDR dependent fashion. However, mRNA levels of the angiogenic activator Vegf, promoted in turn by Hif-1α expression, were surprisingly high depending on VDR expression as well. Moreover, Egr-1, which has been reported to induce VEGF expression independently of HIF-1α, diminished its expression with 1α,25(OH)2D3 treatment, fact that was related to the decline of p-ERK1/2. Altogether, these results suggest a negative modulation of some pro-angiogenic factors like AP-1 and HIF-1α, as part of the antiproliferative mechanism of 1α,25(OH)2D3 in SVEC-vGPCR endothelial cells.


Assuntos
Células Endoteliais , Herpesvirus Humano 8 , Camundongos , Animais , Células Endoteliais/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Indutores da Angiogênese/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator de Transcrição AP-1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hipóxia/metabolismo
10.
Adv Healthc Mater ; 12(18): e2203105, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36912184

RESUMO

Guided bone regeneration membranes are widely used to prevent fibroblast penetration and facilitate bone defect repair by osteoblasts. However, the current clinically available collagen membranes lack bone induction and angiogenic capacities, exhibiting limited bone regeneration. The mechanically sensitive channel, Piezo1, which is activated by Yoda1, has been reported to play crucial roles in osteogenesis and angiogenesis. Nevertheless, the application of Yoda1 alone is unsustainable to maintain this activity. Therefore, this study fabricates a Yoda1-loading bilayer membrane using electrospinning technology. Its inner layer in contact with the bone defect is composed of vertically aligned fibers, which regulate the proliferation and differentiation of cells, release Yoda1, and promote bone regeneration. Its outer layer in contact with the soft tissue is dense with oriented fibers by UV cross-linking, mainly preventing fibroblast infiltration and inhibiting the immune response. Furthermore, the loaded Yoda1 affects osteogenesis and angiogenesis via the Piezo1/RhoA/Rho-associated coiled-coil-containing protein kinase 1/Yes1-associated transcriptional regulator signaling pathway. The results reveal that the Yoda1 bilayer membrane is efficient and versatile in accelerating bone regeneration, suggesting its potential as a novel therapeutic agent for various clinical issues.


Assuntos
Regeneração Óssea , Canais Iônicos , Osteogênese , Transdução de Sinais , Canais Iônicos/metabolismo , Membranas/metabolismo , Indutores da Angiogênese , Pirazinas , Tiadiazóis
11.
Hypertension ; 80(5): 1011-1023, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36876500

RESUMO

BACKGROUND: Preeclampsia is one of the leading causes of maternal mortality worldwide and is strongly associated with long-term morbidity in mothers and newborns. Referred to as one of the deep placentation disorders, insufficient remodeling of the spiral arteries during the first trimester remains a major cause of placental dysfunction. Persisting pulsatile uterine blood flow causes abnormal ischemia/reoxygenation phenomenon in the placenta and stabilizes the HIF-2α (hypoxia-inducible factor-2α) in the cytotrophoblasts. HIF-2α signaling impairs trophoblast differentiation and increases sFLT-1 (soluble fms-like tyrosine kinase-1) secretion, which reduces fetal growth and causes maternal symptoms. This study aims to evaluate the benefits of using PT2385-an oral specific HIF-2α inhibitor-to treat severe placental dysfunction. METHODS: To evaluate its therapeutic potential, PT2385 was first studied in primary human cytotrophoblasts isolated from term placenta and exposed to 2.5% O2 to stabilize HIF-2α. Viability and luciferase assays, RNA sequencing, and immunostaining were used to analyze differentiation and angiogenic factor balance. The ability of PT2385 to mitigate maternal manifestations of preeclampsia was studied in the selective reduced uterine perfusion pressure model performed in Sprague-Dawley rats. RESULTS: In vitro, RNA sequencing analysis and conventional techniques showed that treated cytotrophoblast displayed an enhanced differentiation into syncytiotrophoblasts and normalized angiogenic factor secretion compared with vehicle-treated cells. In the selective reduced uterine perfusion pressure model, PT2385 efficiently decreased sFLT-1 production, thus preventing the onset of hypertension and proteinuria in pregnant dams. CONCLUSIONS: These results highlight HIF-2α as a new player in our understanding of placental dysfunction and support the use of PT2385 to treat severe preeclampsia in humans.


