Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.845
Filtrar
1.
J Control Release ; 368: 676-690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458572

RESUMO

Barrier membranes play a pivotal role in the success of guided periodontal tissue regeneration. The biodegradable barriers predominantly used in clinical practice often lack sufficient barrier strength, antibacterial properties, and bioactivity, frequently leading to suboptimal regeneration outcomes. Although with advantages in mechanical strength, biodegradability and plasticity, bioinert aliphatic polyesters as barrier materials are usually polymerized via toxic catalysts, hard to be functionalized and lack of antibacterial properties. To address these challenges, we propose a new concept that controlled release of bioactive substance on the whole degradation course can give a bioinert aliphatic polyester bioactivity. Thus, a Zn-based catalytic system for polycondensation of dicarboxylic acids and diols is created to prepare zinc covalent hybrid polyester (PBS/ZnO). The atomically-dispersed Zn2+ ions entering main chain of polyester molecules endow PBS/ZnO barrier with antibacterial properties, barrier strength, excellent biocompatibility and histocompatibility. Further studies reveal that relying on long-term controlled release of Zn2+ ions, the PBS/ZnO membrane greatly expedites osteogenetic effect in guided tissue regeneration (GTR) by enhancing the mitochondrial function of macrophages to induce M2 polarization. These findings show a novel preparation strategy of bioactive polyester biomaterials based on long term controlled release of bioactive substance that integrates catalysis, material structures and function customization.


Assuntos
Regeneração Tecidual Guiada , Óxido de Zinco , Zinco , Poliésteres/química , Preparações de Ação Retardada , Antibacterianos/farmacologia , Antibacterianos/química , Íons , Regeneração Óssea
2.
Dent Mater ; 40(4): 728-738, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401993

RESUMO

OBJECTIVES: Guided Tissue Regeneration (GTR) is a popular clinical procedure for periodontal tissue regeneration. However, its key component, the barrier membrane, is largely collagen-based and is still quite expensive, posing a financial burden to the patients as well as healthcare systems and negatively impacting the patient's decision-making. Thus, our aim is to prepare a novel biomimetic GTR membrane utilizing a natural biomaterial, soluble eggshell membrane protein (SEP), which is economical as it comes from an abundant industrial waste from food and poultry industries, unlike collagen. Additive polymer, poly (lactic-co-glycolic acid) (PLGA), and a bioceramic, nano-hydroxyapatite (HAp), were added to improve its mechanical and biological properties. METHODS: For this barrier membrane preparation, we initially screened the significant factors affecting its mechanical properties using Taguchi orthogonal array design and further optimized the significant factors using response surface methodology. Furthermore, this membrane was characterized using SEM, EDAX, and ATR-FTIR, and tested for proliferation activity of human periodontal ligament fibroblasts (HPLFs). RESULTS: Optimization using response surface methodology predicted that the maximal tensile strength of 3.1 MPa and modulus of 39.9 MPa could be obtained at membrane composition of 8.9 wt% PLGA, 7.2 wt% of SEP, and 2 wt% HAp. Optimized PLGA/SEP/HAp membrane specimens that were electrospun on a static collector showed higher proliferation activity of HPLFs compared to tissue culture polystyrene and a commercial collagen membrane. SIGNIFICANCE: From the results observed, we can conclude that SEP-based nanofibrous GTR membrane could be a promising, environment-friendly, and cost-effective alternative for commercial collagen-based GTR membrane products.


