Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.471
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612640

RESUMO

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic ß-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças do Sistema Digestório , Fígado Gorduroso , Hepatopatias , Doenças Metabólicas , Humanos , Receptores de Glucagon , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptores Acoplados a Proteínas G
2.
Mol Cell Endocrinol ; 587: 112201, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494045

RESUMO

The gut plays a crucial role in metabolism by regulating the passage of nutrients, water and microbial-derived substances to the portal circulation. Additionally, it produces incretins, such as glucose-insulinotropic releasing peptide (GIP) and glucagon-like derived peptide 1 (GLP1, encoded by gcg gene) in response to nutrient uptake. We aimed to investigate whether offspring from overweight rats develop anomalies in the barrier function and incretin transcription. We observed pro-inflammatory related changes along with a reduction in Claudin-3 levels resulting in increased gut-permeability in fetuses and offspring from overweight rats. Importantly, we found decreased gip mRNA levels in both fetuses and offspring from overweight rats. Differently, gcg mRNA levels were upregulated in fetuses, downregulated in female offspring and unchanged in male offspring from overweight rats. When cultured with high glucose, intestinal explants showed an increase in gip and gcg mRNA levels in control offspring. In contrast, offspring from overweight rats did not exhibit any response in gip mRNA levels. Additionally, while females showed no response, male offspring from overweight rats did exhibit an upregulation in gcg mRNA levels. Furthermore, female and male offspring from overweight rats showed sex-dependent anomalies when orally challenged with a glucose overload, returning to baseline glucose levels after 120 min. These results open new research questions about the role of the adverse maternal metabolic condition in the programming of impairments in glucose homeostasis, enteroendocrine function and gut barrier function in the offspring from overweight mothers and highlight the importance of a perinatal maternal healthy metabolism.


Assuntos
Polipeptídeo Inibidor Gástrico , Sobrepeso , Ratos , Masculino , Feminino , Animais , Sobrepeso/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Incretinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Peptídeos/metabolismo , Homeostase , RNA Mensageiro/genética
3.
Peptides ; 174: 171168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320643

RESUMO

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Receptores dos Hormônios Gastrointestinais , Humanos , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Glicemia/metabolismo , Duodeno/metabolismo , Peptídeos/uso terapêutico , Células Enteroendócrinas/metabolismo , Receptores Acoplados a Proteínas G , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
4.
Am J Physiol Endocrinol Metab ; 326(4): E472-E480, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381398

RESUMO

New incretin-based pharmacotherapies provide efficient and safe therapeutic options to curb appetite and produce weight loss in patients with obesity. Delivered systemically, these molecules produce pleiotropic metabolic benefits, but the target sites mediating their weight-suppressive action are located within the brain. Recent research has increased our understanding of the neural circuits and behavioral mechanisms involved in the anorectic and metabolic consequences of glucagon-like peptide 1 (GLP-1)-based weight loss strategies, yet little is known about how these drugs access their functional targets in the brain to produce sustained weight loss. The majority of brain cells expressing incretin receptors are located behind the blood-brain barrier, shielded from the circulation and fluctuations in the availability of peripheral signals, which is a major challenge for the development of CNS-targeted therapeutic peptides. GLP-1 receptor (GLP-1R) agonists with increased half-life and enhanced therapeutic benefit do not cross the blood-brain barrier, yet they manage to access discrete brain sites relevant to the regulation of energy homeostasis. In this review, we give a brief overview of the different routes for peptide hormones to access the brain. We then examine the evidence informing the routes employed by incretins and incretin receptor agonists to access brain targets relevant for their appetite and weight-suppressive actions. We highlight existing controversies and suggest future directions to further establish the functionally relevant access routes for GLP-1-based weight loss compounds, which might guide the development and selection of the future generation of incretin receptor polypharmacologies.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Humanos , Incretinas/uso terapêutico , Incretinas/metabolismo , Apetite , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Encéfalo/metabolismo , Redução de Peso , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
5.
Physiology (Bethesda) ; 39(3): 142-156, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353610

RESUMO

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Adulto , Humanos , Adolescente , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Obesidade/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico
6.
Diabetes Metab Syndr ; 18(2): 102956, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364583

