Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.449
Filtrar
1.
J Virol ; 96(15): e0037222, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867565

RESUMO

Elimination of human immunodeficiency virus (HIV) reservoirs is a critical endpoint to eradicate HIV. One therapeutic intervention against latent HIV is "shock and kill." This strategy is based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) with the consequent killing of the reactivated cell by either the cytopathic effect of HIV or the immune system. We have previously found that the small molecule 3-hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) acts as an LRA by increasing signal transducer and activator of transcription (STAT) factor activation mediated by interleukin-15 (IL-15) in cells isolated from aviremic participants. The IL-15 superagonist N-803 is currently under clinical investigation to eliminate latent reservoirs. IL-15 and N-803 share similar mechanisms of action by promoting the activation of STATs and have shown some promise in preclinical models directed toward HIV eradication. In this work, we evaluated the ability of HODHBt to enhance IL-15 signaling in natural killer (NK) cells and the biological consequences associated with increased STAT activation in NK cell effector and memory-like functions. We showed that HODHBt increased IL-15-mediated STAT phosphorylation in NK cells, resulting in increases in the secretion of CXCL-10 and interferon gamma (IFN-γ) and the expression of cytotoxic proteins, including granzyme B, granzyme A, perforin, granulysin, FASL, and TRAIL. This increased cytotoxic profile results in increased cytotoxicity against HIV-infected cells and different tumor cell lines. HODHBt also improved the generation of cytokine-induced memory-like NK cells. Overall, our data demonstrate that enhancing the magnitude of IL-15 signaling with HODHBt favors NK cell cytotoxicity and memory-like generation, and thus, targeting this pathway could be further explored for HIV cure interventions. IMPORTANCE Several clinical trials targeting the HIV latent reservoir with LRAs have been completed. In spite of a lack of clinical benefit, they have been crucial to elucidate hurdles that "shock and kill" strategies have to overcome to promote an effective reduction of the latent reservoir to lead to a cure. These hurdles include low reactivation potential mediated by LRAs, the negative influence of some LRAs on the activity of natural killer and effector CD8 T cells, an increased resistance to apoptosis of latently infected cells, and an exhausted immune system due to chronic inflammation. To that end, finding therapeutic strategies that can overcome some of these challenges could improve the outcome of shock and kill strategies aimed at HIV eradication. Here, we show that the LRA HODHBt also improves IL-15-mediated NK cell effector and memory-like functions. As such, pharmacological enhancement of IL-15-mediated STAT activation can open new therapeutic avenues toward an HIV cure.


Assuntos
HIV-1 , Memória Imunológica , Interleucina-15 , Células Matadoras Naturais , Fatores de Transcrição STAT , Triazinas , Latência Viral , Humanos , Linhagem Celular Tumoral , Quimiocina CXCL10 , Testes Imunológicos de Citotoxicidade , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , HIV-1/imunologia , Memória Imunológica/efeitos dos fármacos , Interferon gama , Interleucina-15/imunologia , Interleucina-15/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Fatores de Transcrição STAT/metabolismo , Ativação Transcricional/efeitos dos fármacos , Triazinas/farmacologia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
2.
Methods Mol Biol ; 2463: 221-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35344178

RESUMO

Cytotoxicity assays are important in vitro tools to measure the lysis of desired target cells via an effector immune cell of choice. Specific lysis of the target cells can be determined by labeling the target cells with a radioactive isotope or fluorescent molecule, co-incubating it with an effector cell, then measuring the release of the labeled molecule in the supernatant. Here, we describe and compare different cell cytotoxicity assays using a chromium-51 (51Cr) release and DELFIA EuTDA fluorescent assay using K562 as the target cells and peripheral blood mononuclear cell (PBMC) derived natural killer (NK) cells as the effector cells.