Assuntos
Materiais Biocompatíveis , Regeneração Tecidual Guiada , Animais , Humanos , Materiais Biocompatíveis/farmacologia , Casca de Ovo , Teste de Materiais , Colágeno , Durapatita
3.
AAPS PharmSciTech ; 25(1): 27, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291317

RESUMO

Antibiotic administration is an adjacent therapy to guided tissue regeneration (GTR) in the management of periodontitis. This is due to the major role of pathogen biofilm in aggravating periodontal defects. This study aimed to fabricate a GTR membrane for sustained delivery of doxycycline hydrochloride (DOX) while having a space-maintaining function. The membranes were prepared using a polymeric blend of polycaprolactone/polyvinyl alcohol/chitosan by the electrospinning technique. The obtained membranes were characterized in terms of physicochemical and biological properties. Nanofibers showed a mean diameter in the submicron range of < 450 nm while having uniform randomly aligned morphology. The obtained membranes showed high strength and flexibility. A prolonged in vitro release profile during 68 h was observed for manufactured formulations. The prepared membranes showed a cell viability of > 70% at different DOX concentrations. The formulations possessed antimicrobial efficacy against common pathogens responsible for periodontitis. In vivo evaluation also showed prolonged release of DOX for 14 days. The histopathological evaluation confirmed the biocompatibility of the GTR membrane. In conclusion, the developed nanofibrous DOX-loaded GTR membranes may have beneficial characteristics in favour of both sustained antibiotic delivery and periodontal regeneration by space-maintaining function without causing any irritation and tissue damage.


Assuntos
Regeneração Tecidual Guiada , Nanofibras , Periodontite , Ratos , Animais , Doxiciclina/química , Nanofibras/química , Antibacterianos/química , Regeneração Tecidual Guiada/métodos , Periodontite/tratamento farmacológico
4.
Biomed Phys Eng Express ; 10(3)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38224615

RESUMO

Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.


Assuntos
Regeneração Tecidual Guiada , Membranas Artificiais , Regeneração Tecidual Guiada/métodos , Materiais Biocompatíveis , Osso e Ossos , Regeneração Óssea
5.
J Dent ; 141: 104735, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37804939

RESUMO

OBJECTIVE: To compare the outcomes of open healing to complete closure for collagen membrane coverage for immediate implant placements with simultaneous guided bone regeneration (GBR) in two retrospective cohorts. METHODS: The subjects included 118 patients who received Bio-Gide® collagen membrane coverage for immediate implant placements and GBR in 20 anterior and 98 posterior teeth. For 58 patients, gingival flaps were released to achieve full coverage of collagen membrane (CC group). For 60 patients, no efforts were made to release the gingival flaps and collagen membrane was left exposed for open healing (OH group). Antibiotics and analgesics were prescribed for 7 days after surgery. The width of crestal open wounds were measured after surgery (W0), and at 1, 2 and 16 weeks (W16). Changes in bone mass were assessed by cone-beam computed tomography after implant placement and again at W16. Gingival and bone tissues over the implant cover screws were harvested and assessed for 16 patients in the OH group at W16. RESULTS: No wound dehiscence occurred in the CC group from W0 to W16. Both the vertical and horizontal bone dimension changes were not significantly different between the OH and CC group. For the OH group, soft tissue was completely healed at W16 when the initial wound widths were ≤6 mm. For those with initial wound widths ≥ 7 mm, the cover screws were exposed in 5/16 patients at W16 but did not affect the final restorations. Tissue staining showed keratinized mucosa and new bone formation above the dental implant in the OH group. CONCLUSION: Open healing achieved healing outcomes similar to those of complete closure for collagen membrane coverage following immediate implant placements. CLINICAL SIGNIFICANCE: For immediate implant placement requiring bone grafting and collagen membrane coverage, it is unnecessary to release the gingival flaps or use tissue grafts to achieve full coverage of the crestal wounds. Open healing with exposed membrane could achieve similar outcomes with less pain and swelling.


