Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.295
Filtrar
1.
BMC Genomics ; 25(1): 371, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627676

RESUMO

BACKGROUND: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.


Assuntos
Exoma , Inativação do Cromossomo X , Adulto , Humanos , Feminino , Transcriptoma , Sequenciamento do Exoma , Cromossomos Humanos X/genética
3.
Eur J Med Res ; 29(1): 231, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609993

RESUMO

BACKGROUND: High-grade serous ovarian carcinoma (HGSOC) is the most aggressive and prevalent subtype of ovarian cancer and accounts for a significant portion of ovarian cancer-related deaths worldwide. Despite advancements in cancer treatment, the overall survival rate for HGSOC patients remains low, thus highlighting the urgent need for a deeper understanding of the molecular mechanisms driving tumorigenesis and for identifying potential therapeutic targets. Whole-exome sequencing (WES) has emerged as a powerful tool for identifying somatic mutations and alterations across the entire exome, thus providing valuable insights into the genetic drivers and molecular pathways underlying cancer development and progression. METHODS: Via the analysis of whole-exome sequencing results of tumor samples from 90 ovarian cancer patients, we compared the mutational landscape of ovarian cancer patients with that of TCGA patients to identify similarities and differences. The sequencing data were subjected to bioinformatics analysis to explore tumor driver genes and their functional roles. Furthermore, we conducted basic medical experiments to validate the results obtained from the bioinformatics analysis. RESULTS: Whole-exome sequencing revealed the mutational profile of HGSOC, including BRCA1, BRCA2 and TP53 mutations. AP3S1 emerged as the most weighted tumor driver gene. Further analysis of AP3S1 mutations and expression demonstrated their associations with patient survival and the tumor immune response. AP3S1 knockdown experiments in ovarian cancer cells demonstrated its regulatory role in tumor cell migration and invasion through the TGF-ß/SMAD pathway. CONCLUSION: This comprehensive analysis of somatic mutations in HGSOC provides insight into potential therapeutic targets and molecular pathways for targeted interventions. AP3S1 was identified as being a key player in tumor immunity and prognosis, thus providing new perspectives for personalized treatment strategies. The findings of this study contribute to the understanding of HGSOC pathogenesis and provide a foundation for improved outcomes in patients with this aggressive disease.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Sequenciamento do Exoma , Neoplasias Ovarianas/genética , Carcinogênese , Biologia Computacional
4.
PLoS One ; 19(4): e0300965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557554

RESUMO

AIM: Our study aims to identify novel non-coding RNA-mRNA regulatory networks associated with ß-cell dysfunction and compensatory responses in obesity-related diabetes. METHODS: Glucose metabolism, islet architecture and secretion, and insulin sensitivity were characterized in C57BL/6J mice fed on a 60% high-fat diet (HFD) or control for 24 weeks. Islets were isolated for whole transcriptome sequencing to identify differentially expressed (DE) mRNAs, miRNAs, IncRNAs, and circRNAs. Regulatory networks involving miRNA-mRNA, lncRNA-mRNA, and lncRNA-miRNA-mRNA were constructed and functions were assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS: Despite compensatory hyperinsulinemia and a significant increase in ß-cell mass with a slow rate of proliferation, HFD mice exhibited impaired glucose tolerance. In isolated islets, insulin secretion in response to glucose and palmitic acid deteriorated after 24 weeks of HFD. Whole transcriptomic sequencing identified a total of 1324 DE mRNAs, 14 DE miRNAs, 179 DE lncRNAs, and 680 DE circRNAs. Our transcriptomic dataset unveiled several core regulatory axes involved in the impaired insulin secretion in HFD mice, such as miR-6948-5p/Cacna1c, miR-6964-3p/Cacna1b, miR-3572-5p/Hk2, miR-3572-5p/Cckar and miR-677-5p/Camk2d. Additionally, proliferative and apoptotic targets, including miR-216a-3p/FKBP5, miR-670-3p/Foxo3, miR-677-5p/RIPK1, miR-802-3p/Smad2 and ENSMUST00000176781/Caspase9 possibly contribute to the increased ß-cell mass in HFD islets. Furthermore, competing endogenous RNAs (ceRNA) regulatory network involving 7 DE miRNAs, 15 DE lncRNAs and 38 DE mRNAs might also participate in the development of HFD-induced diabetes. CONCLUSIONS: The comprehensive whole transcriptomic sequencing revealed novel non-coding RNA-mRNA regulatory networks associated with impaired insulin secretion and increased ß-cell mass in obesity-related diabetes.