Assuntos
Células Matadoras Naturais , Leucócitos Mononucleares , Testes Imunológicos de Citotoxicidade , Citometria de Fluxo , Testes Imunológicos
3.
Int J Biol Macromol ; 192: 967-977, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655586

RESUMO

Lactarius volemus Fr. is an edible mushroom widely consumed in China. Polysaccharide is an important nutritional component of L. volemus. This research aimed to isolate the polysaccharide from L. volemus and study its structure and bioactivities. A purified polysaccharide was identified and named as LVF-I whose primary structure was proposed considering the comprehensive results of monosaccharide composition, periodate oxidation-smith degradation, methylation analysis, FT-IR and 1D/2D NMR spectroscopy. Then the immunomodulation of LVF-I and its inhibition effect on H1299 and MCF-7 cells were investigated. Results showed that LVF-I (12,894 Da) contained fucose, mannose, glucose and galactose. It had a backbone consisting of →4)-α-D-Glcp-(1→, →6)-ß-D-Manp-(1→, →6)-α-D-Galp-(1 â†’ and →4)-ß-D-Manp-(1→. And its side chains were branched at C2 of →4)-ß-D-Manp-(1 â†’ by →6)-α-D-Galp-(1→, α-D-Glcp-(1→, α-D-Galp-(1 â†’ and α-L-Fucp-(1→. LVF-I (250-1000 µg/mL) could inhibit the proliferation of H1299 and MCF-7 cells, while enhance the proliferative response of splenocyte and the phagocytic ability of RAW264.7. Furthermore, LVF-I (250-1000 µg/mL) significantly induced the secretion of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) by up-regulating their mRNA expression in macrophages. These results suggested that LVF-I had the potential to be developed as antitumor or immunomodulatory agents by inhibiting the proliferation of tumor cells and stimulating macrophages-mediated immune responses.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Basidiomycota/química , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Fenômenos Químicos , Testes Imunológicos de Citotoxicidade , Polissacarídeos Fúngicos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Agentes de Imunomodulação/isolamento & purificação , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Peso Molecular , Células RAW 264.7 , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
4.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34297038

RESUMO

Colorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) contain abundant CD8+ tumor-infiltrating lymphocytes (TILs) responding to the abundant neoantigens from their unstable genomes. Priming of such tumor-targeted TILs first requires recruitment of CD8+ T cells into the tumors, implying that this is an essential prerequisite of successful dMMR anti-tumor immunity. We have discovered that selective recruitment and activation of systemic CD8+ T cells into dMMR CRCs strictly depend on overexpression of CCL5 and CXCL10 due to endogenous activation of cGAS/STING and type I IFN signaling by damaged DNA. TIL infiltration into orthotopic dMMR CRCs is neoantigen-independent and followed by induction of a resident memory-like phenotype key to the anti-tumor response. CCL5 and CXCL10 could be up-regulated by common chemotherapies in all CRCs, indicating that facilitating CD8+ T cell recruitment underlies their efficacy. Induction of CCL5 and CXCL10 thus represents a tractable therapeutic strategy to induce TIL recruitment into CRCs, where local priming can be maximized even in neoantigen-poor CRCs.


Assuntos
Quimiocina CCL5/imunologia , Quimiocina CXCL10/imunologia , Neoplasias do Colo/imunologia , Reparo de Erro de Pareamento de DNA/imunologia , Interferon Tipo I/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Testes Imunológicos de Citotoxicidade , Feminino , Instabilidade Genômica , Humanos , Interferon Tipo I/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteína 1 Homóloga a MutL/genética
5.
Nat Genet ; 53(8): 1196-1206, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34253920

RESUMO

To systematically define molecular features in human tumor cells that determine their degree of sensitivity to human allogeneic natural killer (NK) cells, we quantified the NK cell responsiveness of hundreds of molecularly annotated 'DNA-barcoded' solid tumor cell lines in multiplexed format and applied genome-scale CRISPR-based gene-editing screens in several solid tumor cell lines, to functionally interrogate which genes in tumor cells regulate the response to NK cells. In these orthogonal studies, NK cell-sensitive tumor cells tend to exhibit 'mesenchymal-like' transcriptional programs; high transcriptional signature for chromatin remodeling complexes; high levels of B7-H6 (NCR3LG1); and low levels of HLA-E/antigen presentation genes. Importantly, transcriptional signatures of NK cell-sensitive tumor cells correlate with immune checkpoint inhibitor (ICI) resistance in clinical samples. This study provides a comprehensive map of mechanisms regulating tumor cell responses to NK cells, with implications for future biomarker-driven applications of NK cell immunotherapies.