RESUMO

OBJECTIVE: Glucagon-like peptide-1 receptor belongs to the B family of G protein-coupled receptors, serving as a binding protein in membranes and is widely expressed in human tissues. Upon stimulation by its agonist, the glucagon-like peptide-1, the receptor plays a role in glucose metabolism, enhancing insulin secretion, and regulating appetite in the hypothalamus. Mutations in the glucagon-like peptide-1 receptor gene can lead to physiological changes that may explain phenotypic variations in individuals with obesity and diabetes. Therefore, this study aimed to evaluate missense variants of the glucagon-like peptide-1 receptor gene. METHODS: Data mining was performed on the single nucleotide polymorphism database, retrieving a total of 16,399 variants. Among them, 356 were missense. These 356 variants were analyzed using the PolyPhen-2 and filtered based on allele frequency, resulting in 6 pathogenic variants. RESULTS: D344E, A239T, R310Q, R227H, R421P, and R176G were analyzed using four different prediction tools. The D344E and A239T resulted in larger amino acid residues compared to their wild-type counterparts. The D344E showed a slightly destabilized structure, while A239T affected the transmembrane helices. Conversely, the R310Q, R227H, R421P, and R176G resulted in smaller amino acid residues than the wild-type, leading to a loss of positive charge and increased hydrophobicity. Particularly, the R421P, due to the presence of proline, significantly destabilized the α-helix structure and caused severe damage to the receptor. CONCLUSION: Elucidating the glucagon-like peptide-1 receptor variants and their potentially detrimental effects on receptor functionality can contribute to an understanding of metabolic diseases and the response to available pharmacological treatments.


Assuntos
Diabetes Mellitus , Incretinas , Humanos , Aminoácidos , Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Incretinas/metabolismo , Obesidade/genética , Fenótipo
7.
Expert Opin Investig Drugs ; 33(3): 183-190, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372052

RESUMO

INTRODUCTION: Type 2 diabetes (T2D) is metabolic disorder associated with a decrease in insulin activity and/or secretion from the ß-cells of the pancreas, leading to elevated circulating glucose. Current management practices for T2D are complex with varying long-term effectiveness. Agonism of the G protein-coupled receptor GPR119 has received a lot of recent interest as a potential T2D therapeutic. AREAS COVERED: This article reviews studies focused on GPR119 agonism in animal models of T2D and in patients with T2D. EXPERT OPINION: GPR119 agonists in vitro and in vivo can potentially regulate incretin hormone release from the gut, then pancreatic insulin release which regulates blood glucose concentrations. However, the success in controlling glucose homeostasis in rodent models of T2D and obesity, failed to translate to early-stage clinical trials in patients with T2D. However, in more recent studies, acute and chronic dosing with the GPR119 agonist DS-8500a had increased efficacy, although this compound was discontinued for further development. New trials on GPR119 agonists are needed, however it may be that the future of GPR119 agonists lie in the development of combination therapy with other T2D therapeutics.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Incretinas , Insulina/metabolismo , Receptores Acoplados a Proteínas G/agonistas
8.
Front Endocrinol (Lausanne) ; 15: 1348990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405148

RESUMO

Pasireotide is a somatostatin analogue for the treatment of acromegaly, a chronic condition caused by excess growth hormone. Despite the therapeutic benefits of pasireotide as a second-line treatment for inadequately controlled acromegaly, a major concern is its hyperglycemic side-effect. Here, we provide guidance on how to select appropriate patients with acromegaly for treatment with pasireotide. We summarize baseline characteristics of patients at high risk for pasireotide-associated hyperglycemia and recommend a monitoring strategy based on the risk profile. Self-monitoring of blood glucose levels (SMBG), measurements of fasting plasma glucose (FPG), postprandial plasma glucose (PPG) and regular HbA1c measurements are the foundation of our proposed monitoring approach. The pathophysiology of pasireotide-induced hyperglycemia involves decreased secretion of the incretin hormones GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1). Our expert recommendations address the specific pathophysiology of pasireotide-induced hyperglycemia by recommending the incretin-based therapeutics dipeptidyl peptidase-4 inhibitors (DPP-4i) and glucagon-like peptide-1 receptor agonists (GLP-1 RA) in all appropriate patients as an alternative to first-line monotherapy with metformin. Furthermore, we emphasize the importance of adequate control of acromegaly, excellent diabetes education, nutrition and lifestyle guidance and advise to consult expert diabetologists in case of uncertainty in the management of patients with hyperglycemia under pasireotide.


