Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68.364
Filtrar
1.
Front Immunol ; 15: 1352615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558814

RESUMO

Introduction: Fibroblast activation protein (FAP) is predominantly upregulated in various tumor microenvironments and scarcely expressed in normal tissues. Methods: We analyzed FAP across 1216 tissue samples covering 23 tumor types and 70 subtypes. Results: Elevated FAP levels were notable in breast, pancreatic, esophageal, and lung cancers. Using immunohistochemistry and RNAseq, a correlation between FAP gene and protein expression was found. Evaluating FAP's clinical significance, we assessed 29 cohorts from 12 clinical trials, including both mono and combination therapies with the PD-L1 inhibitor atezolizumab and chemotherapy. A trend links higher FAP expression to poorer prognosis, particularly in RCC, across both treatment arms. However, four cohorts showed improved survival with high FAP, while in four others, FAP had no apparent survival impact. Conclusions: Our results emphasize FAP's multifaceted role in therapy response, suggesting its potential as a cancer immunotherapy biomarker.


Assuntos
Neoplasias Pulmonares , Serina Endopeptidases , Humanos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Imunoterapia , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fibroblastos/metabolismo , Microambiente Tumoral/genética
2.
Nat Commun ; 15(1): 3014, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589406

RESUMO

The biological underpinnings of therapeutic resistance to immune checkpoint inhibitors (ICI) in adolescent and young adult (AYA) melanoma patients are incompletely understood. Here, we characterize the immunogenomic profile and spatial architecture of the tumor microenvironment (TME) in AYA (aged ≤ 30 years) and older adult (aged 31-84 years) patients with melanoma, to determine the AYA-specific features associated with ICI treatment outcomes. We identify two ICI-resistant spatiotypes in AYA patients with melanoma showing stroma-infiltrating lymphocytes (SILs) that are distinct from the adult TME. The SILhigh subtype was enriched in regulatory T cells in the peritumoral space and showed upregulated expression of immune checkpoint molecules, while the SILlow subtype showed a lack of immune activation. We establish a young immunosuppressive melanoma score that can predict ICI responsiveness in AYA patients and propose personalized therapeutic strategies for the ICI-resistant subgroups. These findings highlight the distinct immunogenomic profile of AYA patients, and individualized TME features in ICI-resistant AYA melanoma that require patient-specific treatment strategies.


Assuntos
Melanoma , Humanos , Adolescente , Adulto Jovem , Idoso , Melanoma/terapia , Imunoterapia , Linfócitos T Reguladores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico , Microambiente Tumoral
3.
Hum Vaccin Immunother ; 20(1): 2340950, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38593326
4.
Cell Death Dis ; 15(4): 254, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594256

RESUMO

Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia , Dieta
5.
Sci Rep ; 14(1): 8284, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594266

RESUMO

Immunotherapy had shown good antitumor activity in a variety of solid tumors, but low benefit in CRC, so there was an urgent need to explore new biomarkers. We evaluated the role of KMT2C using publicly available data from the Cancer Genome Atlas (TCGA) and Memorial Sloan Kettering Cancer Center (MSKCC). In addition, further analysis was performed in an internal cohort. Moreover, the mutant profiles of KMT2C was analyzed in a large CRC cohort. The relationship between clinical pathologic features and KMT2C were analyzed with using the two-sided chi-squared test or the Fisher exact test. Clinicopathologic characteristics associated with overall survival using Cox regression and the Kaplan-Meier method. We found that KMT2C-mutated CRC patients in the immunotherapy cohort had significantly improved OS compared with KMT2C WT patients (P = 0.013). However, this phenomenon did not exist in non-immunotherapy cohort. Our cohort validated the value of KMT2C mutations in predicting better clinical outcomes, including ORR (P < 0.0001) and OS (P = 0.010). Meanwhile, KMT2C mutation was associated with higher tumor mutation burden, MSI score, higher levels of immune-associated T cells, neutrophil, and M1-type macrophages. Our study suggested that KMT2C mutation might be a potential positive predictor for CRC immunotherapy.