Assuntos
Citotoxicidade Imunológica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/farmacologia , Células Matadoras Naturais/fisiologia , Células Alógenas/fisiologia , Animais , Antígenos B7/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/fisiologia , Testes Imunológicos de Citotoxicidade/métodos , Citotoxicidade Imunológica/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Genoma Humano , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Camundongos Endogâmicos NOD , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Ethnopharmacol ; 279: 114367, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34174375

RESUMO

BACKGROUND: Although the rapid emergence of coronavirus disease 2019 (COVID-19) poses a considerable threat to global public health, no specific treatment is available for COVID-19. ReDuNing injection (RDN) is a traditional Chinese medicine known to exert antibacterial, antiviral, antipyretic, and anti-inflammatory effects. In addition, RDN has been recommended in the diagnosis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated pneumonia by the National Health Council and the National Administration of Chinese Medicine. However, there is no information regarding its efficacy against COVID-19. AIM OF STUDY: This study was designed to determine the clinical efficacy of RDN in patients with COVID-19 and characterize its antiviral activity against SARS-CoV-2 in vitro. MATERIALS AND METHODS: A total of 50 adults with COVID-19 were included in this study, and the primary endpoint was recovery from clinical symptoms following 14 days of treatment. General improvements were defined as the disappearance of the major symptoms of infection including fever, fatigue, and cough. The secondary endpoints included the proportion of patients who achieved clinical symptom amelioration on days 7 and 10, time to clinical recovery, time to a negative nucleic acid test result, duration of hospitalization, and time to defervescence. Plaque reduction and cytopathic effect assays were also performed in vitro, and reverse-transcription quantitative PCR was performed to evaluate the expression of inflammatory cytokines (TNF-α, IP-10, MCP-1, IL-6, IFN-α, IFN-γ, IL-2 and CCL-5) during SARS-CoV-2 infection. RESULTS: The RDN group exhibited a shorter median time for the resolution of clinical symptoms (120 vs. 220 h, P < 0.0001), less time to a negative PCR test result (215 vs. 310 h, P = 0.0017), shorter hospitalization (14.8 vs. 18.5 days, P = 0.0002), and lower timeframe for defervescence (24.5 vs. 75 h, P = 0.0001) than the control group. In addition, time to improved imaging was also shorter in the RDN group than in the control group (6 vs.8.9 days, P = 0.0273); symptom resolution rates were higher in the RDN group than in the control group at 7 (96.30% vs. 39.13%, P < 0.0001) and 10 days (96.30% vs. 56.52%, P = 0.0008). No allergic reactions or anaphylactic responses were reported in this trial. RDN markedly inhibited SARS-CoV-2 proliferation and viral plaque formation in vitro. In addition, RDN significantly reduced inflammatory cytokine production in infected cells. CONCLUSIONS: RDN relieves clinical symptoms in patients with COVID-19 and reduces SARS-CoV-2 infection by regulating inflammatory cytokine-related disorders, suggestion that this medication might be a safe and effective treatment for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Citocinas/análise , Medicamentos de Ervas Chinesas , SARS-CoV-2 , Antivirais/administração & dosagem , Antivirais/efeitos adversos , COVID-19/epidemiologia , COVID-19/imunologia , Teste de Ácido Nucleico para COVID-19/métodos , Linhagem Celular , China/epidemiologia , Testes Imunológicos de Citotoxicidade/métodos , Monitoramento de Medicamentos/métodos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Avaliação de Sintomas/métodos , Resultado do Tratamento
7.
Int Immunopharmacol ; 96: 107762, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34162140

RESUMO

Cancer/tumor cells infected with the "avian paramyxovirus Newcastle Disease Virus (TC-NDV)" express the viral hemagglutinin-neuraminidase (HN) on the cell surface that is used as both the danger signal and anchor for bi/tri-specific antibodies (bs/tsAbs).We constructed a bs-Ab (HN-Fc-CD16) that bindsto HN and natural killer (NK)-CD16 receptor (FcgRIII)and a ts-Ab (HN-Fc-IL15-CD16) harbouring NK-activating cytokine "IL-15" within the bs-Ab.In silicoand computational predictions indicated proper exposure of both Abs in bs/tsAbs.Properbinding of thebi/tsAbstoHN on surface of TC-NDVandCD16+-cells was demonstrated by flow cytometry.The bi/tsAbstriggeredspecificcytotoxicity of NK cells againstTC-NDVand elicited substantial IFN-γproduction by activated NK cells(higher for ts-Ab) that sound promising for cancer immunotherapy purposes.