Assuntos
Acromegalia , Hiperglicemia , Somatostatina/análogos & derivados , Humanos , Acromegalia/tratamento farmacológico , Glicemia , Incretinas , Somatostatina/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon
9.
Biomed Pharmacother ; 172: 116245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340396

RESUMO

'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Incretinas , Humanos , Obesidade/tratamento farmacológico , Receptores Acoplados a Proteínas G , Redução de Peso , Peptídeos
10.
Aliment Pharmacol Ther ; 59(4): 475-491, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169126

RESUMO

BACKGROUND: Obesity has reached epidemic proportions, with >40% of the US population affected. Although traditionally managed by lifestyle modification, and less frequently by bariatric therapies, there are significant pharmacological advancements. AIMS: To conduct a narrative review of the neurohormonal and physiological understanding of weight gain and obesity, and the development, clinical testing, indications, expected clinical outcomes, and associated risks of current FDA-approved and upcoming anti-obesity medications (AOMs). METHODS: We conducted a comprehensive review in PubMed for articles on pathophysiology and complications of obesity, including terms 'neurohormonal', 'obesity', 'incretin', and 'weight loss'. Next, we searched for clinical trial data of all FDA-approved AOMs, including both the generic and trade names of orlistat, phentermine/topiramate, bupropion/naltrexone, liraglutide, and semaglutide. Additional searches were conducted for tirzepatide and retatrutide - medications expecting regulatory approval. Searches included combinations of terms related to mechanism of action, indications, side effects, risks, and future directions. RESULTS: We reviewed the pathophysiology of obesity, including specific role of incretins and glucagon. Clinical data supporting the use of various FDA-approved medications for weight loss are presented, including placebo-controlled or, when available, head-to-head trials. Beneficial metabolic effects, including impact on liver disease, adverse effects and risks of medications are discussed, including altered gastrointestinal motility and risk for periprocedural aspiration. CONCLUSION: AOMs have established efficacy and effectiveness for weight loss even beyond 52 weeks. Further pharmacological options, such as dual and triple incretins, are probable forthcoming additions to clinical practice for combating obesity and its metabolic consequences such as metabolic dysfunction-associated steatotic liver disease.


Assuntos
Fármacos Antiobesidade , Hepatopatias , Humanos , Incretinas/uso terapêutico , Topiramato/uso terapêutico , Frutose/efeitos adversos , Obesidade/tratamento farmacológico , Fármacos Antiobesidade/efeitos adversos , Redução de Peso , Hepatopatias/tratamento farmacológico
11.
Peptides ; 173: 171149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184193

RESUMO

Options for the treatment of type 2 diabetes mellitus (T2DM) and obesity have recently been expanded by the results of several large clinical trials with incretin-based peptide therapies. Most of these studies have been conducted with the glucagon-like peptide-1 (GLP-1) receptor agonist semaglutide, which is available as a once weekly subcutaneous injection and once daily tablet, and the once weekly injected dual agonist tirzepatide, which interacts with receptors for GLP-1 and glucose-dependent insulinotropic polypeptide (GIP). In individuals with T2DM these therapies have achieved reductions of glycated haemoglobin (HbA1c) by > 2% and lowered body weight by > 10%. In some studies, these agents tested in non-diabetic, obese individuals at much higher doses have lowered body weight by > 15%. Emerging evidence suggests these agents can also offer cardio-protective and potentially reno-protective effects. Other incretin-based peptide therapies in early clinical development, notably a triple GLP-1/GIP/glucagon receptor agonist (retatrutide) and a combination of semaglutide with the amylin analogue cagrilintide (CagriSema), have shown strong efficacy. Although incretin therapies can incur adverse gastrointestinal effects these are for most patients mild-to-moderate and transient but result in cessation of treatment in some cases. Thus, the efficacy of new incretin-based peptide therapies is enhancing the opportunity to control body weight and blood glucose and improve the treatment of T2DM and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Incretinas/uso terapêutico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Obesidade , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Peso Corporal , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico
12.
Obes Rev ; 25(4): e13686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204284