Assuntos
Pré-Eclâmpsia , Recém-Nascido , Humanos , Ratos , Gravidez , Feminino , Animais , Placenta/irrigação sanguínea , Indutores da Angiogênese , Ratos Sprague-Dawley , Placentação , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hipóxia/complicações , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
12.
J Heart Lung Transplant ; 42(6): 716-729, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36964085

RESUMO

BACKGROUND: Transplanting human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) tissue sheets effectively treat ischemic cardiomyopathy. Cardiac functional recovery relies on graft survival in which angiogenesis played an important part. ONO-1301 is a synthetic prostacyclin analog with proangiogenic effects. We hypothesized that transplantation of hiPSC-CM tissue sheets with slow-release ONO-1301 scaffold could promote hostgraft angiogenesis, enhance tissue survival and therapeutic effect. METHODS: We developed hiPSC-CM tissue sheets with ONO-1301 slow-release scaffold and evaluated their morphology, gene expression, and effects on angiogenesis. Three tissue sheet layers were transplanted into a rat myocardial infarction (MI) model. Left ventricular ejection fraction, gene expression in the MI border zone, and angiogenesis effects were investigated 4 weeks after transplantation. RESULTS: In vitro assessment confirmed the slow-release of ONO-1301, and its pro-angiogenesis effects. In addition, in vivo data demonstrated that ONO-1301 administration positively correlated with graft survival. Cardiac tissue as thick as ∼900 µm was retained in the ONO (+) treated group. Additionally, left ventricular ejection fraction of the ONO (+) group was significantly enhanced, compared to ONO (-) group. The ONO (+) group also showed significantly improved interstitial fibrosis, higher capillary density, increased number of mature blood vessels, along with an enhanced supply of oxygen, and nutrients. CONCLUSIONS: Slow-release ONO-1301 scaffold provided an efficient delivery method for thick hiPSC-CM tissue. ONO-1301 promotes angiogenesis between the host and graft and improves nutritional and oxygen supply, thereby enhancing the survival of transplanted cells, effectively improving ejection fraction, and therapeutic effects.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/transplante , Volume Sistólico , Indutores da Angiogênese/farmacologia , Função Ventricular Esquerda , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Modelos Animais de Doenças
13.
Curr Stem Cell Res Ther ; 18(1): 93-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36883256

RESUMO

BACKGROUND: The prevalence of obesity, as well as obesity-induced chronic inflammatory diseases, is increasing worldwide. Chronic inflammation is related to the complex process of angiogenesis, and we found that adipose-derived stem cells from obese subjects (obADSCs) had proangiogenic features, including higher expression levels of interleukin-6 (IL-6), Notch ligands and receptors, and proangiogenic cytokines, than those from control subjects. We hypothesized that IL-6 and Notch signaling pathways are essential for regulating the proangiogenic characteristics of obADSCs. OBJECTIVE: This study aimed to investigate whether the inflammatory cytokine interleukin 6 (IL-6) promotes the proangiogenic capacity of adipose stem cells in obese subjects via the IL-6 signaling pathway. METHODS: We compared the phenotype analysis as well as cell doubling time, proliferation, migration, differentiation, and proangiogenic properties of ADSCs in vitro. Moreover, we used small interfering RNAs to inhibit the gene and protein expression of IL-6. RESULTS: We found that ADSCs isolated from control individuals (chADSCs) and obADSCs had similar phenotypes and growth characteristics, and chADSCs had a stronger differentiation ability than obADSCs. However, obADSCs were more potent in promoting EA.hy926 cell migration and tube formation than chADSCs in vitro. We confirmed that IL-6 siRNA significantly reduced the transcriptional level of IL-6 in obADSCs, thereby reducing the expression of vascular endothelial growth factor (VEGF)- A, VEGF receptor 2, transforming growth factor ß, and Notch ligands and receptors in obADSCs. CONCLUSION: The finding suggests that inflammatory cytokine interleukin-6 (IL-6) promotes the proangiogenic ability of obADSCs via the IL-6 signaling pathway.