Assuntos
Implantes Dentários , Regeneração Tecidual Guiada , Humanos , Implantação Dentária Endóssea/métodos , Estudos Retrospectivos , Colágeno/uso terapêutico , Regeneração Tecidual Guiada/métodos , Regeneração Óssea
6.
J Mech Behav Biomed Mater ; 149: 106230, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976993

RESUMO

OBJECTIVES: Guided bone regeneration (GBR) is a well-established method for repairing hard tissue deficiency in reconstructive dentistry. The aim of this study was to investigate the barrier function, osteogenic activity and immunomodulatory ability of a novel bi-layered asymmetric membrane loaded with demineralized dentin matrix (DDM). METHODS: DDM particles were harvested from healthy, caries-free permanent teeth. Electrospinning technique was utilized to prepare bi-layered DDM-loaded poly(lactic-co-glycolic acid) (PLGA)/poly(lactic acid) (PLA) membranes (abbreviated as DPP bilayer membranes). We analyzed the membranes' surface properties, cytocompatibility and barrier function, and evaluated their osteogenic activity in vitro. In addition, its effects on the osteogenic immune microenvironment were also investigated. RESULTS: Synthetic DPP bilayer membranes presented suitable surface characteristics and satisfactory cytocompatibility. Transwell assays showed significant fewer migrated cells by the DPP bilayer membranes compared with blank control, with or without in vitro degradation (all P < 0.001). In vitro experiments indicated that our product elevated messenger ribonucleic acid (mRNA) expression levels of osteogenic genes alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) and runt-related transcription factor 2 (Runx2). Among all groups, 20% DPP bilayer membrane displayed highest ALP activity (P < 0.001). Furthermore, DPP bilayer membranes enhanced the mRNA expression of M2 macrophage markers and increased the proportion of CD206+ M2 macrophages by 100% (20% DPP: P < 0.001; 30% DPP: P < 0.001; 40% DPP: P < 0.05), thus exerting an inflammation suppressive effect. CONCLUSIONS: DPP bilayer membranes exhibited notable biological safety and osteogenic activity in vitro, and have potential as a prospective candidate for GBR approach in the future.


Assuntos
Regeneração Óssea , Regeneração Tecidual Guiada , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Osteogênese , RNA Mensageiro
7.
Molecules ; 28(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005397

RESUMO

Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction.


Assuntos
Regeneração Tecidual Guiada , Nanofibras , Nervo Isquiático , Nanofibras/química , Regeneração Tecidual Guiada/métodos , Colágeno/farmacologia , Tecidos Suporte/química , Regeneração Nervosa
8.
J Appl Biomater Funct Mater ; 21: 22808000231211416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37978859

RESUMO

BACKGROUND: Polycaprolactone (PCL) is a highly recognized synthetic polymer for its biocompatibility, ease of fabrication and mechanical strength in bone tissue engineering. Its applications have extended broadly, including regeneration of oral and maxillofacial lost tissues. Its usefulness has brought attention of researchers to regenerate periodontal lost tissues, including alveolar bone, periodontal ligament and cementum. The aim of this systematic review was to obtain an updated analysis of the contribution of PCL-based scaffolds in the alveolar bone regeneration process. METHODS: This review adheres to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic reviews. A computerized search of the PubMed, EBSCO, Scielo and Web of Science databases was performed, restricting literature search to published studies in English or Spanish between January 2002 and March 2023. Database search returned 248 studies which were screened based on title, author names and publication dates. RESULTS: Data from 17 studies were reviewed and tabulated. All studies combined PCL with other biomaterials (such as Alginate, hydroxyapatite, bioactive glass, poly (lactic-co-glycolic acid)), growth factors (BMP-2, rhCEMP1), and/or mesenchymal stromal cells (adipose-derived, bone marrow, periodontal ligament or gingiva mesenchymal stromal cells). PCL scaffolds showed higher cell viability and osteoinductive potential when combined with bioactive agents. Complementary, its degradation rates were affected by the addition or exposure to specific substances, such as: Dopamine, Cerium Oxide, PLGA and hydrogen peroxide. CONCLUSIONS: PCL is an effective biomaterial for alveolar bone regeneration in periodontally affected teeth. It could be part of a new generation of biomaterials with improved regenerative potential.