RESUMO

BACKGROUND: Growing evidence indicates that incretin-based therapies (IBTs), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and dipeptidyl peptidase-4 inhibitors (DPP4is) are effective and safe for treating pediatric obesity patients with or without type 2 diabetes. Therefore, we aimed to perform a systematic review and meta-analysis for updating current evidence. METHODS: We searched the PubMed, the Cochrane Library, and the EMBASE database for articles published until September 15, 2023, and limited to randomized control trials. The primary outcomes were changed from baseline in weight metrics and the cardiometabolic profile. A random effects model will be used, as high heterogeneity is expected. All analyses were performed using STATA 17.0. RESULTS: Fifteen trials with a total number of 1286 participants were included in our meta-analysis. Overall, the mean difference in weight change between the IBTs group and the control group was -2.89 kg (95% confidence interval, -5.12 to -0.65, p = 0.011). Additionally, IBTs significantly reduced the HbA1c level and fasting plasma glucose by 0.37% and 6.99 mg/dl, compared with control groups. IBTs showed a little increased risk of GI side effects and hypoglycemia events, but none of the severe hypoglycemia events were occurred in IBTs group. CONCLUSIONS: Our study results have proved that GLP-1 RAs are safe, acceptable, and effective in weight reduction and sugar control for children with obesity. In addition, DPP-4is seems to have no effect on glycemic control and weight loss in childhood obesity. Further research is needed to confirm these findings, especially in younger children.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Obesidade Pediátrica , Criança , Humanos , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemia/induzido quimicamente , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Incretinas/uso terapêutico , Obesidade Pediátrica/tratamento farmacológico , Obesidade Pediátrica/induzido quimicamente , Redução de Peso
13.
J Mol Endocrinol ; 72(4)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240302

RESUMO

Enteroendocrine cells located along the gastrointestinal epithelium sense different nutrients/luminal contents that trigger the secretion of a variety of gut hormones with different roles in glucose homeostasis and appetite regulation. The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are involved in the regulation of insulin secretion, appetite, food intake and body weight after their nutrient-induced secretion from the gut. GLP-1 mimetics have been developed and used in the treatment of type 2 diabetes mellitus and obesity. Modulating the release of endogenous intestinal hormones may be a promising approach for the treatment of obesity and type 2 diabetes without surgery. For that reason, current understanding of the cellular mechanisms underlying intestinal hormone secretion will be the focus of this review. The mechanisms controlling hormone secretion depend on the nature of the stimulus, involving a variety of signalling pathways including ion channels, nutrient transporters and G-protein-coupled receptors.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Humanos , Incretinas/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Insulina/metabolismo
14.
Curr Opin Cardiol ; 39(3): 148-153, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294187

RESUMO

PURPOSE OF REVIEW: Incretin-based drugs are potent weight-lowering agents, emerging as potential breakthrough therapy for the treatment of obesity-related phenotype of heart failure with preserved ejection fraction (HFpEF). In this review article, we will discuss the contribution of weight loss as part of the benefits of incretin-based medications in obese patients with HFpEF. Furthermore, we will describe the potential effects of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists on the heart, particularly in relation to HFpEF pathophysiology. RECENT FINDINGS: In the STEP-HFpEF trial, the GLP-1 receptor agonist semaglutide significantly improved quality of life outcomes in obese HFpEF patients. Whether the beneficial effects of semaglutide in obese patients with HFpEF are merely a consequence of body weight reduction is unclear. Considering the availability of other weight loss strategies (e.g., caloric restriction, exercise training, bariatric surgery) to be used in obese HFpEF patients, answering this question is crucial to provide tailored therapeutic options in these subjects. SUMMARY: Incretin-based drugs may represent a milestone in the treatment of obesity in HFpEF. Elucidating the contribution of weight loss in the overall benefit observed with these drugs is critical in the management of obese HFpEF patients, considering that other weight-lowering strategies are available and might represent potential alternative options for these patients.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Incretinas/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Qualidade de Vida , Volume Sistólico/fisiologia , Redução de Peso/fisiologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Obesidade/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico
15.
J Am Pharm Assoc (2003) ; 64(1): 204-211.e4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37940101

RESUMO

BACKGROUND: Tirzepatide is a dual glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist (RA) whose mechanism of action leads to a greater effect of gastric emptying (GE) than typical GLP-1 RAs. After the first dose of tirzepatide, GE is most substantially delayed. The drug then undergoes tachyphylaxis after subsequent doses. Although data on GLP1-RAs have historically demonstrated a lack of impact on bioavailability of oral hormonal contraceptives, manufacturer recommendations for tirzepatide indicate an interaction exists. OBJECTIVES: The objectives of this literature review were to review trial data on differences in the impact of tirzepatide and GLP-1 RAs on oral hormonal contraceptives and provide an analysis of safety data between oral contraceptives and incretin agents. METHODS: PubMed and Google Scholar were searched using the generic name for the GLP-1/GIP agent, the generic names for GLP-1 RAs and hormonal contraceptives, followed by the generic names plus the interacting medication. A total of 6 clinical trials were selected for inclusion in the literature review. RESULTS: Of the 6 articles included in the review, one investigated the use of tirzepatide and showed a statistically significant reduction in area under the plasma drug concentration-time curve, maximum concentration, and time to maximum plasma concentration when tirzepatide was concomitantly administered with an oral hormonal contraceptive. The remaining 5 studies involving GLP-1 RAs did not show a statistically or clinically significant difference of impact of the agents on oral hormonal contraceptives. CONCLUSION: It could be suggested that tirzepatide had a greater impact on absorption of oral hormonal contraceptives than other GLP-1 RAs. The rapid dose escalation and greater delay on GE enhanced the impact on oral medications such as contraceptives. This differed from other GLP-1 RAs and creates a unique need for enhanced provider and patient education regarding the management of this interaction and future studies to evaluate this interaction further.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 2 , Contracepção Hormonal , Hipoglicemiantes , Incretinas , Humanos , Anticoncepcionais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Incretinas/efeitos adversos
16.
Endocrinol Diabetes Metab ; 7(1): e463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059537