Assuntos
Anticorpos Biespecíficos/biossíntese , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Proteína HN/imunologia , Neoplasias/terapia , Vírus da Doença de Newcastle/imunologia , Receptores de IgG/imunologia , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/imunologia , Sítios de Ligação , Testes Imunológicos de Citotoxicidade , Células HEK293 , Células HeLa , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoterapia/métodos , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Ligantes , Modelos Moleculares , Neoplasias/imunologia
8.
Sci Rep ; 11(1): 10002, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976304

RESUMO

Cytotoxicity assays are essential for the testing and development of novel immunotherapies for the treatment of cancer. We recently described a novel cytotoxicity assay, termed the Matador assay, which was based on marine luciferases and their engineered derivatives. In this study, we describe the development of a new cytotoxicity assay termed 'Matador-Glo assay' which takes advantage of a thermostable variant of Click Beetle Luciferase (Luc146-1H2). Matador-Glo assay utilizes Luc146-1H2 and D-luciferin as the luciferase-substrate pair for luminescence detection. The assay involves ectopic over-expression of Luc146-1H2 in the cytosol of target cells of interest. Upon damage to the membrane integrity, the Luc146-1H2 is either released from the dead and dying cells or its activity is preferentially measured in dead and dying cells. We demonstrate that this assay is simple, fast, specific, sensitive, cost-efficient, and not labor-intensive. We further demonstrate that the Matador-Glo assay can be combined with the marine luciferase-based Matador assay to develop a dual luciferase assay for cell death detection. Finally, we demonstrate that the Luc146-1H2 expressing target cells can also be used for in vivo bioluminescence imaging applications.


Assuntos
Benzotiazóis , Besouros/enzimologia , Testes Imunológicos de Citotoxicidade , Luciferases , Animais , Humanos , Células K562 , Camundongos Endogâmicos NOD , Camundongos SCID
9.
Methods Mol Biol ; 2255: 159-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033102

RESUMO

Cytotoxic T cell-induced cell death is well documented. Cytotoxic T cell releases various cytolytic proteins. The cytolytic proteins induce target cell death. T cell-induced cell death can be measured by the lytic assay. One of the well-known lytic assays uses radioactive tracer, Chromium-51 (51Cr), and detects the amount of 51Cr released from target cells. This assay can detect cell death and the efficiency of the T cell-induced cell death by coculture effector cells (T cells) and target cells. This assay can determine the kinetics of the cell lysis. The issue of this approach is the use of radioactive material. This chapter describes measuring T cell-induced cell death by determining the epigenetic remodeling and the release of cytolytic proteins. Determine the efficiency of T cell-induced cell death by using a flow cytometry-based detection method.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Radioisótopos de Cromo/análise , Neoplasias do Colo/patologia , Testes Imunológicos de Citotoxicidade/métodos , Citometria de Fluxo/métodos , Linfoma de Células B/patologia , Linfócitos T Citotóxicos/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Morte Celular , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Camundongos , Células Tumorais Cultivadas
10.
Molecules ; 26(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803405

RESUMO

Cyclodextrins (CDs) have been widely used as pharmaceutical excipients for formulation purposes for different delivery systems. Recent studies have shown that CDs are able to form complexes with a variety of biomolecules, such as cholesterol. This has subsequently paved the way for the possibility of using CDs as drugs in certain retinal diseases, such as Stargardt disease and retinal artery occlusion, where CDs could absorb cholesterol lumps. However, studies on the retinal toxicity of CDs are limited. The purpose of this study was to examine the retinal toxicity of different beta-(ß)CD derivatives and their localization within retinal tissues. To this end, we performed cytotoxicity studies with two different CDs-2-hydroxypropyl-ßCD (HPßCD) and randomly methylated ß-cyclodextrin (RMßCD)-using wild-type mouse retinal explants, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and fluorescence microscopy. RMßCD was found to be more toxic to retinal explants when compared to HPßCD, which the retina can safely tolerate at levels as high as 10 mM. Additionally, studies conducted with fluorescent forms of the same CDs showed that both CDs can penetrate deep into the inner nuclear layer of the retina, with some uptake by Müller cells. These results suggest that HPßCD is a safer option than RMßCD for retinal drug delivery and may advance the use of CDs in the development of drugs designed for intravitreal administration.


