Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.669
Filtrar
1.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587397

RESUMO

High-speed atomic force microscopy (HS-AFM) is a popular molecular imaging technique for visualizing single-molecule biological processes in real-time due to its ability to image under physiological conditions in liquid environments. The photothermal off-resonance tapping (PORT) mode uses a drive laser to oscillate the cantilever in a controlled manner. This direct cantilever actuation is effective in the MHz range. Combined with operating the feedback loop on the time domain force curve rather than the resonant amplitude, PORT enables high-speed imaging at up to ten frames per second with direct control over tip-sample forces. PORT has been shown to enable imaging of delicate assembly dynamics and precise monitoring of patterns formed by biomolecules. Thus far, the technique has been used for a variety of dynamic in vitro studies, including the DNA 3-point-star motif assembly patterns shown in this work. Through a series of experiments, this protocol systematically identifies the optimal imaging parameter settings and ultimate limits of the HS-PORT AFM imaging system and how they affect biomolecular assembly processes. Additionally, it investigates potential undesired thermal effects induced by the drive laser on the sample and surrounding liquid, particularly when the scanning is limited to small areas. These findings provide valuable insights that will drive the advancement of PORT mode's application in studying complex biological systems.


Assuntos
Fenômenos Mecânicos , Nanotecnologia , Microscopia de Força Atômica/métodos , Imagem Molecular , DNA
2.
Mol Pharm ; 21(4): 1919-1932, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557163

RESUMO

HER2 status determination is a necessary step for the proper choice of therapy and selection of patients for the targeted treatment of cancer. Targeted radiotracers such as radiolabeled DARPins provide a noninvasive and effective way for the molecular imaging of HER2 expression. This study aimed to evaluate tumor-targeting properties of three 99mTc-labeled DARPin G3 variants containing Gly-Gly-Gly-Cys (G3C), (Gly-Gly-Gly-Ser)3-Cys ((G3S)3C), or Glu-Glu-Glu-Cys (E3C) amino acid linkers at the C-terminus and conjugated to the HYNIC chelating agent, as well as to compare them with the clinically evaluated DARPin G3 labeled with 99mTc(CO)3 using the (HE)3-tag at the N-terminus. The labeling of DARPin G3-HYNIC variants provided radiochemical yields in the range of 50-80%. Labeled variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 0.5-3 nM. There was no substantial influence of the linker and HYNIC chelator on the binding of 99mTc-labeled DARPin G3 variants to HER2 in vitro; however, [99mTc]Tc-G3-(G3S)3C-HYNIC had the highest affinity. Comparative biodistribution of [99mTc]Tc-G3-G3C-HYNIC, [99mTc]Tc-G3-(G3S)3C-HYNIC, [99mTc]Tc-G3-E3C-HYNIC, and [99mTc]Tc-(HE)3-G3 in healthy CD1 mice showed that there was a strong influence of the linkers on uptake in normal tissues. [99mTc]Tc-G3-E3C-HYNIC had an increased retention of activity in the liver and the majority of other organs compared to the other conjugates. The tumor uptake of [99mTc]Tc-G3-(G3S)3C-HYNIC and [99mTc]Tc-(HE)3-G3 in Nu/j mice bearing SKOV-3 xenografts was similar. The specificity of tumor targeting in vivo was demonstrated for both tracers. [99mTc]Tc-G3-(G3S)3C-HYNIC provided comparable, although slightly lower tumor-to-lung, tumor-to spleen and tumor-to-liver ratios than [99mTc]Tc-(HE)3-G3. Radiolabeling of DARPin G3-HYNIC conjugates with 99mTc provided the advantage of a single-step radiolabeling procedure; however, the studied HYNIC conjugates did not improve imaging contrast compared to the 99mTc-tricarbonyl-labeled DARPin G3. At this stage, [99mTc]Tc-(HE)3-G3 remains the most promising candidate for the clinical imaging of HER2-overexpressing cancers.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologia , Distribuição Tecidual , Receptor ErbB-2/genética
3.
ACS Appl Mater Interfaces ; 16(14): 17253-17266, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557012