RESUMO

OBJECTIVE: The mechanisms behind the diminished incretin effect in type 2 diabetes are uncertain, but impaired vagal transmission has been suggested. We aimed to investigate the association between the incretin effect and autonomic neuropathy, and the degree of dysglycaemia and duration of diabetes. DESIGN AND METHODS: For a cross-sectional study, we included participants with either longstanding type 2 diabetes, recent onset, untreated diabetes and controls without diabetes matched for age, sex and body mass index. Autonomic nerve function was assessed with cardiovascular reflex tests, heart rate variability and sudomotor function. Visceral afferent nerves in the gut were tested performing rapid rectal balloon distention. An oral glucose tolerance test and an intravenous isoglycaemic glucose infusion were performed to calculate the incretin effect and gastrointestinal-mediated glucose disposal (GIGD). RESULTS: Sixty-five participants were recruited. Participants with diabetes had rectal hyposensitivity for earliest sensation (3.7 ± 1.1 kPa in longstanding, 4.0 ± 1.3 in early), compared to controls (3.0 ± 0.9 kPa), p = .005. Rectal hyposensitivity for earliest sensation was not associated with the incretin effect (rho = -0.204, p = .106), but an association was found with GIGD (rho -0.341, p = .005). Incretin effect and GIGD were correlated with all glucose values, HbA1c and duration of diabetes. CONCLUSIONS: Rectal hyposensitivity was uncovered in both longstanding and early type 2 diabetes, and was not associated with the incretin effect, but with GIGD, implying a potential link between visceral neuropathy and gastrointestinal handling of glucose. Both the incretin effect and GIGD were associated with the degree of dysglycaemia and the duration of diabetes. PREVIOUSLY PUBLISHED: Some of the data have previously been published and presented as a poster on the American Diabetes Association 83rd Scientific Sessions: Meling et al; 1658-P: Rectal Hyposensitivity, a Potential Marker of Enteric Autonomic Nerve Dysfunction, Is Significantly Associated with Gastrointestinally Mediated Glucose Disposal in Persons with Type 2 Diabetes. Diabetes 20 June 2023; 72 (Supplement_1): 1658-P. https://doi.org/10.2337/db23-1658-P.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Humanos , Incretinas/fisiologia , Glucose , Peptídeo 1 Semelhante ao Glucagon , Diabetes Mellitus Tipo 2/complicações , Glicemia , Estudos Transversais , Insulina
18.
Peptides ; 171: 171117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984684

RESUMO

Tirzepatide is a dual GIP and GLP-1 receptor co-agonist which is approved for glucose-lowering therapy in type 2 diabetes. Here, we explored its effects on beta cell function, insulin sensitivity and insulin-independent glucose elimination (glucose effectiveness) in normal mice. Anesthetized female C57/BL/6 J mice were injected intravenously with saline or glucose (0.125, 0.35 or 0.75 g/kg) with or without simultaneous administration of synthetic tirzepatide (3 nmol/kg). Samples were taken at 0, 1, 5, 10, 20 and 50 min. Glucose elimination rate was estimated by the percentage reduction in glucose from min 5 to min 20 (KG). The 50 min areas under the curve (AUC) for insulin and glucose were determined. Beta cell function was assessed as AUCinsulin divided by AUCglucose. Insulin sensitivity (SI) and glucose effectiveness (SG) were determined by minimal model analysis of the insulin and glucose data. Tirzepatide glucose-dependently reduced glucose levels and increased insulin levels. The slope for the regression of AUCinsulin versus AUCglucose was increased 7-fold by tirzepatide from 0.014 ± 0.004 with glucose only to 0.099 ± 0.016 (P < 0.001). SI was not affected by tirzepatide, whereas SG was increased by 78% (P < 0.001). The increase in SG contributed to an increase in KG by 74 ± 4% after glucose alone and by 67 ± 8% after glucose+ tirzepatide, whereas contribution by SI times AUCinsulin insulin (i.e., disposition index) was 26 ± 4% and 33 ± 8%, respectively. In conclusion, tirzepatide stimulates both insulin secretion and glucose effectiveness, with stimulation of glucose effectiveness being the prominent process to reduce glucose.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Feminino , Camundongos , Animais , Glucose/farmacologia , Incretinas/farmacologia , Secreção de Insulina , Glicemia , Resistência à Insulina/fisiologia , Polipeptídeo Inibidor Gástrico/farmacologia , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Receptor do Peptídeo Semelhante ao Glucagon 1
19.
Br J Clin Pharmacol ; 90(3): 819-827, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37945350

