Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.827
Filtrar
1.
Emerg Infect Dis ; 30(13): S41-S48, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38561639

RESUMO

Serratia marcescens is an environmental gram-negative bacterium that causes invasive disease in rare cases. During 2020-2022, an outbreak of 21 invasive Serratia infections occurred in a prison in California, USA. Most (95%) patients had a history of recent injection drug use (IDU). We performed whole-genome sequencing and found isolates from 8 patients and 2 pieces of IDU equipment were closely related. We also identified social interactions among patients. We recovered S. marcescens from multiple environmental samples throughout the prison, including personal containers storing Cell Block 64 (CB64), a quaternary ammonium disinfectant solution. CB64 preparation and storage conditions were suboptimal for S. marcescens disinfection. The outbreak was likely caused by contaminated CB64 and propagated by shared IDU equipment and social connections. Ensuring appropriate preparation, storage, and availability of disinfectants and enacting interventions to counteract disease spread through IDU can reduce risks for invasive Serratia infections in California prisons.


Assuntos
Infecção Hospitalar , Desinfetantes , Prisioneiros , Infecções por Serratia , Humanos , Serratia marcescens/genética , Infecções por Serratia/epidemiologia , Prisões , Infecção Hospitalar/microbiologia , Surtos de Doenças , California/epidemiologia
2.
J Chromatogr A ; 1721: 464812, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38569297

RESUMO

In this work, a novel and efficient approach for sodium hypochlorite analysis is proposed via phase-conversion headspace technique, which is based on the gas chromatography (GC) detection of generated carbon dioxide (CO2) from the redox reaction of sodium hypochlorite with sodium oxalate. The data obtained by the proposed method suggest the high detecting precision and accuracy. In addition, the method has low detection limits (limit of quantification (LOQ) = 0.24 µg/mL), and the recoveries of added standard ranged from 98.33 to 101.27 %. The proposed phase-conversion headspace technique is efficient and automated, thereby offering an efficient strategy for highly efficient analysis of sodium hypochlorite and related products.


Assuntos
Desinfetantes , Hipoclorito de Sódio , Desinfetantes/análise , Ácido Hipocloroso , Cromatografia Gasosa/métodos , Dióxido de Carbono/análise
3.
J Water Health ; 22(3): 601-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557574

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in suspension and by spraying to inactivate SARS-CoV-2. The virucidal efficacy of HOCl solution in tests against SARS-CoV-2 was evaluated as 50% tissue culture infectious dose. Although the presence of organic compounds influenced the virucidal efficacy, HOCl treatment for 20 s was significantly effective to inactivate Wuhan and Delta strains in the suspension test. HOCl atomization for several hours significantly reduced the SARS-CoV-2 attached to plastic plates. These results indicate that HOCl solution with elimination containing NaCl and other ions may have high virucidal efficacy against SARS-CoV-2. This study provides important information about the virucidal efficacy and use of HOCl solution.


Assuntos
COVID-19 , Desinfetantes , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Ácido Hipocloroso/farmacologia , Água , Desinfetantes/farmacologia
4.
Huan Jing Ke Xue ; 45(3): 1561-1576, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471870

RESUMO

At the time when water resources are in short supply,wastewater recycling is both an important environmental protection strategy and also a resource strategy. Disinfection is essential to ensure the biological safety of reclaimed wastewater by killing pathogens and preventing the spread of waterborne diseases. However,the disinfection process could inevitably produce toxic disinfection byproducts(DBPs)due to the reaction between the disinfectants and wastewater organic matters. Regarding wastewater DBPs,this study reviewed their identification methods,formation conditions(including precursors,the effect of water quality,disinfectants,and operational parameters on DBPs),and control methods(including source control,process control,and end control). In addition,future research trends of wastewater DBPs were discussed.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Águas Residuárias , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Halogenação
5.
Sci Total Environ ; 922: 171317, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428610