RESUMO

Extending molecular imaging into the shortwave-infrared (SWIR, 900-1400 nm) region provides deep tissue visualization of biomolecules in the living system resulting from the low tissue autofluorescence and scattering. Looking at the Food and Drug Administration-approved and clinical trial near-infrared (NIR) probes, only indocyanine green (ICG) and its analogues have been approved for biomedical applications. Excitation wavelength less than 800 nm limits these probes from deep tissue penetration and noninvasive fluorescence imaging. Herein, we present the synthesis of ICG-based π-conjugation-extended cyanine dyes, ICG-C9 and ICG-C11 as biocompatible, and water-soluble SWIR-emitting probes with emission wavelengths of 922 and 1010 nm in water, respectively. Also, ICG-, ICG-C9-, and ICG-C11-based fluorescent labeling agents have been synthesized for the development of SWIR molecular imaging probes. Using the fluorescence of ICG, ICG-C9, and ICG-C11, we demonstrate three-color SWIR fluorescence imaging of breast tumors by visualizing surface receptors (EGFR and HER2) and tumor vasculature in living mice. Furthermore, we demonstrate two-color SWIR fluorescence imaging of breast tumor apoptosis using an ICG-conjugated anticancer drug, Kadcyla and ICG-C9 or ICG-C11-conjugated annexin V. Finally, we show long-term (38 days) SWIR fluorescence imaging of breast tumor shrinkage induced by Kadcyla. This study provides a general strategy for multiplexed fluorescence molecular imaging with biocompatible and water-soluble SWIR-emitting cyanine probes.


Assuntos
Neoplasias da Mama , Corantes Fluorescentes , Animais , Camundongos , Humanos , Feminino , Ado-Trastuzumab Emtansina , Verde de Indocianina , Imagem Molecular , Imagem Óptica/métodos , Neoplasias da Mama/diagnóstico por imagem
4.
Sci Adv ; 10(11): eadm8600, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478615

RESUMO

Cancer diagnosis by metabolic MRI proposes to follow the fate of glycolytic precursors such as pyruvate or glucose, and their in vivo conversion into lactate. This study compares the 2H MRI outlooks afforded by these metabolites when targeting a pancreatic cancer model. Exogenously injected [3,3',3″-2H3]-pyruvate was visible only briefly; it generated a deuterated lactate signal throughout the body that faded after ~5 min, showing a minor concentration bias at the rims of the tumors. [6,6'-2H2]-glucose by contrast originated a lactate signal that localized clearly within the tumors, persisting for over an hour. Investigations alternating deuterated and nondeuterated glucose injections revealed correlations between the lactate generation and the glucose available at the tumor, evidencing a continuous and avid glucose consumption generating well-localized lactate signatures as driven by the Warburg effect. This is by contrast to the transient and more promiscuous pyruvate-to-lactate transformation, which seemed subject to transporter and kinetics effects. The consequences of these observations within metabolic MRI are briefly discussed.


Assuntos
Neoplasias Pancreáticas , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Deutério , Espectroscopia de Ressonância Magnética/métodos , Glucose/metabolismo , Imageamento por Ressonância Magnética , Neoplasias Pancreáticas/diagnóstico por imagem , Ácido Láctico , Imagem Molecular
5.
Theranostics ; 14(5): 1956-1965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505606

RESUMO

Rationale: Magnetic resonance imaging (MRI) is a powerful diagnostic technology by providing high-resolution imaging. Although MRI is sufficiently valued in its resolving morphology, it has poor sensitivity for tracking biomarkers. Therefore, contrast agents are often used to improve MRI diagnostic sensitivity. However, the clinically used Gd chelates are limited in improving MRI sensitivity owing to their low relaxivity. The objective of this study is to develop a novel contrast agent to achieve a highly sensitive tracking of biomarkers in vivo. Methods: A Gd-based nanoprobe composed of a gadolinium nanoparticle encapsulated within a human H-ferritin nanocage (Gd-HFn) has been developed. The specificity and sensitivity of Gd-HFn were evaluated in vivo in tumor-bearing mice and apolipoprotein E-deficient mice (Apoe-/-) by MRI. Results: The Gd-HFn probe shows extremely high relaxivity values (r1 = 549 s-1mM-1, r2 = 1555 s-1mM-1 under a 1.5-T magnetic field; and r1 = 428 s-1mM-1 and r2 = 1286 s-1mM-1 under a 3.0-T magnetic field), which is 175-fold higher than that of the clinically standard Dotarem (Gd-DOTA, r1 =3.13 s-1mM-1) under a 1.5-T magnetic field, and 150-fold higher under a 3.0-T magnetic field. Owing to the substantially enhanced relaxivity values, Gd-HFn achieved a highly sensitive tracking for the tumor targeting receptor of TfR1 and enabled the in vivo MRI visualization of tumors approaching the angiogenic switch. Conclusions: The developed Gd-HFn contrast agent makes MRI a more powerful tool by simultaneously providing functional and morphological imaging information, which paves the way for a new perspective in molecular imaging.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Meios de Contraste , Gadolínio , Apoferritinas , Neoplasias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Molecular , Biomarcadores
6.
Bioconjug Chem ; 35(3): 381-388, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446033