Assuntos
Neoplasias Colorretais , Humanos , Mutação , Biomarcadores , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Imunoterapia , Biomarcadores Tumorais/genética
6.
J Transl Med ; 22(1): 341, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594751

RESUMO

BACKGROUND: Chemoimmunotherapy has shown promising advantages of eliciting immunogenic cell death and activating anti-tumor immune responses. However, the systemic toxicity of chemotherapy and tumor immunosuppressive microenvironment limit the clinical application. METHODS: Here, an injectable sodium alginate hydrogel (ALG) loaded with nanoparticle albumin-bound-paclitaxel (Nab-PTX) and an immunostimulating agent R837 was developed for local administration. Two murine hepatocellular carcinoma and breast cancer models were established. The tumor-bearing mice received the peritumoral injection of R837/Nab-PTX/ALG once a week for two weeks. The antitumor efficacy, the immune response, and the tumor microenvironment were investigated. RESULTS: This chemoimmunotherapy hydrogel with sustained-release character was proven to have significant effects on killing tumor cells and inhibiting tumor growth. Peritumoral injection of our hydrogel caused little harm to normal organs and triggered a potent antitumor immune response against both hepatocellular carcinoma and breast cancer. In the tumor microenvironment, enhanced immunogenic cell death induced by the combination of Nab-PTX and R837 resulted in 3.30-fold infiltration of effector memory T cells and upregulation of 20 biological processes related to immune responses. CONCLUSIONS: Our strategy provides a novel insight into the combination of chemotherapy and immunotherapy and has the potential for clinical translation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Imiquimode/farmacologia , Imiquimode/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia/métodos , Imunidade , Microambiente Tumoral
8.
Mol Biol Rep ; 51(1): 487, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578532

RESUMO

The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.


Assuntos
Imunoterapia , Neoplasias , Nucleotidiltransferases , Humanos , Antivirais , DNA/genética , Imunidade Inata , Interferons , Neoplasias/terapia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
9.
Signal Transduct Target Ther ; 9(1): 79, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565886

RESUMO

Fluoropyrimidine-based combination chemotherapy plus targeted therapy is the standard initial treatment for unresectable metastatic colorectal cancer (mCRC), but the prognosis remains poor. This phase 3 trial (ClinicalTrials.gov: NCT03950154) assessed the efficacy and adverse events (AEs) of the combination of PD-1 blockade-activated DC-CIK (PD1-T) cells with XELOX plus bevacizumab as a first-line therapy in patients with mCRC. A total of 202 participants were enrolled and randomly assigned in a 1:1 ratio to receive either first-line XELOX plus bevacizumab (the control group, n = 102) or the same regimen plus autologous PD1-T cell immunotherapy (the immunotherapy group, n = 100) every 21 days for up to 6 cycles, followed by maintenance treatment with capecitabine and bevacizumab. The main endpoint of the trial was progression-free survival (PFS). The median follow-up was 19.5 months. Median PFS was 14.8 months (95% CI, 11.6-18.0) for the immunotherapy group compared with 9.9 months (8.0-11.8) for the control group (hazard ratio [HR], 0.60 [95% CI, 0.40-0.88]; p = 0.009). Median overall survival (OS) was not reached for the immunotherapy group and 25.6 months (95% CI, 18.3-32.8) for the control group (HR, 0.57 [95% CI, 0.33-0.98]; p = 0.043). Grade 3 or higher AEs occurred in 20.0% of patients in the immunotherapy group and 23.5% in the control groups, with no toxicity-associated deaths reported. The addition of PD1-T cells to first-line XELOX plus bevacizumab demonstrates significant clinical improvement of PFS and OS with well tolerability in patients with previously untreated mCRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Oxaloacetatos , Humanos , Bevacizumab/uso terapêutico , Capecitabina/uso terapêutico , Oxaliplatina , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Imunoterapia
10.
J Exp Clin Cancer Res ; 43(1): 101, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566204