RESUMO

Sequential utilization of ozone (O3) and biological activated carbon (BAC) followed by UV/chlor(am)ine advanced oxidation process (AOP) has drawn attention in water reuse. However, the formation of disinfection by-products (DBPs) in this process is less evaluated. This study investigated the DBP formation and the relevant toxicity during the O3-BAC-UV/chlor(am)ine treatment of sand-filtered municipal secondary effluent. DBP formation in UV/chlorine and UV/dichloramine (NHCl2) processes were compared, where the impact of key operational parameters (e.g., UV wavelength, pH) on DBP formation were comprehensively evaluated. O3-BAC significantly reduced DBP formation potential (DBPFP) (58.2 %). Compared to UV/chlorine AOP, UV/NHCl2 AOP reduced DBP formation by 29.7 % in short-time treatment, while insignificantly impacting on DBPFP (p > 0.05). UV/NHCl2 AOP also led to lower calculated cytotoxicity (67.7 %) and genotoxicity (55.9 %) of DBPs compared to UV/chlorine AOP. Compared to 254 nm UV light, the utilization of 285 nm UV light decreased the formation of DBPs in wastewater treated with the UV/chlorine AOP and UV/NHCl2 AOP by 31.3 % and 19.2 %, respectively. However, the cytotoxicity and genotoxicity in UV/NHCl2 AOP using 285 nm UV light increased by 83.4 % and 58.5 %, respectively, compared to 254 nm. The concentration of DBPs formed in the UV/NHCl2 AOP at pH 8 was 54.3 % lower than that at pH 7, suggesting a better control of DBPs at alkaline condition. In the presence of bromide, UV/NHCl2 AOP tended to generate more brominated DBPs than UV/chlorine AOP. Overall, UV/NHCl2 AOP resulted in lower concentration and toxicity of DBPs compared to UV/chlorine AOP.


Assuntos
Desinfetantes , Ozônio , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Carvão Vegetal , Águas Residuárias , Cloro , Raios Ultravioleta , Purificação da Água/métodos , Halogenação , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 355: 120493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452624

RESUMO

The present study aimed to narrow such gaps by applying nonlinear differential equations to biostability in drinking water. Biostability results from the integrated dynamics of nutrients and disinfectants. The linear dynamics of biostability have been well studied, while there remain knowledge gaps concerning nonlinear effects. The nonlinear effects are explained by phase plots for specific scenarios in a drinking water system, including continuous nutrient release, flush exchange with the adjacent environment, periodic pulse disinfection, and periodic biofilm development. The main conclusions are, (1) The correlations between the microbial community and nutrients go through phases of linear, nonlinear, and chaotic dynamics. Disinfection breaks the chaotic phase and returns the system to the linear phase, increasing the microbial growth potential. (2) Post-disinfection after multiple microbial peaks produced via metabolism can increase disinfection efficiency and decrease the risks associated with disinfectant byproduct risks. This can provide guidelines for optimizing the disinfection strategy, according to the long-term water safety target or a short management. Limited disinfection and ultimate disinfection may be more effective and have low chemical risk, facing longer stagnant conditions. (3) Periodic biofilm formation and biofilm detachment increase the possibility of uncertainty in the chaotic phase. For future study, nonlinear differential equation models can accordingly be applied at the molecular and ecological levels to further explore more nonlinear regulation mechanisms.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Cloro/química , Cloro/farmacologia , Desinfecção/métodos , Biofilmes , Purificação da Água/métodos
7.
J Oleo Sci ; 73(4): 437-444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556278

RESUMO

Polyhexamethylene guanidine (PHMG) is a guanidine-based chemical that has long been used as an antimicrobial agent. However, recently raised concerns regarding the pulmonary toxicity of PHMG in humans and aquatic organisms have led to research in this area. Along with PHMG, there are concerns about the safety of non-guanidine 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) in human lungs; however, the safety of such chemicals can be affected by many factors, and it is difficult to rationalize their toxicity. In this study, we investigated the adsorption characteristics of CMIT/ MIT on a model pulmonary surfactant (lung surfactant, LS) using a Langmuir trough attached to a fluorescence microscope. Analysis of the π-A isotherms and lipid raft morphology revealed that CMIT/MIT exhibited minimal adsorption onto the LS monolayer deposited at the air/water interface. Meanwhile, PHMG showed clear signs of adsorption to LS, as manifested by the acceleration of the L o phase growth with increasing surface pressure. Consequently, in the presence of CMIT/MIT, the interfacial properties of the model LS monolayer exhibited significantly fewer changes than PHMG.