RESUMO

Long noncoding RNA (lncRNA) differentiation antagonizing noncoding RNA (DANCR) is overexpressed in human triple-negative breast cancer (TNBC) and promotes cell migration and proliferation. TNBC is limited in treatment options relative to hormone-receptor-positive breast cancer and is commonly treated with chemotherapy, which is often compromised by acquired resistance. DANCR has been implicated in the development of chemoresistance across multiple cancer types. Here, we applied magnetic resonance molecular imaging (MRMI) with a targeted contrast agent, MT218, specific to extradomain-B fibronectin (EDB-FN), a marker for epithelial-to-mesenchymal transition, to assess the therapeutic efficacy of the combination of paclitaxel and ZD2-PEG-ECO/siDANCR nanoparticles (ZD2-siDANCR-ELNP) to treat TNBC. The treatment of orthotopic MDA-MB-231 TNBC in mice with paclitaxel significantly suppressed tumor growth but with a significant increase of EDB-FN in the tumor, as revealed by MRMI and immunohistochemistry. Combining ZD2-siDANCR-ELNP with paclitaxel further reduced tumor sizes, along with reduced EDB-FN expression. Interestingly, MT218-MRMI revealed a lower reduction of tumor signal enhancement with the combination treatment than that with the siDANCR treatment alone, which was supported by higher cell density in the tumors treated with the combination therapy, as shown by histochemical analysis. MT218-MRMI clearly revealed the changes of the tumor microenvironment in response to various therapies and is effective to noninvasively assess the response of TNBC tumors to the therapies. Regulating oncogenic lncRNA DANCR is an effective strategy for improving the outcomes of chemotherapy in TNBC.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , RNA Longo não Codificante/genética , Interferência de RNA , Linhagem Celular Tumoral , Paclitaxel/uso terapêutico , Espectroscopia de Ressonância Magnética , Imagem Molecular/métodos , Proliferação de Células , Microambiente Tumoral
7.
Radiol Cardiothorac Imaging ; 6(2): e230098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512024

RESUMO

Purpose To develop an approach for in vivo detection of interstitial cardiac fibrosis using PET with a peptide tracer targeting proteolyzed collagen IV (T-peptide). Materials and Methods T-peptide was conjugated to the copper chelator MeCOSar (chemical name, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid) and radiolabeled with copper 64 (64Cu). PET/CT scans were acquired following intravenous delivery of 64Cu-T-peptide-MeCOSar (0.25 mg/kg; 18 MBq ± 2.7 [SD]) to male transgenic mice overexpressing ß2-adrenergic receptors with intermediate (7 months of age; n = 4 per group) to severe (10 months of age; n = 11 per group) cardiac fibrosis and their wild-type controls. PET scans were also performed following coadministration of the radiolabeled probe with nonlabeled T-peptide in excess to confirm binding specificity. PET data were analyzed by t tests for static scans and analysis of variance tests (one- or two-way) for dynamic scans. Results PET/CT scans revealed significantly elevated (2.24-4.26-fold; P < .05) 64Cu-T-peptide-MeCOSar binding in the fibrotic hearts of aged transgenic ß2-adrenergic receptor mice across the entire 45-minute acquisition period compared with healthy controls. The cardiac tracer accumulation and presence of diffuse cardiac fibrosis in older animals were confirmed by gamma counting (P < .05) and histologic evaluation, respectively. Coadministration of a nonradiolabeled probe in excess abolished the elevated radiotracer binding in the aged transgenic hearts. Importantly, PET tracer accumulation was also detected in younger (7 months of age) transgenic mice with intermediate cardiac fibrosis, although this was only apparent from 20 minutes following injection (1.6-2.2-fold binding increase; P < .05). Conclusion The T-peptide PET tracer targeting proteolyzed collagen IV provided a sensitive and specific approach of detecting diffuse cardiac fibrosis at varying degrees of severity in a transgenic mouse model. Keywords: Diffuse Cardiac Fibrosis, Molecular Peptide Probe, Molecular Imaging, PET/CT © RSNA, 2024.