RESUMO

BACKGROUND: Regulatory B cells (Bregs), a specialized subset of B cells that modulate immune responses and maintain immune tolerance in malignant tumors, have not been extensively investigated in the context of bladder cancer (BLCA). This study aims to elucidate the roles of Bregs and Breg-related genes in BLCA. METHODS: We assessed Breg infiltration levels in 34 pairs of BLCA and corresponding paracancerous tissues using immunohistochemical staining. We conducted transwell and wound healing assays to evaluate the impact of Bregs on the malignant phenotype of SW780 and T24 cells. Breg-related genes were identified through gene sets and transcriptional analysis. The TCGA-BLCA cohort served as the training set, while the IMvigor210 and 5 GEO cohorts were used as external validation sets. We employed LASSO regression and random forest for feature selection and developed a risk signature using Cox regression. Primary validation of the risk signature was performed through immunohistochemical staining and RT-qPCR experiments using the 34 local BLCA samples. Additionally, we employed transfection assays and flow cytometry to investigate Breg expansion ability and immunosuppressive functions. RESULTS: Breg levels in BLCA tissues were significantly elevated compared to paracancerous tissues (P < 0.05) and positively correlated with tumor malignancy (P < 0.05). Co-incubation of SW780 and T24 cells with Bregs resulted in enhanced invasion and migration abilities (all P < 0.05). We identified 27 Breg-related genes, including CD96, OAS1, and CSH1, which were integrated into the risk signature. This signature demonstrated robust prognostic classification across the 6 cohorts (pooled HR = 2.25, 95% CI = 1.52-3.33). Moreover, the signature exhibited positive associations with advanced tumor stage (P < 0.001) and Breg infiltration ratios (P < 0.05) in the local samples. Furthermore, the signature successfully predicted immunotherapeutic sensitivity in three cohorts (all P < 0.05). Knockdown of CSH1 in B cells increased Breg phenotype and enhanced suppressive ability against CD8 + T cells (all P < 0.05). CONCLUSIONS: Bregs play a pro-tumor role in the development of BLCA. The Breg-related gene signature established in this study holds great potential as a valuable tool for evaluating prognosis and predicting immunotherapeutic response in BLCA patients.


Assuntos
Linfócitos B Reguladores , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Linfócitos T CD8-Positivos , Citometria de Fluxo , Imunoterapia , Prognóstico
11.
BMC Cancer ; 24(1): 424, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580900

RESUMO

BACKGROUND: Patients from non-small cell lung cancer (NSCLC) controlled clinical trials do not always reflect real-world heterogeneous patient populations. We designed a study to describe the real-world patient characteristics and treatment patterns of first-line treatment in patients in the US with NSCLC. METHODS: This was an observational, retrospective cohort study based on electronic medical records of US adults with locally advanced or metastatic disease in the ConcertAI Patient360 NSCLC database who initiated first-line treatment with anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) therapy between July 2016 and December 2020. The analysis used patient attributes, clinical characteristics, and treatments from each patient's medical records. RESULTS: A total of 2175 patients were eligible for analysis. The median age was 68 years, and 26.2% of the patients were ≥75 years old. At treatment initiation, 96.4% and 3.6% of the patients had Stage 4 and Stage 3 (B or C) NSCLC, respectively. The most common histology type was nonsquamous adenocarcinoma (66.4%), and 19.8% had Eastern Cooperative Oncology Group performance status ≥2. Immunosuppressive medications were being used by 17.7% of patients, and 11.0% were immunocompromised. Almost all patients had metastases: 64.6% had 1, 23.2% had 2, and 8.0% had ≥3 metastatic sites. Brain metastases were present in 22.9% of patients. Treatment evolution was observed with first-line standard of care shifting from single-agent immunotherapy in 2016 (90.2%) to combination immunotherapy and chemotherapy in 2020 (60.2%). CONCLUSION: Between 2016 and 2020, the first-line treatment paradigm for advanced NSCLC in the US shifted from anti-PD-1/PD-L1 monotherapy to combination chemoimmunotherapy, with increasing biomarker testing. Further research in heterogeneous patient populations to characterize treatment strategies is warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1/metabolismo , Estudos Retrospectivos , Imunoterapia
12.
BMC Cancer ; 24(1): 420, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580922