Assuntos
Indutores da Angiogênese , Interleucina-6 , Células-Tronco Mesenquimais , Obesidade , Humanos , Indutores da Angiogênese/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Ligantes , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Células-Tronco , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
J Cachexia Sarcopenia Muscle ; 14(2): 978-991, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696895

RESUMO

BACKGROUND: Skeletal muscle atrophy is a common condition without a pharmacologic therapy. AGGF1 encodes an angiogenic factor that regulates cell differentiation, proliferation, migration, apoptosis, autophagy and endoplasmic reticulum stress, promotes vasculogenesis and angiogenesis and successfully treats cardiovascular diseases. Here, we report the important role of AGGF1 in the pathogenesis of skeletal muscle atrophy and attenuation of muscle atrophy by AGGF1. METHODS: In vivo studies were carried out in impaired leg muscles from patients with lumbar disc herniation, two mouse models for skeletal muscle atrophy (denervation and cancer cachexia) and heterozygous Aggf1+/- mice. Mouse muscle atrophy phenotypes were characterized by body weight and myotube cross-sectional areas (CSA) using H&E staining and immunostaining for dystrophin. Molecular mechanistic studies include co-immunoprecipitation (Co-IP), western blotting, quantitative real-time PCR analysis and immunostaining analysis. RESULTS: Heterozygous Aggf1+/- mice showed exacerbated phenotypes of reduced muscle mass, myotube CSA, MyHC (myosin heavy chain) and α-actin, increased inflammation (macrophage infiltration), apoptosis and fibrosis after denervation and cachexia. Intramuscular and intraperitoneal injection of recombinant AGGF1 protein attenuates atrophy phenotypes in mice with denervation (gastrocnemius weight 81.3 ± 5.7 mg vs. 67.3 ± 5.1 mg for AGGF1 vs. buffer; P < 0.05) and cachexia (133.7 ± 4.7 vs. 124.3 ± 3.2; P < 0.05). AGGF1 expression undergoes remodelling and is up-regulated in gastrocnemius and soleus muscles from atrophy mice and impaired leg muscles from patients with lumbar disc herniation by 50-60% (P < 0.01). Mechanistically, AGGF1 interacts with TWEAK (tumour necrosis factor-like weak inducer of apoptosis), which reduces interaction between TWEAK and its receptor Fn14 (fibroblast growth factor-inducing protein 14). This leads to inhibition of Fn14-induced NF-kappa B (NF-κB) p65 phosphorylation, which reduces expression of muscle-specific E3 ubiquitin ligase MuRF1 (muscle RING finger 1), resulting in increased MyHC and α-actin and partial reversal of atrophy phenotypes. Autophagy is reduced in Aggf1+/- mice due to inhibition of JNK (c-Jun N-terminal kinase) activation in denervated and cachectic muscles, and AGGF1 treatment enhances autophagy in two atrophy models by activating JNK. In impaired leg muscles of patients with lumbar disc herniation, MuRF1 is up-regulated and MyHC and α-actin are down-regulated; these effects are reversed by AGGF1 by 50% (P < 0.01). CONCLUSIONS: These results indicate that AGGF1 is a novel regulator for the pathogenesis of skeletal muscle atrophy and attenuates skeletal muscle atrophy by promoting autophagy and inhibiting MuRF1 expression through a molecular signalling pathway of AGGF1-TWEAK/Fn14-NF-κB. More importantly, the results indicate that AGGF1 protein therapy may be a novel approach to treat patients with skeletal muscle atrophy.