Assuntos
Cobre , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Masculino , Animais , Camundongos , Sondas Moleculares , Tomografia por Emissão de Pósitrons , Imagem Molecular , Camundongos Transgênicos , Colágeno Tipo IV , Fibrose , Peptídeos
8.
Talanta ; 273: 125953, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521025

RESUMO

In this study, we report a new carbazole-malononitrile fluorescent probe CBC with an interesting aggregation-induced emission (AIE) characteristic. Probe CBC could rapidly and selectively detect hydrazine (N2H4) in ~100% aqueous media, and also exhibit an exceedingly low detection limit of 6.3 nM for sensitively detecting N2H4. The sensing mechanism of CBC towards N2H4 has been well demonstrated through the spectra of 1H NMR, HRMS and FTIR. Interestingly, probe CBC was applied to visualize and detect gaseous and aqueous N2H4 with sensitive color changes. Importantly, probe CBC was applied to effectively detect N2H4 in practical samples such as soil, human serum, human urine, plants, foods and beverages, as well as sensitively sense and image N2H4 in biological systems including living mungbean sprouts, Arabidopsis thaliana, and HeLa cells.


Assuntos
Arabidopsis , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Células HeLa , Imagem Molecular/métodos , Água/química , Carbazóis , Hidrazinas , Espectrometria de Fluorescência/métodos
9.
Anal Chem ; 96(14): 5489-5498, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527864

RESUMO

Laser-based high-resolution mass spectrometry imaging at ambient conditions has promising applications in life science. However, the ion yield during laser desorption/ablation is poor. Here, transmission atmospheric pressure laser desorption ionization combined with a compact postphotoionization (t-AP-LDI/PI) assembly with a krypton discharge lamp was developed for the untargeted imaging of various biomolecules. The spatial distributions of numerous lipid classes, fatty acids, neurotransmitters, and amino acids in the subregions of mouse cerebellum tissue were obtained. Compared with single laser ablation, the sensitivities for most analytes were increased by 1 to 3 orders of magnitude by dopant-assisted postphotoionization. After careful optimization, a spatial resolution of 4 µm could be achieved for the metabolites in mouse hippocampus tissue. Finally, the melanoma tissue slices were analyzed using t-AP-LDI/PI MSI, which revealed the metabolic heterogeneity of the melanoma microenvironment and exhibited the phenomenon of abnormal proliferation and invasion trends in tumor cells.


Assuntos
Melanoma , Animais , Camundongos , Espectrometria de Massas , Espectrofotometria , Imagem Molecular , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Microambiente Tumoral
10.
Opt Express ; 32(5): 8308-8320, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439489

RESUMO

Conventional photoacoustic endoscopy (PAE) is mostly for structural imaging, and its molecular imaging ability is quite limited. In this work, we address this issue and present the development of a flexible acoustic-resolution-based photoacoustic endoscopic (AR-PAE) probe with an outer diameter of 8 mm. This probe is driven by a micro-step motor at the distal end, enabling flexible and precise angular step control to synchronize with the optical parametric oscillator (OPO) lasers. This probe retains the high spatial resolution, high penetration depth, and spectroscopic imaging ability of conventional AR-PAE. Moreover, it is capable for background-free high-specific photoacoustic molecular imaging with a novel pump-probe detection technique, as demonstrated by the distribution visualizing of the FDA approved contrast agent methylene blue (MB) in an ex-vivo pig ileum. This proposed method represents an important technical advancement in multimodal PAE, and can potentially make considerable contributions across various biomedical fields.