RESUMO

AIMS: To gain insight in the uptake and practice variation in the prescription of 2 new medicine groups for common conditions in primary care (direct-acting oral anticoagulants [DOACs] and incretin-based therapies) from introduction, around 2007, to 2019 and the correlation between the adoption of those medicines in primary care. METHODS: Prescription data from general practices in the Dutch Nivel Primary Care Database from 2007 to 2019 were used. The percentage of patients with prescriptions for DOACs of all patients with prescriptions for DOACs and vitamin K antagonists was calculated per practice per year, as was the percentage of patients prescribed incretin-based therapies as a proportion of all patients with diabetes medication. Multilevel models were used to estimate practice variation for DOACs and incretin-based therapies, expressed as intraclass correlation coefficients. Linear regression analysis was used to study the association between the prescription of DOACs and incretin-based therapies. RESULTS: Per year, 46-424 general practices and 179 933-1 654 376 patients were included. In 2019, the mean percentage of patients per practice using DOACs or incretin-based therapies was 54.9 and 9.7%, respectively. The intraclass correlation coefficient decreased from 0.75 to 0.024 for DOACs and from 0.33 to 0.074 for incretin-based medicines during the study period. No clear correlation was found between the prescription of DOACs and incretin-based therapies. CONCLUSION: DOACs and incretin-based therapies have different adoption profiles and practice variation is large, especially in the years before these medicines were introduced in guidelines. Early adopters of both medicine classes differ.


Assuntos
Fibrilação Atrial , Diabetes Mellitus , Humanos , Incretinas , Anticoagulantes/uso terapêutico , Inibidores do Fator Xa/efeitos adversos , Hipoglicemiantes/uso terapêutico , Atenção Primária à Saúde , Administração Oral , Fibrilação Atrial/tratamento farmacológico , Diabetes Mellitus/induzido quimicamente
20.
Diabetes Obes Metab ; 26(2): 721-731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031234

RESUMO

AIM: The results from the SUSTAIN-6 trial generated some uncertainty regarding the association between incretin-based drugs [dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)] and the risk of diabetic retinopathy. Our objective was to synthesize the available evidence from observational studies regarding the use of incretin-based drugs and the risk of diabetic retinopathy among individuals with type 2 diabetes. MATERIALS AND METHODS: We systemically searched Cochrane Library, Embase and Medline to identify observational studies of interest. Risk of bias was assessed using the ROBINS-I tool. Data from included studies were pooled using the DerSimonian and Laird random-effect model with the Hartung-Knapp extension. RESULTS: We included 14 studies in the systematic review, with 10 examining DPP-4 inhibitors and seven examining GLP-1 RAs. Nine studies investigated incident diabetic retinopathy, six investigated diabetic retinopathy progression and two investigated both outcomes. Seven studies were at moderate risk of bias, four at serious risk of bias and three at critical risk of bias. Data pooled across studies showed no association between the use of DPP-4 inhibitors (risk ratio: 0.98, 95% confidence interval: 0.83, 1.17) or GLP-1 RAs (risk ratio: 0.87, 95% confidence interval: 0.56, 1.34) and the risk of diabetic retinopathy. CONCLUSION: This study suggests that the use of incretin-based drugs is not associated with the risk of diabetic retinopathy among individuals with type 2 diabetes. However, these findings should be interpreted with caution considering the limited quality of some of the available evidence.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Inibidores da Dipeptidil Peptidase IV , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retinopatia Diabética/epidemiologia , Retinopatia Diabética/etiologia , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes/efeitos adversos , Incretinas/efeitos adversos , Estudos Observacionais como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...