RESUMO

BACKGROUND: Clear cell carcinoma of the kidney is a common urological malignancy characterized by poor patient prognosis and treatment outcomes. Modulation of vasculogenic mimicry in tumor cells alters the tumor microenvironment and the influx of tumor-infiltrating lymphocytes, and the combination of its inducers and immune checkpoint inhibitors plays a synergistic role in enhancing antitumor effects. METHODS: We downloaded the data from renal clear cell carcinoma samples and vasculogenic mimicry-related genes to establish a new vasculogenic mimicry-related index (VMRI) using a machine learning approach. Based on VMRI, patients with renal clear cell carcinoma were divided into high VMRI and low VMRI groups, and patients' prognosis, clinical features, tumor immune microenvironment, chemotherapeutic response, and immunotherapeutic response were systematically analyzed. Finally, the function of CDH5 was explored in renal clear cell carcinoma cells. RESULTS: VMRI can be used for prognostic and immunotherapy efficacy prediction in a variety of cancers, which consists of four vasculogenic mimicry-related genes (CDH5, MMP9, MAPK1, and MMP13), is a reliable predictor of survival and grade in patients with clear cell carcinoma of the kidney and has been validated in multiple external datasets. We found that the high VMRI group presented higher levels of immune cell infiltration, which was validated by pathological sections. We performed molecular docking prediction of vasculogenic mimicry core target proteins and identified natural small molecule drugs with the highest affinity for the target protein. Knockdown of CDH5 inhibited the proliferation and migration of renal clear cell carcinoma. CONCLUSIONS: The VMRI identified in this study allows for accurate prognosis assessment of patients with renal clear cell carcinoma and identification of patient populations that will benefit from immunotherapy, providing valuable insights for future precision treatment of patients with renal clear cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Simulação de Acoplamento Molecular , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Prognóstico , Neoplasias Renais/genética , Neoplasias Renais/terapia , Neoplasias Renais/patologia , Imunoterapia , Microambiente Tumoral/genética
13.
Mol Cancer ; 23(1): 72, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581001

RESUMO

For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.


Assuntos
Imunidade , Neoplasias , Humanos , Imunoterapia , Imunomodulação , Neoplasias/terapia
14.
J Nanobiotechnology ; 22(1): 154, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581017

RESUMO

The combination of immune checkpoint inhibitors and immunogenic cell death (ICD) inducers has become a promising strategy for the treatment of various cancers. However, its efficacy remains unmet because of the dense stroma and defective vasculatures in the tumor microenvironment (TME) that restricts the intratumoral infiltration of cytotoxic T lymphocytes (CTLs). Herein, cancer-associated fibroblasts (CAFs)-targeted nanoemulsions are tailored to combine the ICD induction and the TME reprogramming to sensitize checkpoint blockade immunotherapy. Melittin, as an ICD inducer and an antifibrotic agent, is efficiently encapsulated into the nanoemulsion accompanied by a nitric oxide donor to improve its bioavailability and tumor targeting. The nanoemulsions exhibited dual functionality by directly inducing direct cancer cell death and enhancing the tumoral immunogenicity, while also synergistically reprogramming the TME through reversing the activated CAFs, decreasing collagen deposition and restoring tumor vessels. Consequently, these nanemulsions successfully facilitated the CTLs infiltration and suppressing the recruitment of immunosuppressive cells. A combination of AE-MGNPs and anti-CTLA-4 antibody greatly elicited a striking level of antitumor T-cell response to suppress tumor growth in CAFs-rich colorectal tumor models. Our work emphasized the integration of the ICD induction with simultaneous modulation of the TME to enhance the sensitivity of patients to checkpoint blockade immunotherapy.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Neoplasias , Humanos , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
15.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611849

RESUMO

The formation of new blood vessels, known as angiogenesis, significantly impacts the development of multiple types of cancer. Consequently, researchers have focused on targeting this process to prevent and treat numerous disorders. However, most existing anti-angiogenic treatments rely on synthetic compounds and humanized monoclonal antibodies, often expensive or toxic, restricting patient access to these therapies. Hence, the pursuit of discovering new, affordable, less toxic, and efficient anti-angiogenic compounds is imperative. Numerous studies propose that natural plant-derived products exhibit these sought-after characteristics. The objective of this review is to delve into the anti-angiogenic properties exhibited by naturally derived flavonoids from plants, along with their underlying molecular mechanisms of action. Additionally, we summarize the structure, classification, and the relationship between flavonoids with their signaling pathways in plants as anti-angiogenic agents, including main HIF-1α/VEGF/VEGFR2/PI3K/AKT, Wnt/ß-catenin, JNK1/STAT3, and MAPK/AP-1 pathways. Nonetheless, further research and innovative approaches are required to enhance their bioavailability for clinical application.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Fosfatidilinositol 3-Quinases , Imunoterapia , Neoplasias/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico
16.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611962