Assuntos
Endoscópios , Imagem Molecular , Animais , Suínos , Análise Espectral , Meios de Contraste , Azul de Metileno
11.
Mol Imaging Biol ; 26(2): 189-190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512546
12.
Tomography ; 10(3): 378-399, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535772

RESUMO

An increasing amount of molecular imaging studies are ordered each year for an oncologic population that continues to expand and increase in age. The importance of these studies in dictating further care for oncologic patients underscores the necessity of differentiating benign from malignant findings, particularly for a population in whom incidental findings are common. The aim of this review is to provide pictorial examples of benign musculoskeletal pathologies which may be found on molecular imaging and which may be mistaken for malignant processes. Imaging examples are provided in the form of radiographs, bone scintigraphy, computed tomography, and fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) scans. Special attention is paid to specific features that help narrow the differential diagnosis and distinguish benign from malignant processes, with the goal of avoiding unnecessary invasive procedures.


Assuntos
Imagem Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Fluordesoxiglucose F18 , Tomografia Computadorizada por Raios X
13.
Adv Exp Med Biol ; 1444: 197-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467981

RESUMO

Programmed cell death-1 (PD-1) is one of the most famous coinhibitory receptors that are expressed on effector T cells to regulate their function. The PD-1 ligands, PD-L1 and PD-L2, are expressed by various cells throughout the body at steady state and their expression was further regulated within different pathological conditions such as tumor-bearing and chronic inflammatory diseases. In recent years, immune checkpoint inhibitor (ICI) therapies with anti-PD-1 or anti-PD-L1 has become a standard treatment for various malignancies and has shown remarkable antitumor effects. Since the discovery of PD-1 in 1992, a huge number of studies have been conducted to elucidate the function of PD-1. Herein, this paper provides an overview of PD-1 biological findings and sheds some light on the current technology for molecular imaging of PD-1.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias/metabolismo , Linfócitos T/metabolismo , Antígeno B7-H1/metabolismo , Imunoterapia/métodos , Imagem Molecular
14.
J Nucl Med Technol ; 52(1): 63-67, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443111

RESUMO

This study aimed to analyze the compliance of health care institutions with the Society of Nuclear Medicine and Molecular Imaging (SNMMI) procedure guidelines for gastric emptying scintigraphy (GES). Methods: A 19-question survey on demographics and the GES protocol was conducted using a Google form. The demographic questions covered position, number of technologists in the department, location, type of health care institution, and number of GES studies per month. The protocol questions included patient preparation, meal preparation, withholding of scheduled medications, radiopharmaceutical type, and radiopharmaceutical dose. The survey was sent to 7 nuclear medicine Facebook groups and a list of clinical affiliates provided by the Indiana University School of Medicine Nuclear Medicine Program. Descriptive statistics were compiled for most questions. A Fisher exact test with a significance level of 0.05 was used to compare the type of health care institution with compliance with the SNMMI GES protocol regarding radiolabeling time, meal preparation, and meal components, as well as to compare the type of health care institution with the number of GES studies performed per institution. Results: In total, 240 people responded to the survey. Most were nonsupervisory nuclear medicine technologists (72%) in nonacademic institutions (72%) and groups with 4 or more technologists (62%). Of the respondents, 72% followed the SNMMI guideline of adding the radiopharmaceutical before cooking, but only 37% followed the meal component guideline. There was no significant association between the type of institution or the number of GES studies and compliance with radiolabeling time or with meal preparation or components. Most respondents asked patients to withhold medications per SNMMI guidelines and used the recommended radiopharmaceutical (99mTc-sulfur colloid, 95%) at the recommended dose (18.5-37 MBq, 84%). Conclusion: Although most respondents followed most aspects of the SNMMI guidelines for GES, more than half did not use the recommended meal of liquid egg whites. Compliance did not vary between academic and nonacademic institutions or between groups performing a large or a small number of GES studies.