Assuntos
Regeneração Tecidual Guiada , Tecidos Suporte , Materiais Biocompatíveis , Regeneração Óssea , Engenharia Tecidual
9.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4057-4074, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877390

RESUMO

Artificial nerve guidance conduits (NGCs) are synthetic nerve grafts that are capable of providing the structural and nutritional support for nerve regeneration. The ideal NGCs have plenty of requirements on biocompatibility, mechanical strength, topological structure, and conductivity. Therefore, it is necessary to continuously improve the design of NGCs and establish a better therapeutic strategy for peripheral nerve injury in order to meet clinical needs. Although current NGCs have made certain process in the treatment of peripheral nerve injury, their nerve regeneration and functional outcomes on repairing long-distance nerve injury remain unsatisfactory. Herein, we review the nerve conduit design from four aspects, namely raw material selection, structural design, therapeutic factor loading and self-powered component integration. Moreover, we summarize the research progress of NGCs in the treatment of peripheral nerve injury, in order to facilitate the iterative updating and clinical transformation of NGCs.


Assuntos
Regeneração Tecidual Guiada , Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/terapia , Regeneração Nervosa/fisiologia , Nervo Isquiático
10.
Carbohydr Polym ; 320: 121232, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659796

RESUMO

Dynamic tracking of cell migration during tissue regeneration remains challenging owing to imaging techniques that require sophisticated devices, are often lethal to healthy tissues. Herein, we developed a 3D printable non-invasive polymeric hydrogel based on 2,2,6,6-(tetramethylpiperidin-1-yl) oxyl (TEMPO)-oxidized nanocellulose (T-CNCs) and carbon dots (CDs) for the dynamic tracking of cells. The as-prepared T-CNC@CDs were used to fabricate a liquid bio-resin containing gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (GPCD) for digital light processing (DLP) bioprinting. The shear-thinning properties of the GPCD bio-resin were further improved by the addition of T-CNC@CDs, allowing high-resolution 3D printing and bioprinting of human cells with higher cytocompatibility (viability ∼95 %). The elastic modulus of the printed GPCD hydrogel was found to be ∼13 ± 4.2 kPa, which is ideal for soft tissue engineering. The as-fabricated hydrogel scaffold exhibited tunable structural color property owing to the addition of T-CNC@CDs. Owing to the unique fluorescent property of T-CNC@CDs, the human skin cells could be tracked within the GPCD hydrogel up to 30 days post-printing. Therefore, we anticipate that GPCD bio-resin can be used for 3D bioprinting with high structural stability, dynamic tractability, and tunable mechanical stiffness for image-guided tissue regeneration.


Assuntos
Bioimpressão , Regeneração Tecidual Guiada , Humanos , Engenharia Tecidual , Glicóis , Carbono , Cinacalcete , Corantes , Hidrogéis
11.
BMJ Case Rep ; 16(9)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758663

RESUMO

The present case describes the successful healing of a periapical lesion associated with the left maxillary lateral incisor (# 22, Federation Dentaire Internationale) having a type 3b dens invaginatus tooth morphology. The treatment was complicated by the presence of blunderbuss root apex and large periapical lesion (>10 mm) with through and through bone defect (Bucco palatal cortical bone perforation, Von Arx Type 1b). An adolescent boy reported palatal swelling and pus discharge in relation to tooth #22. A thorough clinical and radiographic examination revealed tooth #22 as having a type 3b dens invaginatus with an open apex and a diagnosis of pulp necrosis and acute apical abscess. The case was managed by non-surgical root canal treatment followed by endodontic surgery using principles of guided tissue regeneration. A 5-year recall revealed an asymptomatic functional tooth with complete healing.