Assuntos
Ciclodextrinas/farmacologia , Ciclodextrinas/toxicidade , Retina/efeitos dos fármacos , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/toxicidade , Animais , Ciclodextrinas/metabolismo , Testes Imunológicos de Citotoxicidade/métodos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Excipientes , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Retina/metabolismo , Solubilidade , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/toxicidade
11.
Toxins (Basel) ; 13(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922450

RESUMO

Staphylococcal enterotoxin type B (SEB) is associated with food poisoning. Current methods for the detection of biologically active SEB rely upon its ability to cause emesis when administered to live kittens or monkeys. This technique suffers from poor reproducibility and low sensitivity and is ethically disfavored over concerns for the welfare of laboratory animals. The data presented here show the first successful implementation of an alternative method to live animal testing that utilizes SEB super-antigenic activity to induce cytokine production for specific novel cell-based assays for quantifiable detection of active SEB. Rather than using or sacrificing live animals, we found that SEB can bind to the major histocompatibility complex (MHC) class II molecules on Raji B-cells. We presented this SEB-MHC class II complex to specific Vß5.3 regions of the human T-cell line HPB-ALL, which led to a dose-dependent secretion of IL-2 that is capable of being quantified and can further detect 10 pg/mL of SEB. This new assay is 100,000 times more sensitive than the ex vivo murine splenocyte method that achieved a detection limit of 1 µg/mL. The data presented here also demonstrate that SEB induced proliferation in a dose-dependent manner for cells obtained by three different selection methods: by splenocyte cells containing 22% of CD4+ T-cells, by CD4+ T-cells enriched to >90% purity by negative selection methods, and by CD4+ T-cells enriched to >95% purity by positive selection methods. The highly enriched and positively isolated CD4+ T-cells with the lowest concentration of antigen-presenting cells (APC) (below 5%) provided higher cell proliferation than the splenocyte cells containing the highest concentration of APC cells.


Assuntos
Alternativas aos Testes com Animais/métodos , Testes Imunológicos de Citotoxicidade/métodos , Enterotoxinas/farmacologia , Leucemia de Células T , Animais , Linhagem Celular Tumoral , Enterotoxinas/análise , Antígenos de Histocompatibilidade Classe II/efeitos dos fármacos , Humanos , Limite de Detecção , Sensibilidade e Especificidade
12.
Virology ; 559: 1-9, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33774551

RESUMO

Since the COVID-19 pandemic, functional non-neutralizing antibody responses to SARS-CoV-2, including antibody-dependent cell-mediated cytotoxicity (ADCC), are poorly understood. We developed an ADCC assay utilizing a stably transfected, dual-reporter target cell line with inducible expression of a SARS-CoV-2 spike protein on the cell surface. Using this assay, we analyzed 61 convalescent serum samples from adults with PCR-confirmed COVID-19 and 15 samples from healthy uninfected controls. We found that 56 of 61 convalescent serum samples induced ADCC killing of SARS-CoV-2 S target cells, whereas none of the 15 healthy controls had detectable ADCC. We then found a modest decline in ADCC titer over a median 3-month follow-up in 21 patients who had serial samples available for analysis. We confirmed that the antibody-dependent target cell lysis was mediated primarily via the NK FcγRIIIa receptor (CD16). This ADCC assay had high sensitivity and specificity for detecting serologic immune responses to SARS-CoV-2.


Assuntos
Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , Linhagem Celular , Testes Imunológicos de Citotoxicidade , Feminino , Humanos , Células Matadoras Naturais/imunologia , Cinética , Masculino , Pessoa de Meia-Idade , Receptores de IgG/imunologia , Sensibilidade e Especificidade , Adulto Jovem
13.
Sci Immunol ; 6(57)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771887

RESUMO

Chimeric antigen receptor (CAR) T cell therapy relies on the activity of a large pool of tumor-targeting cytotoxic effectors. Whether CAR T cells act autonomously or require interactions with the tumor microenvironment (TME) remains incompletely understood. Here, we report an essential cross-talk between CAR T cell subsets and the TME for tumor control in an immunocompetent mouse B cell lymphoma model of anti-CD19 CAR T cell therapy. Using single-cell RNA sequencing, we revealed substantial modification of the TME during CAR T cell therapy. Interferon-γ (IFN-γ) produced by CAR T cells not only enhanced endogenous T and natural killer cell activity but was also essential for sustaining CAR T cell cytotoxicity, as revealed by intravital imaging. CAR T cell-derived IFN-γ facilitated host interleukin-12 production that supported host immune and CAR T cell responses. Compared with CD8+ CAR T cells, CD4+ CAR T cells were more efficient at host immune activation but less capable of direct tumor killing. In summary, CAR T cells do not act independently in vivo but rely instead on cytokine-mediated cross-talk with the TME for optimal activity. Invigorating CAR T cell interplay with the host represents an attractive strategy to prevent relapses after therapy.