Assuntos
Medicina Nuclear , Humanos , Esvaziamento Gástrico , Compostos Radiofarmacêuticos , Cintilografia , Imagem Molecular
15.
Sci Rep ; 14(1): 3001, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321201

RESUMO

To validate the performance of automated Prostate Cancer Molecular Imaging Standardized Evaluation (aPROMISE) in quantifying total prostate disease burden with 18F-DCFPyL PET/CT and to evaluate the interobserver and histopathologic concordance in the establishment of dominant and index tumor. Patients with a recent diagnosis of intermediate/high-risk prostate cancer underwent 18F-DCFPyL-PET/CT for staging purpose. In positive-18F-DCFPyL-PET/CT scans, automated prostate tumor segmentation was performed using aPROMISE software and compared to an in-house semiautomatic-manual guided segmentation procedure. SUV and volume related variables were obtained with two softwares. A blinded evaluation of dominant tumor (DT) and index tumor (IT) location was assessed by both groups of observers. In histopathological analysis, Gleason, International Society of Urological Pathology (ISUP) group, DT and IT location were obtained. We compared all the obtained variables by both software packages using intraclass correlation coefficient (ICC) and Cohen's kappa coefficient (k) for the concordance analysis. Fifty-four patients with a positive 18F-DCFPyL PET/CT were evaluated. The ICC for the SUVmax, SUVpeak, SUVmean, tumor volume (TV) and total lesion activity (TLA) was: 1, 0.833, 0.615, 0.494 and 0.950, respectively (p < 0.001 in all cases). For DT and IT detection, a high agreement was observed between both softwares (k = 0.733; p < 0.001 and k = 0.812; p < 0.001, respectively) although the concordances with histopathology were moderate (p < 0001). The analytical validation of aPROMISE showed a good performance for the SUVmax, TLA, DT and IT definition in comparison to our in-house method, although the concordance was moderate with histopathology for DT and IT.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Próstata/patologia , Projetos Piloto , Carga Tumoral , Neoplasias da Próstata/patologia , Imagem Molecular
16.
RMD Open ; 10(1)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38341194

RESUMO

It is known that metabolic shifts and tissue remodelling precede the development of visible inflammation and structural organ damage in inflammatory rheumatic diseases such as the inflammatory arthritides. As such, visualising and measuring metabolic tissue activity could be useful to identify biomarkers of disease activity already in a very early phase. Recent advances in imaging have led to the development of so-called 'metabolic imaging' tools that can detect these changes in metabolism in an increasingly accurate manner and non-invasively.Nuclear imaging techniques such as 18F-D-glucose and fibroblast activation protein inhibitor-labelled positron emission tomography are increasingly used and have yielded impressing results in the visualisation (including whole-body staging) of inflammatory changes in both early and established arthritis. Furthermore, optical imaging-based bedside techniques such as multispectral optoacoustic tomography and fluorescence optical imaging are advancing our understanding of arthritis by identifying intra-articular metabolic changes that correlate with the onset of inflammation with high precision and without the need of ionising radiation.Metabolic imaging holds great potential for improving the management of patients with inflammatory arthritis by contributing to early disease interception and improving diagnostic accuracy, thereby paving the way for a more personalised approach to therapy strategies including preventive strategies. In this narrative review, we discuss state-of-the-art metabolic imaging methods used in the assessment of arthritis and inflammation, and we advocate for more extensive research endeavours to elucidate their full field of application in rheumatology.


Assuntos
Artrite , Humanos , Artrite/diagnóstico por imagem , Artrite/etiologia , Inflamação , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons , Imagem Molecular
17.
Ann Med ; 56(1): 2313676, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346385