Assuntos
Dens in Dente , Regeneração Tecidual Guiada , Abscesso Periapical , Masculino , Adolescente , Humanos , Dens in Dente/complicações , Dens in Dente/diagnóstico por imagem , Dens in Dente/cirurgia , Tratamento do Canal Radicular , Abscesso Periapical/complicações , Incisivo/cirurgia
12.
Int J Biol Macromol ; 253(Pt 4): 126960, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37741482

RESUMO

Periodontal defect seriously affects people's life health and quality. Guided tissue regeneration (GTR) and guided bone regeneration (GBR) have made great progress in periodontal disease treatment, but some deficiencies existed in commercial materials of GTR and GBR. For obtaining better therapeutic effects, multifunctional composite scaffolds containing different biological macromolecules were developed in this study. Chitosan/poly (γ-glutamic acid)/nano-hydroxyapatite hydrogels (CP/nHA) made by electrostatic interactions and lyophilization were filled in the bone defects to achieve osteogenesis. Platelet-rich fibrin (PRF) extracted from blood could accelerate bone formation by releasing various bioactive substances as middle layer of composite scaffolds. Polycaprolactone/gelatin nanofibers (PG) prepared by electrospinning were attached to the junction of soft and hard tissue, which could prevent fibrous tissue from infiltrating into bone defects. The composite scaffolds showed good morphology, biocompatibility, cell barriers and osteogenic differentiation in vitro. The excellent ability of bone formation was verified by implantation of triple-layered composite scaffolds into alveolar bone defects in rabbit in vivo. The hierarchical structure was conducive to personalized customization to meet the needs of different defects. All in all, the multifunctional scaffolds could play important roles of GTR and GBR in alveolar bone regeneration and provide good application prospect for bone repair in clinic.


Assuntos
Regeneração Tecidual Guiada , Nanofibras , Fibrina Rica em Plaquetas , Animais , Humanos , Coelhos , Osteogênese , Nanofibras/química , Hidrogéis/farmacologia , Regeneração Óssea , Tecidos Suporte/química , Engenharia Tecidual/métodos
13.
Biopolymers ; 114(10): e23562, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421643

RESUMO

Polymeric barrier membranes are used in periodontal applications to prevent fibroblastic cell migration into the cavities of bone tissue and to properly guide the proliferation of tissues. In this study, the fabrication, characterization, bioactivity, and in vitro biological properties of polyvinyl alcohol-based nanofibrous membranes containing nano-sized 45S5 bioactive glass (BG) loaded with chlorhexidine (CH) gluconate with biocompatible, bioactive, and antibacterial properties for using as dental barrier membranes were investigated. Nanofibrous membranes with an average fiber diameter, pore size, and porosity of 210 nm, 24.73 µm, and 12.42%, respectively, were loaded with 1% and 2% CH, and the release profile was investigated. The presence of BG in the membranes promoted fibroblastic proliferation and the presence of CH provided antibacterial properties. Nanofibrous membranes exhibit a high ability to restrict bacterial growth while fulfilling the necessary conditions for use as a dental barrier thanks to their low swelling rates, significant surface bioactivities, and appropriate degradation levels.


Assuntos
Regeneração Tecidual Guiada , Nanofibras , Álcool de Polivinil/farmacologia , Clorexidina/farmacologia , Regeneração Óssea , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia
14.
Braz Dent J ; 34(3): 57-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466526

RESUMO

The current literature on guided bone regeneration (GBR) and guided tissue regeneration (GTR) membrane contamination reports that the physicochemical characteristics of these biomaterials might influence affinity to bacteria, which appears to be a major drawback for the clinical outcome of the regenerative procedures. Thus, this study aimed to evaluate, in vitro, a multispecies biofilm adherence and passage of bacteria through different types of commercially available membranes for GTR/GBR. Four types of membranes were tested (n=12): LC) Lumina Coat®; JS) Jason®; BG) Biogide®; and LP) Lumina PTFE®. Aluminum foil (AL) simulated an impermeable barrier and was used as the control. The membranes were adapted to specific apparatus and challenged with a mixed bacterial culture composed of A. actinomycetemcomitans b, S. mutans, S. mitis, and A. israelii. After 2 h or 7 days, bacterial adhesion and passage of bacteria were evaluated through CFU counting, which was analyzed by two-way ANOVA e post hoc Tukey, at a 5% significance level. Representative areas of two membranes of each group were analyzed through scanning electron microscopy (SEM) to assess the morphology and organization of the biofilm over the membrane fibers. LC and LP presented similar values of adhered bacterial cells (p > 0.05), significantly inferior when compared to the other groups, in both time points (p < 0.05). All the tested groups were permeable to bacterial cells, with no significant difference between the trial period of 2 h and 7 days (p > 0.05). SEM analyses demonstrated that adhered bacteria number increased throughout the time points (2 h < 7 days). Commercially available biological membranes demonstrated intense bacterial adherence and passage of bacteria, which increased throughout the trial period.