Assuntos
Anti-Infecciosos , Desinfetantes , Surfactantes Pulmonares , Humanos , Adsorção , Pulmão , Guanidinas/química , Guanidina
8.
Infect Genet Evol ; 119: 105582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467173

RESUMO

Listeria monocytogenes is an important human pathogen with a high mortality rate. Consumption of contaminated ready-to-eat food is the main mode of transmission to humans. Disinfectant-tolerant L. monocytogenes have emerged, which are believed to have increased persistence potential. Elucidating the mechanisms of L. monocytogenes disinfectant tolerance has been the focus of previous studies using pure cultures. A limitation of such approach is the difficulty to identify strains with reduced susceptibility due to inter-strain variation and the need to screen large numbers of strains and genes. In this study, we applied a novel metagenomic approach to detect genes associated with disinfectant tolerance in mixed L. monocytogenes planktonic communities. Two communities, consisting of 71 and 80 isolates each, were treated with the food industry disinfectants benzalkonium chloride (BC, 1.75 mg/L) or peracetic acid (PAA, 38 mg/L). The communities were subjected to metagenomic sequencing and differences in individual gene abundances between biocide-free control communities and biocide-treated communities were determined. A significant increase in the abundance of Listeria phage-associated genes was observed in both communities after treatment, suggesting that prophage carriage could lead to an increased disinfectant tolerance in mixed L. monocytogenes planktonic communities. In contrast, a significant decrease in the abundance of a high-copy emrC-harbouring plasmid pLmN12-0935 was observed in both communities after treatment. In PAA-treated community, a putative ABC transporter previously found to be necessary for L. monocytogenes resistance to antimicrobial agents and virulence, was among the genes with the highest weight for differentiating treated from control samples. The undertaken metagenomic approach in this study can be applied to identify genes associated with increased tolerance to other antimicrobials in mixed bacterial communities.


Assuntos
Desinfetantes , Listeria monocytogenes , Listeria , Humanos , Desinfetantes/farmacologia , Compostos de Benzalcônio/farmacologia , Indústria Alimentícia , Farmacorresistência Bacteriana/genética , Microbiologia de Alimentos
9.
J Hazard Mater ; 469: 134075, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508114

RESUMO

Chlorine-resistant bacteria (CRB) in drinking water treatment plants (DWTPs) jeopardize water quality and pose a potential risk to human health. However, the specific response of CRB to chlorination and chloramination remains uncharacterized. Therefore, we analyzed 16 S rRNA sequencing data from water samples before and after chlorination and chloramination taken between January and December 2020. Proteobacteria and Firmicutes dominated all finished water samples. After chloramination, Acinetobacter, Pseudomonas, Methylobacterium, Ralstonia, and Sphingomonas were the dominant CRB, whereas Ralstonia, Bacillus, Acinetobacter, Pseudomonas, and Enterococcus were prevalent after chlorination. Over 75% of the CRB e.g. Acinetobacter, Pseudomonas, Bacillus, and Enterococcus were shared between the chlorination and chloramination, involving potentially pathogens, such as Acinetobacter baumannii and Pseudomonas aeruginosa. Notably, certain genera such as Faecalibacterium, Geobacter, and Megasphaera were enriched as strong CRB after chloramination, whereas Vogesella, Flavobacterium, Thalassolituus, Pseudoalteromonas, and others were enriched after chlorination according to LEfSe analysis. The shared CRB correlated with temperature, pH, and turbidity, displaying a seasonal pattern with varying sensitivity to chlorination and chloramination in cold and warm seasons. These findings enhance our knowledge of the drinking water microbiome and microbial health risks, thus enabling better infectious disease control through enhanced disinfection strategies in DWTPs.


Assuntos
Bacillus , Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Cloro/química , Halogenação , Halogênios , Desinfecção , Flavobacterium , Cloraminas/química
10.
Environ Sci Technol ; 58(14): 6236-6249, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38534032

RESUMO

The COVID-19 pandemic has led to significantly increased human exposure to the widely used disinfectants quaternary ammonium compounds (QACs). Xenobiotic metabolism serves a critical role in the clearance of environmental molecules, yet limited data are available on the routes of QAC metabolism or metabolite levels in humans. To address this gap and to advance QAC biomonitoring capabilities, we analyzed 19 commonly used QACs and their phase I metabolites by liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS). In vitro generation of QAC metabolites by human liver microsomes produced a series of oxidized metabolites, with metabolism generally occurring on the alkyl chain group, as supported by MS/MS fragmentation. Discernible trends were observed in the gas-phase IM behavior of QAC metabolites, which, despite their increased mass, displayed smaller collision cross-section (CCS) values than those of their respective parent compounds. We then constructed a multidimensional reference SQLite database consisting of m/z, CCS, retention time (rt), and MS/MS spectra for 19 parent QACs and 81 QAC metabolites. Using this database, we confidently identified 13 parent QACs and 35 metabolites in de-identified human fecal samples. This is the first study to integrate in vitro metabolite biosynthesis with LC-IM-MS/MS for the simultaneous monitoring of parent QACs and their metabolites in humans.