RESUMO

Fibrosis is a pathological process that occurs due to chronic inflammation, leading to the proliferation of fibroblasts and the excessive deposition of extracellular matrix (ECM). The process of long-term fibrosis initiates with tissue hypofunction and progressively culminates in the ultimate manifestation of organ failure. Intestinal fibrosis is a significant complication of Crohn's disease (CD) that can result in persistent luminal narrowing and strictures, which are difficult to reverse. In recent years, there have been significant advances in our understanding of the cellular and molecular mechanisms underlying intestinal fibrosis in inflammatory bowel disease (IBD). Significant progress has been achieved in the fields of pathogenesis, diagnosis, and management of intestinal fibrosis in the last few years. A significant amount of research has also been conducted in the field of biomarkers for the prediction or detection of intestinal fibrosis, including novel cross-sectional imaging modalities such as positron emission tomography (PET) and single photon emission computed tomography (SPECT). Molecular imaging represents a promising biomedical approach that enables the non-invasive visualization of cellular and subcellular processes. Molecular imaging has the potential to be employed for early detection, disease staging, and prognostication in addition to assessing disease activity and treatment response in IBD. Molecular imaging methods also have a potential role to enabling minimally invasive assessment of intestinal fibrosis. This review discusses the role of molecular imaging in combination of AI in detecting CD fibrosis.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doença de Crohn/complicações , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/patologia , Intestinos/diagnóstico por imagem , Fibrose , Imagem Molecular
18.
Biosensors (Basel) ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38392003

RESUMO

Surface plasmon resonance (SPR) is a powerful tool for determining molecular interactions quantitatively. SPR imaging (SPRi) further improves the throughput of SPR technology and provides the spatially resolved capability for observing the molecular interaction dynamics in detail. SPRi is becoming more and more popular in biological and chemical sensing and imaging. However, SPRi suffers from low spatial resolution due to the imperfect optical components and delocalized features of propagating surface plasmonic waves along the surface. Diverse kinds of approaches have been developed to improve the spatial resolution of SPRi, which have enormously impelled the development of the methodology and further extended its possible applications. In this minireview, we introduce the mechanisms for building a high-spatial-resolution SPRi system and present its experimental schemes from prism-coupled SPRi and SPR microscopy (SPRM) to surface plasmonic scattering microscopy (SPSM); summarize its exciting applications, including molecular interaction analysis, molecular imaging and profiling, tracking of single entities, and analysis of single cells; and discuss its challenges in recent decade as well as the promising future.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Microscopia , Imagem Molecular , Desenho de Equipamento
19.
ACS Appl Bio Mater ; 7(3): 1416-1428, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38391247

RESUMO

Diabetes vasculopathy is a significant complication of diabetes mellitus (DM), and early identification and timely intervention can effectively slow the progression. Accumulating studies have shown that diabetes causes vascular complications directly or indirectly through a variety of mechanisms. Direct imaging of the endothelial molecular changes not only identifies the early stage of diabetes vasculopathy but also sheds light on the precise treatment. Targeted ultrasound contrast agent (UCA)-based ultrasound molecular imaging (UMI) can noninvasively detect the expression status of molecular biomarkers overexpressed in the vasculature, thereby being a potential strategy for the diagnosis and treatment response evaluation of DM. Amounts of efforts have been focused on identification of the molecular targets expressed in the vasculature, manufacturing strategies of the targeted UCA, and the clinical translation for the diagnosis and evaluation of therapeutic efficacy in both micro- and macrovasculopathy in DM. This review summarizes the latest research progress on endothelium-targeted UCA and discusses their promising future and challenges in diabetes vasculopathy theranostics.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Humanos , Diabetes Mellitus/diagnóstico por imagem , Angiopatias Diabéticas/diagnóstico por imagem , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/terapia , Biomarcadores , Imagem Molecular/métodos
20.
Adv Drug Deliv Rev ; 207: 115200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364906

RESUMO

Nanoscale contrast agents have emerged as a versatile platform in the field of biomedical research, offering great potential for ultrasound imaging and therapy. Various kinds of nanoscale contrast agents have been extensively investigated in preclinical experiments to satisfy diverse biomedical applications. This paper provides a comprehensive review of the structure and composition of various nanoscale contrast agents, as well as their preparation and functionalization, encompassing both chemosynthetic and biosynthetic strategies. Subsequently, we delve into recent advances in the utilization of nanoscale contrast agents in various biomedical applications, including ultrasound molecular imaging, ultrasound-mediated drug delivery, and cell acoustic manipulation. Finally, the challenges and prospects of nanoscale contrast agents are also discussed to promote the development of this innovative nanoplatform in the field of biomedicine.


Assuntos
Meios de Contraste , Sistemas de Liberação de Medicamentos , Humanos , Meios de Contraste/química , Ultrassonografia/métodos , Sistemas de Liberação de Medicamentos/métodos , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...