Assuntos
Regeneração Tecidual Guiada , Bactérias , Aderência Bacteriana , Materiais Biocompatíveis , Biofilmes , Membranas Artificiais , Regeneração Tecidual Guiada Periodontal/métodos
15.
Clin Oral Implants Res ; 34(9): 892-910, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37382408

RESUMO

OBJECTIVE: To evaluate the efficacy of reconstructive peri-implantitis treatment. MATERIALS AND METHODS: Forty participants, with peri-implantitis and a contained intraosseous defect, were randomized to access flap (control) or access flap with xenograft and collagen membrane (test). All received systemic antimicrobials. Blinded examiners recorded probing depths (PD), bleeding and suppuration on probing (BOP & SOP), soft tissue levels, and marginal bone levels (MBL) at baseline and 12 months. Patient reported outcomes were recorded. The primary outcome was PD change. RESULTS: All 40 participants (40 implants) completed the 12-month study. The mean (standard deviation) PD reduction (deepest site) was 4.2 (1.8) mm in the control and 3.7 (1.9) mm in the test group. MBL gain (deepest site) was 1.7 (1.6) mm in the control and 2.4 (1.4) mm in the test group. Absence of BOP & SOP was observed at 60% of both control and test implants. Buccal recession was 0.9 (1.6) mm in the control and 0.4 (1.1) mm in the test group. A successful outcome (absence of PD ≥ 5 mm with BOP, absence of SOP and absence of progressive bone loss) was achieved for 90% of the control and 85% of test group implants. No statistically significant differences in clinical or radiographic parameters were found between treatment groups. 30% of participants experienced mild gastro-intestinal disturbances. Reporting followed CONSORT guidelines. CONCLUSION: Similar clinical and radiographic improvements at 12 months were observed with high levels of patient satisfaction for both the access flap and xenograft covered by collagen membrane groups. Registered clinical trials.gov. ID:NCT03163602 (23/05/2017).


Assuntos
Implantação Dentária , Regeneração Tecidual Guiada , Peri-Implantite , Humanos , Regeneração Óssea , Colágeno/uso terapêutico , Implantes Dentários/efeitos adversos , Peri-Implantite/terapia , Resultado do Tratamento , Implantação Dentária/efeitos adversos
16.
ACS Biomater Sci Eng ; 9(6): 3512-3521, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37126860

RESUMO

This study aimed to investigate the effect of electrical stimulation on poly(d,l-lactide-co-ε-caprolactone) nerve guidance conduits (NGCs) in promoting the recovery of facial function and nerve regeneration after facial nerve (FN) injury in a rat model. In the experimental group, both the NGC and transcutaneous electrical nerve stimulation (ES) were used simultaneously; in the control group, only NGC was used. ES groups were divided into two groups, and direct current (DC) and charge-balanced pulse stimulation (Pulse) were applied. The ES groups showed significantly improved whisker movement than the NGC-only group. The number of myelinated neurons was higher in ES groups, and the myelin sheath was also thicker and more uniform. In addition, the expression of neurostructural proteins was also higher in ES groups than in the NGC-only group. This study revealed that FN regeneration and functional recovery occurred more efficiently when ES was applied in combination with NGCs.