RESUMO

Phytocompounds have been evaluated for their anti-glioblastoma actions for decades, with promising results from preclinical studies but only limited translation into clinics. Indeed, by targeting multiple signaling pathways deregulated in cancer, they often show high efficacy in the in vitro studies, but their poor bioavailability, low tumor accumulation, and rapid clearance compromise their efficacy in vivo. Here, we present the new avenues in phytocompound research for the improvement of glioblastoma therapy, including the ways to enhance the response to temozolomide using phytochemicals, the current focus on phytocompound-based immunotherapy, or the use of phytocompounds as photosensitizers in photodynamic therapy. Moreover, we present new, intensively evaluated approaches, such as chemical modifications of phytochemicals or encapsulation into numerous types of nanoformulations, to improve their bioavailability and delivery to the brain. Finally, we present the clinical trials evaluating the role of phytocompounds or phytocompound-derived drugs in glioblastoma therapy and the less studied phytocompounds or plant extracts that have only recently been found to possess promising anti-glioblastoma properties. Overall, recent advancements in phytocompound research are encouraging; however, only with more 3D glioblastoma models, in vivo studies, and clinical trials it is possible to upgrade the role of phytocompounds in glioblastoma treatment to a satisfactory level.


Assuntos
Glioblastoma , Fotoquimioterapia , Humanos , Glioblastoma/tratamento farmacológico , Encéfalo , Temozolomida , Imunoterapia
17.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612436

RESUMO

Intratumoral immune cytolytic activity (CYT), calculated as the geometric mean of granzyme-A (GZMA) and perforin-1 (PRF1) expression, has emerged as a critical factor in cancer immunotherapy, with significant implications for patient prognosis and treatment outcomes. Immune checkpoint pathways, the composition of the tumor microenvironment (TME), antigen presentation, and metabolic pathways regulate CYT. Here, we describe the various methods with which we can assess CYT. The detection and analysis of tumor-infiltrating lymphocytes (TILs) using flow cytometry or immunohistochemistry provide important information about immune cell populations within the TME. Gene expression profiling and spatial analysis techniques, such as multiplex immunofluorescence and imaging mass cytometry allow the study of CYT in the context of the TME. We discuss the significant clinical implications that CYT has, as its increased levels are associated with positive clinical outcomes and a favorable prognosis. Moreover, CYT can be used as a prognostic biomarker and aid in patient stratification. Altering CYT through the different methods targeting it, offers promising paths for improving treatment responses. Overall, understanding and modulating CYT is critical for improving cancer immunotherapy. Research into CYT and the factors that influence it has the potential to transform cancer treatment and improve patient outcomes.


Assuntos
Apresentação de Antígeno , Imunoterapia , Humanos , Citotoxicidade Imunológica , Citometria de Fluxo , Perfilação da Expressão Gênica
18.
J Cell Mol Med ; 28(8): e18284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597415

RESUMO

Lung adenocarcinoma (LUAD) is a prevalent subtype of lung cancer, yet the contribution of purine metabolism (PM) to its pathogenesis remains poorly elucidated. PM, a critical component of intracellular nucleotide synthesis and energy metabolism, is hypothesized to exert a significant influence on LUAD development. Herein, we employed single-cell analysis to investigate the role of PM within the tumour microenvironment (TME) of LUAD. PM scoring (PMS) across distinct cell types was determined using AUCell, UCell, singscore and AddModuleScore algorithms. Subsequently, we explored communication networks among cells within high- and low-PMS groups, establishing a robust PM-associated signature (PAS) utilizing a comprehensive dataset comprising LUAD samples from TCGA and five GEO datasets. Our findings revealed that the high-PMS group exhibited intensified cell interactions, while the PAS, constructed using PM-related genes, demonstrated precise prognostic predictive capability. Notably, analysis across the TCGA dataset and five GEO datasets indicated that low-PAS patients exhibited a superior prognosis. Furthermore, the low-PAS group displayed increased immune cell infiltration and elevated CD8A expression, coupled with reduced PD-L1 expression. Moreover, data from eight publicly available immunotherapy cohorts suggested enhanced immunotherapy outcomes in the low-PAS group. These results underscore a close association between PAS and tumour immunity, offering predictive insights into genomic alterations, chemotherapy drug sensitivity and immunotherapy responses in LUAD. The newly established PAS holds promise as a valuable tool for selecting LUAD populations likely to benefit from future clinical stratification efforts.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Análise de Célula Única , Imunoterapia , Purinas , Microambiente Tumoral/genética
19.
Proc Natl Acad Sci U S A ; 121(16): e2315541121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598341