Assuntos
Diabetes Mellitus , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dieta Hiperlipídica/efeitos adversos , RNA Circular/metabolismo , Secreção de Insulina , Sequenciamento do Exoma , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Obesidade/genética , Redes Reguladoras de Genes , Canais de Cálcio Tipo N/metabolismo
5.
Orphanet J Rare Dis ; 19(1): 141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561822

RESUMO

BACKGROUND: Klippel-Feil syndrome (KFS) is a rare congenital disorder characterized by the fusion of two or more cervical vertebrae during early prenatal development. This fusion results from a failure of segmentation during the first trimester. Although six genes have previously been associated with KFS, they account for only a small proportion of cases. Among the distinct subtypes of KFS, "sandwich fusion" involving concurrent fusion of C0-1 and C2-3 vertebrae is particularly noteworthy due to its heightened risk for atlantoaxial dislocation. In this study, we aimed to investigate novel candidate mutations in patients with "sandwich fusion." METHODS: We collected and analyzed clinical data from 21 patients diagnosed with "sandwich fusion." Whole-exome sequencing (WES) was performed, followed by rigorous bioinformatics analyses. Our focus was on the six known KFS-related genes (GDF3, GDF6, MEOX1, PAX1, RIPPLY2, and MYO18). Suspicious mutations were subsequently validated through in vitro experiments. RESULTS: Our investigation revealed two novel exonic mutations in the FGFR2 gene, which had not previously been associated with KFS. Notably, the c.1750A > G variant in Exon 13 of FGFR2 was situated within the tyrosine kinase domain of the protein, in close proximity to several established post-translational modification sites. In vitro experiments demonstrated that this certain mutation significantly impacted the function of FGFR2. Furthermore, we identified four heterozygous candidate variants in two genes (PAX1 and MYO18B) in two patients, with three of these variants predicted to have potential clinical significance directly linked to KFS. CONCLUSIONS: This study encompassed the largest cohort of patients with the unique "sandwich fusion" subtype of KFS and employed WES to explore candidate mutations associated with this condition. Our findings unveiled novel variants in PAX1, MYO18B, and FGFR2 as potential risk mutations specific to this subtype of KFS.


Assuntos
Síndrome de Klippel-Feil , Humanos , Síndrome de Klippel-Feil/genética , Síndrome de Klippel-Feil/complicações , Síndrome de Klippel-Feil/diagnóstico , Sequenciamento do Exoma , Mutação/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
6.
Cell Commun Signal ; 22(1): 164, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448900

RESUMO

Pancreatic neuroendocrine tumors (PanNETs), though uncommon, have a high likelihood of spreading to other body parts. Previously, the genetic diversity and evolutionary patterns in metastatic PanNETs were not well understood. To investigate this, we performed multiregion sampling whole-exome sequencing (MRS-WES) on samples from 10 patients who had not received prior treatment for metastatic PanNETs. This included 29 primary tumor samples, 31 lymph node metastases, and 15 liver metastases. We used the MSK-MET dataset for survival analysis and validation of our findings. Our research indicates that mutations in the MEN1/DAXX genes might trigger the early stages of PanNET development. We categorized the patients based on the presence (MEN1/DAXXmut, n = 7) or absence (MEN1/DAXXwild, n = 3) of these mutations. Notable differences were observed between the two groups in terms of genetic alterations and clinically relevant mutations, confirmed using the MSK-MET dataset. Notably, patients with mutations in MEN1/DAXX/ATRX genes had a significantly longer median overall survival compared to those without these mutations (median not reached vs. 43.63 months, p = 0.047). Multiplex immunohistochemistry (mIHC) analysis showed a more prominent immunosuppressive environment in metastatic tumors, especially in patients with MEN1/DAXX mutations. These findings imply that MEN1/DAXX mutations lead PanNETs through a unique evolutionary path. The disease's progression pattern indicates that PanNETs can spread early, even before clinical detection, highlighting the importance of identifying biomarkers related to metastasis to guide personalized treatment strategies.