Assuntos
Nervo Facial , Regeneração Tecidual Guiada , Ratos , Animais , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Nervo Isquiático/cirurgia , Regeneração Nervosa/fisiologia , Estimulação Elétrica
17.
ACS Biomater Sci Eng ; 9(6): 3496-3511, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37159418

RESUMO

Nerve guide conduits (NGCs) have been shown to be less efficient than nerve autografts in peripheral nerve regeneration. To address this issue, we developed for the first time a novel tissue-engineered nerve guide conduit structure encapsulated with human endometrial stem cell (EnSC) derived exosomes, which promoted nerve regeneration in rat sciatic nerve defects. In this study, we initially indicated the long-term efficacy and safety impacts of newly designed double layered SF/PLLA nerve guide conduits. Then the regeneration effects of SF/PLLA nerve guide conduits containing exosomes derived from human EnSCs were evaluated in rat sciatic nerve defects. The human EnSC derived exosomes were isolated from the supernatant of human EnSC cultures and characterized. Subsequently, the human EnSC derived exosomes were encapsulated in constructed NGCs by fibrin gel. For in vivo studies, entire 10 mm peripheral nerve defects were generated in rat sciatic nerves and restored with NGC encapsulated with human EnSC derived exosomes (Exo-NGC group), nerve guide conduits, and autografts. The efficiency of the NGCs encapsulated with human EnSCs derived exosomes in assisting peripheral nerve regeneration was investigated and compared with other groups. The in vivo results demonstrated that encapsulated human EnSC derived exosomes in NGC (Exo-NGC) significantly benefitted nerve regeneration based on motor function, sensory reaction, and electrophysiological results. Furthermore, immunohistochemistry with histopathology results showed the formation of regenerated nerve fibers, along with blood vessels that newly were developed, as a result of the exosome functions in the Exo-NGC group. These outcomes illustrated that the newly designed core-shell SF/PLLA nerve guide conduit encapsulated with human EnSC derived exosomes enhanced the regeneration process of axons and improved the functional recovery of rat sciatic nerve defects. So, encapsulated human EnSC-derived exosomes in a core-shell SF/PLLA nerve guide conduit are a potential therapeutic cell-free treatment for peripheral nerve defects.


Assuntos
Exossomos , Fibroínas , Regeneração Tecidual Guiada , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Regeneração Tecidual Guiada/métodos , Nervo Isquiático/patologia , Nervo Isquiático/fisiologia , Tecidos Suporte/química , Regeneração Nervosa/fisiologia
18.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047808

RESUMO

Barrier membranes are an essential tool in guided bone Regeneration (GBR), which have been widely presumed to have a bioactive effect that is beyond their occluding and space maintenance functionalities. A standardized calvaria implantation model was applied for 2, 8, and 16 weeks on Wistar rats to test the interactions between the barrier membrane and the underlying bone defects which were filled with bovine bone substitute materials (BSM). In an effort to understand the barrier membrane's bioactivity, deeper histochemical analyses, as well as the immunohistochemical detection of macrophage subtypes (M1/M2) and vascular endothelial cells, were conducted and combined with histomorphometric and statistical approaches. The native collagen-based membrane was found to have ossified due to its potentially osteoconductive and osteogenic properties, forming a "bony shield" overlying the bone defects. Histomorphometrical evaluation revealed the resorption of the membranes and their substitution with bone matrix. The numbers of both M1- and M2-macrophages were significantly higher within the membrane compartments compared to the underlying bone defects. Thereby, M2-macrophages significantly dominated the tissue reaction within the membrane compartments. Statistically, a correlation between M2-macropahges and bone regeneration was only found at 2 weeks post implantationem, while the pro-inflammatory limb of the immune response correlated with the two processes at 8 weeks. Altogether, this study elaborates on the increasingly described correlations between barrier membranes and the underlying bone regeneration, which sheds a light on the understanding of the immunomodulatory features of biomaterials.