Assuntos
Deslocamento do Disco Intervertebral , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Indutores da Angiogênese/metabolismo , Caquexia/patologia , Actinas , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/patologia , Atrofia Muscular/patologia , Músculo Esquelético/patologia , Fator de Necrose Tumoral alfa , Proteínas Angiogênicas/metabolismo
15.
Cancer Immunol Immunother ; 72(1): 55-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35708739

RESUMO

Tumour acidosis contributes to cancer progression by inhibiting anti-tumour immunity. However, the effect of acidosis on anti-tumour T cell phenotypes in oesophageal adenocarcinoma (OAC) is unknown. Therefore, this study investigated the effect of acidosis on anti-tumour T cell profiles and if immune checkpoint blockade (ICB) could enhance anti-tumour T cell immunity under acidosis. Acidic conditions substantially altered immune checkpoint expression profiles of OAC patient-derived T cells, upregulating TIM-3, LAG-3 and CTLA-4. Severe acidosis (pH 5.5) significantly decreased the percentage of central memory CD4+ T cells, an effect that was attenuated by ICB treatment. ICB increased T cell production of IFN-γ under moderate acidosis (pH 6.6) but not severe acidosis (pH 5.5) and decreased IL-10 production by T cells under severe acidic conditions only. A link between lactate and metastasis was also depicted; patients with nodal metastasis had higher serum lactate levels (p = 0.07) which also positively correlated with circulating levels of pro-angiogenic factor Tie-2. Our findings establish that acidosis-induced upregulation of immune checkpoints on T cells may potentially contribute to immune evasion and disease progression in OAC. However, acidic conditions curtailed ICB efficacy, supporting a rationale for utilizing systemic oral buffers to neutralize tumour acidity to improve ICB efficacy. Study schematic-PBMCs were isolated from OAC patients (A) and expanded ex vivo for 7 days using anti-CD3/28 +IL-2 T cell activation protocol (B) and further cultured for 48 h under increasing acidic conditions in the absence or presence of immune checkpoint blockade (nivolumab, ipilimumab or dual nivolumab + ipilimumab) (C). Immunophenotyping was then carried out to assess immune checkpoint expression profiles and anti-tumour T cell phenotypes (D). Serum lactate was assessed in OAC patients (E-F) and levels were correlated with patient demographics (G) and the levels of circulating immune/pro-angiogenic cytokines that were determined by multiplex ELISA (H). Key Findings-severe acidic conditions upregulated multiple immune checkpoints on T cells (I). Efficacy of ICB was curtailed under severe acidic conditions (J). Circulating lactate levels positively correlated with circulating levels of pro-angiogenic factor tie-2 and higher serum lactate levels were found in patients who had nodal metastasis (K).


Assuntos
Adenocarcinoma , Linfócitos T , Humanos , Linfócitos T/metabolismo , Ipilimumab/uso terapêutico , Nivolumabe/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Indutores da Angiogênese/uso terapêutico , Adenocarcinoma/patologia
16.
Microvasc Res ; 145: 104446, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270418