Assuntos
Desinfetantes , Compostos de Amônio Quaternário , Humanos , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/química , Espectrometria de Massas em Tandem/métodos , Pandemias , Cromatografia Líquida , Fígado
11.
Water Res ; 254: 121339, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432003

RESUMO

Loose deposit particles in drinking water distribution system commonly exist as mixtures of metal oxides, organic materials, bacteria, and extracellular secretions. In addition to their turbidity-causing effects, the hazards of such particles in drinking water are rarely recognized. In this study, we found that trace per- and polyfluoroalkyl substances (PFASs) could dramatically promote the formation of disinfection byproducts (DBPs) by triggering the release of particle-bound organic matter. Carboxylic PFASs have a greater ability to increase chloroacetic acid than sulfonic PFASs, and PFASs with longer chains have a greater ability to increase trichloromethane release than shorter-chain PFASs. Characterization by organic carbon and organic nitrogen detectors and Fourier transform ion cyclotron resonance mass spectrometry revealed that the released organic matter was mainly composed of proteins, carbohydrates, lignin, and condensed aromatic structures, which are the main precursors for the formation of DBPs, particularly highly toxic aromatic DBPs. After the release of organic matter, the particles exhibit a decrease in surface functional groups, an increase in surface roughness, and a decrease in particle size. The findings provide new insights into the risks of loose deposits and PFASs in drinking water, not only on PFASs per se but also on its effect of increasing toxic DBPs.


Assuntos
Desinfetantes , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Desinfetantes/análise , Água Potável/análise , Purificação da Água/métodos , Halogenação , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
12.
J Hazard Mater ; 469: 133940, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457979

RESUMO

Glutaraldehyde-Didecyldimethylammonium bromides (GDs) has been frequently and widely employed in livestock and poultry breeding farms to avoid epidemics such as African swine fever, but its long-term effect on the active sludge microorganisms of the receiving wastewater treatment plant was keep unclear. Four simulation systems were built here to explore the performance of aerobic activated sludge with the long-term exposure of GDs and its mechanism by analyzing water qualities, resistance genes, extracellular polymeric substances and microbial community structure. The results showed that the removal rates of CODCr and ammonia nitrogen decreased with the exposure concentration of GDs increasing. It is worth noting that long-term exposure to GDs can induce the horizontal transfer and coordinated expression of a large number of resistance genes, such as qacE, sul1, tetx, and int1, in drug-resistant microorganisms. Additionally, it promotes the secretion of more extracellular proteins, including arginine, forming a "barrier-like" protection. Therefore, long-term exposure to disinfectants can alter the treatment capacity of activated sludge receiving systems, and the abundance of resistance genes generated through horizontal transfer and coordinated expression by drug-resistant microorganisms does pose a significant threat to ecosystems and health. It is recommended to develop effective pretreatment methods to eliminate disinfectants.


Assuntos
Febre Suína Africana , Desinfetantes , Animais , Suínos , Esgotos/química , Matriz Extracelular de Substâncias Poliméricas , Eliminação de Resíduos Líquidos/métodos , Desinfetantes/toxicidade , Ecossistema
13.
Water Res ; 254: 121409, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461602