Assuntos
Regeneração Tecidual Guiada , Osteogênese , Ratos , Animais , Bovinos , Células Endoteliais , Ratos Wistar , Colágeno/química , Regeneração Óssea , Materiais Biocompatíveis/química , Membranas Artificiais
19.
Biomed Mater ; 18(3)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37001532

RESUMO

Guided bone/tissue regeneration (GBR/GTR) is commonly used in dental treatment. The desired bone/tissue regeneration is achieved by placing a barrier membrane over the defect to avoid the downward growth of faster-growing connective and epithelial tissue into the defect. This review aimed to evaluate osteogenic properties, degradation characteristics, and postoperative complications of eight biodegradable membranes in animal experiments, including non-crosslinked collagen membrane (NCCM), crosslinked collagen membrane (CCM), silk membrane (SM), polylactic-co-glycolic acid, polylactic acid, polyethylene glycol hydrogel, polycaprolactone (PCL), and magnesium alloys. Seven electronic databases (PubMed, Embase, Web of Science, Cochrane Library, Science Direct, Wiley, Scopus and Google Scholar) were screened. Study selection, data extraction and quality assessment were made in duplicate. The SYRCLE assessment tool, CERQual (Confidence in the Evidence from Reviews of Qualitative Research) tool and GRADE tool were used to grade the risk of bias and level of evidence. A total of 2512 articles were found in the electronic database. Finally, 94 articles were selected, of which 53 were meta-analyzed. Surface under the cumulative ranking curve showed the best results for new bone formation in the magnesium barrier membrane group, followed by SM, PCL, NCCM, and CCM. Qualitative analysis showed good biocompatibility for natural polymer membranes and a longer degradation time for synthetic polymer membranes. In addition, 34 studies all showed high bias risks, while other studies had unclear bias risks. Natural polymer membranes were more effective for bone regeneration and magnesium alloys were proved to be promising barrier materials that warrant future research.


Assuntos
Regeneração Tecidual Guiada , Magnésio , Animais , Regeneração Óssea , Colágeno , Membranas Artificiais , Metanálise em Rede , Polímeros
20.
J Mater Chem B ; 11(10): 2115-2128, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36779440

RESUMO

Decellularized extracellular matrix (dECM) nerve guide conduits (NGCs) are a promising strategy to replace autogenous nerve grafting for the treatment of peripheral nerve system (PNS) injury. However, dECM conduits with mechanical properties that match those of peripheral nerves are yet to be well developed. Herein, we developed polyurethane-based NGCs incorporating decellularized spinal cord (BWPU-DSC NGCs) to repair peripheral nerves. BWPU-DSC NGCs have an inner three-dimensional micro-nanostructure. The mechanical properties of BWPU-DSC NGCs were similar to those of polyurethane NGCs, which were proven to promote peripheral nerve regeneration. An in vitro study indicated that BWPU-DSC NGCs could boost the proliferation and growth of cell processes in Schwann and neuron-like cells. In a rat sciatic nerve transected injury model, BWPU-DSC NGCs exhibited a dramatic increase in nerve repair, similar to that obtained by the current gold standard autograft implantation at only 6 weeks post-implantation, whereas polyurethane NGCs still displayed incomplete nerve repair. Histological analysis revealed that BWPU-DSC NGCs could induce the reprogramming of Schwann cells to promote axon regeneration and remyelination. Moreover, reprogrammed Schwann cells together with BWPU-DSC NGCs had anti-inflammatory effects and altered the activation state of macrophages to M2 phenotypes to enhance PNS regeneration. In this study, we provided a strategy to prepare polyurethane-based dECM NGCs enriched with bioactive molecules to promote PNS regeneration.


Assuntos
Regeneração Tecidual Guiada , Traumatismos dos Nervos Periféricos , Ratos , Animais , Axônios , Poliuretanos/farmacologia , Regeneração Tecidual Guiada/métodos , Regeneração Nervosa , Reprogramação Celular , Nervos Periféricos , Células de Schwann , Traumatismos dos Nervos Periféricos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...