Assuntos
Comunicação Celular/imunologia , Testes Imunológicos de Citotoxicidade , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Animais , Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Comunicação Celular/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imunoterapia Adotiva , Interferon gama/biossíntese , Ativação Linfocitária/imunologia , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Linfoma de Células B/terapia , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética
14.
Methods Mol Biol ; 2265: 111-118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704709

RESUMO

Within the adaptive and innate immune system, effector lymphocytes known as cytotoxic T cells (CTLs) or natural killer (NK) cells play an essential role in host defense against tumor cells and virally infected cells. Here we describe a flow cytometry-based method to quantify CTLs or NK cell cytotoxic activity against melanoma cells. In this assay, spleen cells, peripheral blood mononuclear cells (PBMCs), or purified NK cell preparations are co-incubated at different ratios with a target tumor cell line. The target cells are pre-labeled with a fluorescent dye to allow their discrimination from the effector cells. After the incubation period, killed target cells are identified by a nucleic acid stain, which specifically permeates dead cells. This method is amenable to both diagnostic and research applications.


Assuntos
Testes Imunológicos de Citotoxicidade/métodos , Citometria de Fluxo/métodos , Células Matadoras Naturais/imunologia , Melanoma Experimental/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Técnicas de Cultura de Células/métodos , Morte Celular/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Feminino , Corantes Fluorescentes , Humanos , Leucócitos Mononucleares/imunologia , Camundongos , Baço/citologia , Baço/imunologia
15.
Theranostics ; 11(10): 4957-4974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754038

RESUMO

Rationale: TCR-T cell therapy plays a critical role in the treatment of malignant cancers. However, it is unclear how TCR-T cells are affected by PD-L1 molecule in the tumor environment. We performed an in-depth evaluation on how differential expressions of tumor PD-L1 can affect the functionality of T cells. Methods: We used MART-1-specific TCR-T cells (TCR-TMART-1), stimulated with MART-127-35 peptide-loaded MEL-526 tumor cells, expressing different proportions of PD-L1, to perform cellular assays and high-throughput single-cell RNA sequencing. Results: Different clusters of activated or cytotoxic TCR-TMART-1 responded divergently when stimulated with tumor cells expressing different percentages of PD-L1 expression. Compared to control T cells, TCR-TMART-1 were more sensitive to exhaustion, and secreted not only pro-inflammatory cytokines but also anti-inflammatory cytokines with increasing proportions of PD-L1+ tumor cells. The gene profiles of chemokines were modified by increased expression of tumor PD-L1, which concurrently downregulated pro-inflammatory and anti-inflammatory transcription factors. Furthermore, increased expression of tumor PD-L1 showed distinct effects on different inhibitory checkpoint molecules (ICMs). In addition, there was a limited correlation between the enrichment of cell death signaling in tumor cells and T cells and increased tumor PD-L1 expression. Conclusion: Overall, though the effector functionality of TCR-T cells was suppressed by increased expression percentages of tumor PD-L1 in vitro, scRNA-seq profiles revealed that both the anti-inflammatory and pro-inflammatory responses were triggered by a higher expression of tumor PD-L1. This suggests that the sole blockade of tumor PD-L1 might inhibit not only the anti-inflammatory response but also the pro-inflammatory response in the complicated tumor microenvironment. Thus, the outcome of PD-L1 intervention may depend on the final balance among the highly dynamic and heterogeneous immune regulatory circuits.


Assuntos
Antígeno B7-H1/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Quimiocinas/genética , Quimiocinas/imunologia , Citocinas/genética , Citocinas/imunologia , Testes Imunológicos de Citotoxicidade , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Imunoterapia Adotiva , Inflamação/genética , Inflamação/imunologia , Antígeno MART-1/imunologia , Melanoma/imunologia , RNA-Seq , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Célula Única , Neoplasias Cutâneas/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética
16.
J Immunol Methods ; 491: 112992, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577777