RESUMO

Chloramine is the second most popular disinfectant and is widely used in the disinfection of drinking water. For chloramine disinfection, some standards require the total chlorine concentration to be maintained in an appropriate range in the water distribution system. Therefore, exploring the mechanism of chloramine decay and deriving an accurate chloramine decay model helps to optimize the disinfection process and ensure water quality safety. This paper proposed a locally enhanced mixed-order(LEM) model consisting of the first order model and the mixed order model to describe chloramine auto-decomposition and decays caused by other reactions respectively. Via proving the parameter a and k2 related to temperatures instead of initial chloramine concentration, the model had been further simplified. Nine chloramine decay experiments with different initial chloramine concentrations and temperatures were designed and carried out to evaluate the new model performance for chloramine decay simulation. The research results showed that the simplified LEM model could simulate the whole process of chloramine decay well. Its accuracy evaluation indexes (R2 and SSE) were better than that obtained from the first order model and the mixed order model. This paper proposed a simple and accurate method to simulate the process of chloramine decay and had a guiding significance for water quality safety assurance.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Cloraminas , Desinfecção/métodos , Purificação da Água/métodos , Cloro
14.
J Hazard Mater ; 469: 133989, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461660

RESUMO

Drinking water disinfection can result in the formation disinfection byproducts (DBPs, > 700 have been identified to date), many of them are reportedly cytotoxic, genotoxic, or developmentally toxic. Analyzing the toxicity levels of these contaminants experimentally is challenging, however, a predictive model could rapidly and effectively assess their toxicity. In this study, machine learning models were developed to predict DBP cytotoxicity based on their chemical information and exposure experiments. The Random Forest model achieved the best performance (coefficient of determination of 0.62 and root mean square error of 0.63) among all the algorithms screened. Also, the results of a probabilistic model demonstrated reliable model predictions. According to the model interpretation, halogen atoms are the most prominent features for DBP cytotoxicity compared to other chemical substructures. The presence of iodine and bromine is associated with increased cytotoxicity levels, while the presence of chlorine is linked to a reduction in cytotoxicity levels. Other factors including chemical substructures (CC, N, CN, and 6-member ring), cell line, and exposure duration can significantly affect the cytotoxicity of DBPs. The similarity calculation indicated that the model has a large applicability domain and can provide reliable predictions for DBPs with unknown cytotoxicity. Finally, this study showed the effectiveness of data augmentation in the scenario of data scarcity.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Cricetinae , Desinfecção , Desinfetantes/toxicidade , Desinfetantes/análise , Halogenação , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Halogênios , Cloro , Água Potável/análise , Células CHO
15.
AORN J ; 119(4): 275-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38536400

RESUMO

There are several steps involved when performing high-level disinfection (HLD) of semicritical devices. The recently updated AORN "Guideline for manual high-level disinfection" provides perioperative nurses with evidence-based best practices for performing safe and effective HLD of reusable semicritical items. The guideline also addresses preventing injury to patients and health care workers associated with the handling of high-level disinfectants. This article provides an overview of the guideline and discusses recommendations for selection of a processing method, sterile processing areas, preparation of items for HLD, preparation of high-level disinfectants, manual HLD, drying and storage of items after HLD, and processing records. It also includes a scenario that illustrates specific concerns related to performing quality tests on high-level disinfectant solutions. Perioperative nurses should review the guideline in its entirety and apply the recommendations when performing manual HLD.


Assuntos
Desinfetantes , Desinfecção , Humanos , Desinfecção/métodos , Pessoal de Saúde
16.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474298

RESUMO

The rapid increase in the antibiotic resistance of microorganisms, capable of causing diseases in humans as destroying cultural heritage sites, is a great challenge for modern science. In this regard, it is necessary to develop fundamentally novel and highly active compounds. In this study, a series of N4-alkylcytidines, including 5- and 6-methylcytidine derivatives, with extended alkyl substituents, were obtained in order to develop a new generation of antibacterial and antifungal biocides based on nucleoside derivatives. It has been shown that N4-alkyl 5- or 6-methylcytidines effectively inhibit the growth of molds, isolated from the paintings in the halls of the Ancient Russian Paintings of the State Tretyakov Gallery, Russia, Moscow. The novel compounds showed activity similar to antiseptics commonly used to protect works of art, such as benzalkonium chloride, to which a number of microorganisms have acquired resistance. It was also shown that the activity of N4-alkylcytidines is comparable to that of some antibiotics used in medicine to fight Gram-positive bacteria, including resistant strains of Staphylococcus aureus and Mycobacterium smegmatis. N4-dodecyl-5- and 6-methylcytidines turned out to be the best. This compound seems promising for expanding the palette of antiseptics used in painting, since quite often the destruction of painting materials is caused by joint fungi and bacteria infection.