RESUMO

Ferroptosis is an iron-dependent type of regulated cell death resulting from extensive lipid peroxidation and plays a critical role in various physiological and pathological processes. However, the regulatory mechanisms for ferroptosis sensitivity remain incompletely understood. Here, we report that homozygous deletion of Usp8 (ubiquitin-specific protease 8) in intestinal epithelial cells (IECs) leads to architectural changes in the colonic epithelium and shortens mouse lifespan accompanied by increased IEC death and signs of lipid peroxidation. However, mice with heterozygous deletion of Usp8 in IECs display normal phenotype and become resistant to azoxymethane/dextran sodium sulfate-induced colorectal tumorigenesis. Mechanistically, USP8 interacts with and deubiquitinates glutathione peroxidase 4 (GPX4), leading to GPX4 stabilization. Thus, USP8 inhibition destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro. Notably, USP8 inhibition in combination with ferroptosis inducers retards tumor growth and enhances CD8+ T cell infiltration, which potentiates tumor response to anti-PD-1 immunotherapy in vivo. These findings uncover that USP8 counteracts ferroptosis by stabilizing GPX4 and highlight targeting USP8 as a potential therapeutic strategy to boost ferroptosis for enhancing cancer immunotherapy.


Assuntos
Ferroptose , Neoplasias , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferroptose/genética , Homozigoto , Deleção de Sequência , Peroxidação de Lipídeos , Homeostase , Neoplasias/genética , Neoplasias/terapia , Imunoterapia
20.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604813

RESUMO

BACKGROUND: Despite recent advances in immunotherapy, a substantial population of late-stage melanoma patients still fail to achieve sustained clinical benefit. Lack of translational preclinical models continues to be a major challenge in the field of immunotherapy; thus, more optimized translational models could strongly influence clinical trial development. To address this unmet need, we designed a preclinical model reflecting the heterogeneity in melanoma patients' clinical responses that can be used to evaluate novel immunotherapies and synergistic combinatorial treatment strategies. Using our all-autologous humanized melanoma mouse model, we examined the efficacy of a novel engineered interleukin 2 (IL-2)-based cytokine variant immunotherapy. METHODS: To study immune responses and antitumor efficacy for human melanoma tumors, we developed an all-autologous humanized melanoma mouse model using clinically annotated, matched patient tumor cells and peripheral blood mononuclear cells (PBMCs). After inoculating immunodeficient NSG mice with patient tumors and an adoptive cell transfer of autologous PBMCs, mice were treated with anti-PD-1, a novel investigational engineered IL-2-based cytokine (nemvaleukin), or recombinant human IL-2 (rhIL-2). The pharmacodynamic effects and antitumor efficacy of these treatments were then evaluated. We used tumor cells and autologous PBMCs from patients with varying immunotherapy responses to both model the diversity of immunotherapy efficacy observed in the clinical setting and to recapitulate the heterogeneous nature of melanoma. RESULTS: Our model exhibited long-term survival of engrafted human PBMCs without developing graft-versus-host disease. Administration of an anti-PD-1 or nemvaleukin elicited antitumor responses in our model that were patient-specific and were found to parallel clinical responsiveness to checkpoint inhibitors. An evaluation of nemvaleukin-treated mice demonstrated increased tumor-infiltrating CD4+ and CD8+ T cells, preferential expansion of non-regulatory T cell subsets in the spleen, and significant delays in tumor growth compared with vehicle-treated controls or mice treated with rhIL-2. CONCLUSIONS: Our model reproduces differential effects of immunotherapy in melanoma patients, capturing the inherent heterogeneity in clinical responses. Taken together, these data demonstrate our model's translatability for novel immunotherapies in melanoma patients. The data are also supportive for the continued clinical investigation of nemvaleukin as a novel immunotherapeutic for the treatment of melanoma.


Assuntos
Melanoma , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Leucócitos Mononucleares/patologia , Citocinas , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...