RESUMO

Hypertrophic scar (HS) is a fibroproliferative disorder that causes cosmetic as well as functional problems; however, to our knowledge, there is no satisfactory treatment for HS to date. Previous studies have indicated that angiogenesis plays a crucial role in HS formation; therefore, anti-angiogenetic therapies are considered effective in improving HS. Although tacrolimus (TAC) has been proven effective in preventing HS formation in vivo and in vitro, its underlying mechanism remains controversial and ambiguous. Because of its anti-angiogenic effects in other diseases, we aimed to determine whether TAC reduces HS by suppressing angiogenesis. Using a rabbit ear HS model that we developed, HS was treated once a week with normal saline, dimethyl sulfoxide, or TAC for 3 weeks. Histological evaluation indicated that TAC significantly reduced collagen deposition and microvessel density in scar tissues. Moreover, immunofluorescence staining for CD31 and vascular endothelial growth factor (VEGF)-A revealed that TAC significantly inhibited HS angiogenesis. In vitro analysis showed that TAC inhibited endothelial cell migration and tubulogenesis as well as the viability and proliferation of human umbilical vascular endothelial cells (HUVECs) and HS fibroblasts (HSFBs). Furthermore, TAC significantly downregulated the expression of the human angiogenetic factors VEGF-A, FGF-2, PDGF-ß, and TGF-ß1 in HUVECs and HSFBs. Additionally, TAC-mediated inhibition of angiogenesis decreased the gene expression of crucial fibrotic markers, including α- smooth muscle actin and collagens 1 and 3, in HSFBs. This is the first study to demonstrate the inhibitory effects of TAC on HS formation mediated by a mechanism involving the suppression of scar angiogenesis.


Assuntos
Cicatriz Hipertrófica , Animais , Humanos , Coelhos , Cicatriz Hipertrófica/tratamento farmacológico , Cicatriz Hipertrófica/prevenção & controle , Cicatriz Hipertrófica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tacrolimo/farmacologia , Tacrolimo/metabolismo , Células Endoteliais/metabolismo , Indutores da Angiogênese/farmacologia , Fibroblastos/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
17.
BJOG ; 130(1): 78-87, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36168103

RESUMO

OBJECTIVE: To examine the effect of self-declared race on serum placental growth factor (PlGF) and sFlt-1/PlGF ratio and the impact on pre-eclampsia (PE) prediction. DESIGN: Prospective observational study. SETTING: Two UK maternity hospitals. POPULATION: 29 035 women with singleton pregnancies attending a routine 35+0 to 36+6 weeks' gestation hospital visit, including 654 (2.3%) who subsequently developed PE. METHODS: The predictive performance of PlGF and sFlt-1/PlGF for PE in minority racial groups (versus white) was examined. MAIN OUTCOME MEASURE: Delivery with PE. RESULTS: Compared with white women, mean PlGF was higher and sFlt-1/PlGF ratio lower in black, South Asian, East Asian and mixed race women. In white women at a PlGF concentration cut-off corresponding to a screen-positive rate (SPR) of 10%, detection rates (DRs) were 49.1% for PE at any time and 72.3% for PE within 2 weeks after screening. In black women, at the same PlGF concentration cut-off for white women, the SPR was 5.5%, and DRs 33.6% and 55.0%, respectively; the number of PE cases was too small to evaluate screening performance in other racial groups. Using a fixed cut-off in sFlt-1/PlGF ratio to identify women at risk of developing PE, similarly diagnostically disadvantaged black women. Bias was overcome by adjusting metabolite concentrations for maternal characteristics and use of the competing risks model to estimate patient-specific risks. CONCLUSION: Screening for PE with fixed cut-offs in PlGF or sFlt-1/PlGF diagnostically disadvantages black women. It is essential that measured levels of PlGF be adjusted for race as well as other maternal characteristics.


Assuntos
Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Fator de Crescimento Placentário , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Indutores da Angiogênese , Terceiro Trimestre da Gravidez , Idade Gestacional , Biomarcadores , Valor Preditivo dos Testes
18.
Biomed Pharmacother ; 157: 114041, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423543