Assuntos
Anti-Infecciosos Locais , Desinfetantes , Pinturas , Humanos , Desinfetantes/farmacologia , Bactérias , Fungos , Antibacterianos
17.
Microbiol Spectr ; 12(4): e0379723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38483478

RESUMO

Hospital-acquired infections (HAIs) represent one of the significant causes of morbidity and mortality worldwide, and controlling pathogens in the hospital environment is of great importance. Currently, the standard disinfection method in the hospital environment is chemical disinfection. However, disinfectants are usually not used strictly according to the label, making them less effective in disinfection. Therefore, there is an emergent need to find a better approach that can be used in hospitals to control pathogenic bacteria in the clinical environment. Bacteriophages (phages) are effective in killing bacteria and have been applied in the treatment of bacterial infections but have not received enough attention regarding the control of contamination in the clinical environment. In this study, we found that various phages remain active in the presence of chemical disinfectants. Moreover, the combined use of specific phages and chemical disinfectants is more effective in removing bacterial biofilms and eliminating bacteria on hard surfaces. Thus, this proof-of-concept study indicates that adding phages directly to chemical disinfectants might be an effective and economical approach to enhance clinical environment disinfection. IMPORTANCE: In this study, we investigated whether the combination of bacteriophages and chemical disinfectants can enhance the efficacy of reducing bacterial contamination on hard surfaces in the clinical setting. We found that specific phages are active in chemical disinfectants and that the combined use of phages and chemical disinfectants was highly effective in reducing bacterial presence on hard surfaces. As a proof-of-concept, we demonstrated that adding specific phages directly to chemical disinfectants is an effective and cost-efficient strategy for clinical environment disinfection.


Assuntos
Bacteriófagos , Infecção Hospitalar , Desinfetantes , Humanos , Desinfetantes/farmacologia , Desinfecção/métodos , Bactérias
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 217-223, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322511

RESUMO

Objective: To observe the effect of using hydrogen peroxide in periodic disinfection combining with continuous disinfection of dental unit waterlines and to provide references for the selection of waterway disinfection measures. Methods: A total of 4 dental units in a hospital of stomatology were selected through convenience sampling. The dental unit waterlines received periodic disinfection once every 4 weeks in addition to continuous disinfection (When the dental units were not used for more than 3 days, an additional periodic disinfection would be performed.). Periodic disinfection referred to filling up the waterlines with a disinfectant solution (1.4% hydrogen peroxide) by using the waterline disinfection device that came with the dental unit, immersing for 24 hours, and then emptying out the disinfectant solution. Continuous disinfection referred to using hydrogen peroxide at a concentration of 0.014% as dental treatment water and using it to flush the waterlines for 2 minutes before any dental treatment in the morning and to flush the waterlines for 30 seconds after each dental treatment. The study lasted for 25 weeks, with periodic disinfection being performed for 7 times and continuous disinfection carried out for the rest of the dental treatment time. During the 25 weeks, water samples were collected from air/water syringes and high-speed handpieces. Then, the water samples were incubated and the bacterial concentration and the qualification rates were calculated accordingly. When the bacterial concentration≤100 CFU/ mL, the water samples were considered to be qualified. Waterline tubes of 1 cm were collected before and after the 25 weeks of disinfection with hydrogen peroxide. Biofilms in the waterline tube were observed under scanning electron microscope. Results: A total of 352 water samples were collected. Eight water samples were collected before disinfection with hydrogen peroxide, with the median of bacterial concentration being 3140 CFU/mL. On the first day of disinfection with hydrogen peroxide, the median bacterial concentration in dental treatment water was 7.5 CFU/mL. There was a significant difference between the bacterial concentration of the water samples before the disinfection and that after the disinfection (P=0.012). A total of 344 water samples were collected after the disinfection, with the median bacterial concentrations for air/water syringes and high-speed handpieces being 11 CFU/mL and 11CFU/mL and the qualified rates being 83.7% and 82.0%, respectively. There was no significant difference in bacterial concentration or the qualification rates. During week 1 through week 9 of the disinfection, the qualification rates of the dental treatment water always exceeded 80% in 8 weeks, with week 3 being the exception. In the two four-week disinfection periods of week 14 through week 17 and week 18 through week 21, the qualification rate was maintained at above 80% for only the first two weeks and started to decrease from the third week. Biofilm morphology was observed under scanning electron microscope. Before the disinfection, the biofilm was found to be a dense structure and the mixture of a large number of bacteria. After 25 weeks of the disinfection, the biofilm structure appeared to be loose and did not show consistent characteristics of a large number of bacteria retained. Conclusion: Periodic disinfection combined with continuous disinfection using hydrogen peroxide can effectively control contamination in dental unit waterlines. But the cycles of periodic disinfection and the concentration of hydrogen peroxide for continuous disinfection should be further discussed according to the actual clinical situation.