RESUMO

Natural Killer (NK) cells are lymphocytes that are the first line of defense against malignantly transformed cells, virally infected cells and other stressed cell types. To study the cytolytic function of NK cells in vitro, a cytotoxicity assay is normally conducted against a target cancerous cell line. Current assay methods are typically performed in mixed 2D cocultures with destructive endpoints and low throughput, thereby limiting the scale, time-resolution, and relevance of the assay to in vivo conditions. Here, we evaluated a novel, non-invasive, quantitative image-based cytometry (qIBC) assay for detection of NK-mediated killing of target cells in 2D and 3D environments in vitro and compared its performance to two common flow cytometry- and fluorescence-based cytotoxicity assays. Similar to the other methods evaluated, the qIBC assay allowed for reproducible detection of target cell killing across a range of effector-to-target ratios with reduced variability. The qIBC assay also allowed for detection of NK cytolysis in 3D spheroids, which enabled scalable measurements of cell cytotoxicity in 3D models. Our findings suggest that quantitative image-based cytometry would be suitable for rapid, high-throughput screening of NK cytolysis in vitro, including in quasi-3D structures that model tissue environments in vivo.


Assuntos
Testes Imunológicos de Citotoxicidade/métodos , Citometria por Imagem/métodos , Células Matadoras Naturais/imunologia , Citometria de Fluxo , Humanos , Células K562 , Esferoides Celulares
17.
Nat Protoc ; 16(3): 1331-1342, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589826

RESUMO

The antitumor efficacy of genetically engineered 'living drugs', including chimeric antigen receptor and T-cell receptor T cells, is influenced by their activation, proliferation, inhibition, and exhaustion. A sensitive and reproducible cytotoxicity assay that collectively reflects these functions is an essential requirement for translation of these cellular therapeutic agents. Here, we compare various in vitro cytotoxicity assays (including chromium release, bioluminescence, impedance, and flow cytometry) with respect to their experimental setup, appropriate uses, advantages, and disadvantages, and measures to overcome their limitations. We also highlight the US Food and Drug Administration (FDA) directives for a potency assay for release of clinical cell therapy products. In addition, we discuss advanced assays of repeated antigen exposure and simultaneous testing of combinations of immune effector cells, immunomodulatory antibodies, and targets with variable antigen expression. This review article should help to equip investigators with the necessary knowledge to select appropriate cytotoxicity assays to test the efficacy of immunotherapeutic agents alone or in combination.


Assuntos
Testes Imunológicos de Citotoxicidade/métodos , Imunoterapia Adotiva/métodos , Animais , Citometria de Fluxo/métodos , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
STAR Protoc ; 2(1): 100262, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490978

RESUMO

Direct killing of diseased cells is a hallmark function of NK cells. This protocol describes a flow-based assay to measure in vivo activated murine NK cells' ability to kill target cells ex vivo. Existing published protocols for assaying ex vivo NK cell killing utilized the radioactive chromium release assay or were designed for human NK cells. This protocol details specifically an ex vivo cytotoxicity assay using primary murine NK cells enriched from splenocytes that were activated in vivo with poly(I:C). For complete details on the use and execution of this protocol, please refer to Wagner et al. (2020).


Assuntos
Testes Imunológicos de Citotoxicidade , Citotoxicidade Imunológica , Citometria de Fluxo , Células Matadoras Naturais , Baço , Animais , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Camundongos , Baço/citologia , Baço/imunologia
20.
J Immunol Methods ; 488: 112900, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075363

RESUMO

Zika virus (ZIKV) has become a global public health issue due to its teratogenicity and ability to cause Guillain-Barré syndrome in adults. Although anti-ZIKV envelope protein neutralizing antibodies correlate with protection, the non-neutralizing function of ZIKV antibodies including antibody-dependent cell-mediated cytotoxicity (ADCC) is incompletely understood. To study the role of ADCC antibodies during ZIKV infections, we generated a stably transfected, dual-reporter target cell line with inducible expression of a chimeric ZIKV prM-E protein on the cell surface as the target cell for the assay. By using this assay, nine of ten serum samples from ZIKV-infected patients had >20% ADCC killing of target cells, whereas none of the 12 healthy control sera had >10% ADCC killing. We also observed a time-dependent ADCC response in 2 patients with Zika. This demonstrates that this assay can detect ZIKV ADCC with high sensitivity and specificity, which could be useful for measurement of ADCC responses to ZIKV infection or vaccination.


Assuntos
Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Testes Imunológicos de Citotoxicidade , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Estudos de Casos e Controles , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Transfecção , Proteínas do Envelope Viral/genética , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...