RESUMO

Melatonin is a molecule with different antitumor actions in breast cancer and has been described as an inhibitor of vascular endothelial growth factor (VEGF). Despite the recognition of the key role exerted by VEGF in tumor angiogenesis, limitations arise when developing models to test new antiangiogenic molecules. Thus, the aim of this study was to develop rapid, economic, high capacity and easy handling angiogenesis assays to test the antiangiogenic effects of melatonin and demonstrate its most effective dose to neutralize and interfere with the angiogenic sprouting effect induced by VEGF and MCF-7. To perform this, 3D endothelial cell (HUVEC) spheroids and a chicken embryo chorioallantoic membrane (CAM) assay were used. The results showed that VEGF and MCF-7 were able to stimulate the sprouting of the new vessels in 3D endothelial spheroids and the CAM assay, and that melatonin had an inhibitory effect on angiogenesis. Specifically, as the 1 mM pharmacological dose was the only effective dose able to inhibit the formation of ramifications around the alginate in the CAM assay model, this inhibition was shown to occur in a dose-dependent manner. Taken together, these techniques represent novel tools for the development of antiangiogenic molecules such as melatonin, with possible implications for the therapy of breast cancer.


Assuntos
Melatonina , Neoplasias , Animais , Embrião de Galinha , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Membrana Corioalantoide/metabolismo , Melatonina/uso terapêutico , Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/metabolismo , Células Endoteliais , Indutores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana , Neoplasias/tratamento farmacológico
19.
Comput Methods Programs Biomed ; 229: 107279, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509004

RESUMO

BACKGROUND AND OBJECTIVE: Harmonious interactions of five representative organs: kidney, liver, heart, spleen, and lung, improve metastasis and cell divisions, and abnormal cell division causes cancer cell development. The research is processed through a mathematical approach based on win-win principle of five organs to generate medicine in blood vessel. The variations of solute medicine amount in blood vessel with respect to the flow rates of injected drugs are interpreted. The alterations of tumor cells density and tumor angiogenesis factor concentration are described according to the recovery of five organs' functions. METHODS: A compartmental analysis is applied to obtain medicine concentration in blood vessel by the functional recovery of five organs considering time level ti, the reaction rate coefficient Rj, and the medicine flow rate α. Random motility and chemotaxis in response to tumor angiogenesis factor gradients are comprised to derive mathematical governing equations for tumor cells motion and a finite volume method with time-changing is adopted to obtain numerical solutions due to the complexity of the governing equations. RESULTS: Drug concentration in blood vessel grows as heart reaction rate increases, and the medicine made through the functional enhancements of five representative organs is highly influential to restrain the activity of tumor angiogenesis factor. With the growth of medicine concentration in blood vessel according to the decline of reaction rate and medicine flow rate, tumor cells reacts hypersensitively at the moment of medicines injection and the density of tumor cells approached to zero. CONCLUSIONS: Consequently, reaction rate, time level, and medicine flow rate are crucial factors in the determination of medicine amount in blood vessel and to control tumor angiogenesis factor concentration, and harmonious balanced functions among five organs based on win-win principle contribute to control the activity of tumor cells.


Assuntos
Indutores da Angiogênese , Baço , Fígado , Rim , Pulmão
20.
Methods Mol Biol ; 2582: 295-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370358

RESUMO

Angiogenesis, the process of generating new blood vessels from an existing vasculature, is essential in normal developmental processes such as endochondral ossification and in numerous kinds of pathogenesis including tumor growth. A part from the actin of angiogenic factor or antiangiogenic factor, it is still unknown at which stage of the angiogenic cascade these agents affect angiogenesis. Here, we describe methods for the use of cellular communication network factor/connective tissue growth factor (CTGF/CCN2) and CCN2-neutralizing antibody in the currently used principal angiogenesis assays, including those in vitro ones for the proliferation, migration, adhesion, and tube formation of endothelial cells and in vivo assays such as those utilizing type I collagen implantation and the chick chorioallantoic membrane (CAM). In addition, we introduce an autofluorescence imaging of blood vessels in the subcutaneous tumor xenograft mouse model. These assays can be applied to studies on roles of CCN proteins in tumor metastasis and development of treatment strategies targeting CCN proteins.


Assuntos
Células Endoteliais , Neovascularização Patológica , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Neovascularização Patológica/patologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Membrana Corioalantoide/irrigação sanguínea , Indutores da Angiogênese , Bioensaio , Inibidores da Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...