Assuntos
Desinfetantes , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Desinfecção , Desinfetantes/farmacologia , Biofilmes , Água/farmacologia , Contagem de Colônia Microbiana
19.
Water Res ; 252: 121188, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324987

RESUMO

Ensuring biological stability in drinking water distribution systems (DWDSs) is important to reduce the risk of aesthetic, operational and hygienic impairments of the distributed water. Drinking water after treatment often changes in quality during transport due to interactions with pipe-associated biofilms, temperature increases and disinfectant residual decay leading to potential biological instability. To comprehensively assess the potential for biological instability in a large chlorinated DWDS, a tool-box of bacterial biomass and activity parameters was applied, introducing bacterial community turnover times (BaCTT) as a direct, sensitive and easy-to-interpret quantitative parameter based on the combination of 3H-leucine incorporation with bacterial biomass. Using BaCTT, hotspots and periods of bacterial growth and potential biological instability could be identified in the DWDS that is fed by water with high bacterial growth potential. A de-coupling of biomass from activity parameters was observed, suggesting that bacterial biomass parameters depict seasonally fluctuating raw water quality rather than processes related to biological stability of the finished water in the DWDS. BaCTT, on the other hand, were significantly correlated to water age, disinfectant residual, temperature and a seasonal factor, indicating a higher potential of biological instability at more distant sampling sites and later in the year. As demonstrated, BaCTT is suggested as a novel, sensitive and very useful parameter for assessing the biological instability potential. However, additional studies in other DWDSs are needed to investigate the general applicability of BaCTT depending on water source, applied treatment processes, biofilm growth potential on different pipe materials, or size, age and complexity of the DWDS.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Áustria , Qualidade da Água , Bactérias , Biofilmes , Abastecimento de Água , Microbiologia da Água
20.
Artigo em Inglês | MEDLINE | ID: mdl-38354993

RESUMO

Sodium dichloroisocyanurate (NaDCC, C3Cl2N3NaO3) is a solid chlorine-containing product that is widely used as a disinfectant in living environments, which has potential toxic effects on human and rats. Phascolosoma esculenta is a species native to the southeast coast of China and can be used as an indicator organism. In the present study, 150 P. esculenta were used to determine the LC50 of NaDCC for P. esculenta, then 100 P. esculenta were used to analysis the change of histopathology, oxidative stress and transcriptome after NaDCC exposure. The results showed that the LC50 of NaDCC for 48 h was 50 mg/L. NaDCC stress induced pathological events in P. esculenta, including blisters, intestinal structural damage and epithelial cell ruptured or even loss. The highest and lowest intestinal activity of superoxide dismutase in individual survivors was detected at 12 h and 72 h, respectively. Malondialdehyde levels in the intestine declined gradually from 3 h and increased at 9 h, and peaked at 12 h. Total antioxidant capacity declined at 3 h and dropped below the levels of control group after 9 h. Transcriptome sequencing analysis yielded a total of 48.65 Gb of clean data. A total of 34,759 new genes were found including 957 differentially expressed genes (DEGs). The DEGs were significantly enriched in ferroptosis, response to chemicals, response to stress, immune system, ion transport, cell death, oxidation-reduction, cellular homeostasis, protein ubiquitination, and protein neddylation. Additionally, the levels of detoxification enzymes, such as glutathione-S-transferase, cytochrome P450, ABC, UDP-glycosyltransferase and SLC transporters of endogenous and exogenous solutes were significantly changed. Overall, the results provide reference for reasonable use of disinfectants during farming, and also provide insight into the mechanisms related to NaDCC toxicity in P. esculenta.


Assuntos
Desinfetantes , Triazinas , Humanos , Animais , Ratos , Desinfetantes/toxicidade , Desinfetantes/química , Intestinos , Estresse Oxidativo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...