Assuntos
Neoplasias Hepáticas , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Sequenciamento do Exoma , Tumores Neuroendócrinos/genética , Genômica , Neoplasias Hepáticas/genética , Neoplasias Pancreáticas/genética , Microambiente Tumoral
7.
BMC Bioinformatics ; 25(1): 124, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519906

RESUMO

BACKGROUND: Next-generation sequencing (NGS) technologies offer fast and inexpensive identification of DNA sequences. Somatic sequencing is among the primary applications of NGS, where acquired (non-inherited) variants are based on comparing diseased and healthy tissues from the same individual. Somatic mutations in genetic diseases such as cancer are tightly associated with genomic instability. Genomic instability increases heterogenity, complicating sequencing efforts further, a task already challenged by the presence of short reads and repetitions in human DNA. This leads to low concordance among studies and limits reproducibility. This limitation is a significant problem since identified mutations in somatic sequencing are major biomarkers for diagnosis and the primary input of targeted therapies. Benchmarking studies were conducted to assess the error rates and increase reproducibility. Unfortunately, the number of somatic benchmarking sets is very limited due to difficulties in validating true somatic variants. Moreover, most NGS benchmarking studies are based on relatively simpler germline (inherited) sequencing. Recently, a comprehensive somatic sequencing benchmarking set was published by Sequencing Quality Control Phase 2 (SEQC2). We chose this dataset for our experiments because it is a well-validated, cancer-focused dataset that includes many tumor/normal biological replicates. Our study has two primary goals. First goal is to determine how replicate-based consensus approaches can improve the accuracy of somatic variant detection systems. Second goal is to develop highly predictive machine learning (ML) models by employing replicate-based consensus variants as labels during the training phase. RESULTS: Ensemble approaches that combine alternative algorithms are relatively common; here, as an alternative, we study the performance enhancement potential of biological replicates. We first developed replicate-based consensus approaches that utilize the biological replicates available in this study to improve variant calling performance. Subsequently, we trained ML models using these biological replicates and achieved performance comparable to optimal ML models, those trained using high-confidence variants identified in advance. CONCLUSIONS: Our replicate-based consensus approach can be used to improve variant calling performance and develop efficient ML models. Given the relative ease of obtaining biological replicates, this strategy allows for the development of efficient ML models tailored to specific datasets or scenarios.


Assuntos
Algoritmos , Neoplasias , Humanos , Reprodutibilidade dos Testes , Sequenciamento do Exoma , Neoplasias/genética , Instabilidade Genômica , Sequenciamento de Nucleotídeos em Larga Escala
8.
Invest Ophthalmol Vis Sci ; 65(3): 25, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38502138

RESUMO

Purpose: A molecular diagnosis is only made in a subset of individuals with nonisolated microphthalmia, anophthalmia, and coloboma (MAC). This may be due to underutilization of clinical (whole) exome sequencing (cES) and an incomplete understanding of the genes that cause MAC. The purpose of this study is to determine the efficacy of cES in cases of nonisolated MAC and to identify new MAC phenotypic expansions. Methods: We determined the efficacy of cES in 189 individuals with nonisolated MAC. We then used cES data, a validated machine learning algorithm, and previously published expression data, case reports, and animal models to determine which candidate genes were most likely to contribute to the development of MAC. Results: We found the efficacy of cES in nonisolated MAC to be between 32.3% (61/189) and 48.1% (91/189). Most genes affected in our cohort were not among genes currently screened in clinically available ophthalmologic gene panels. A subset of the genes implicated in our cohort had not been clearly associated with MAC. Our analyses revealed sufficient evidence to support low-penetrance MAC phenotypic expansions involving nine of these human disease genes. Conclusions: We conclude that cES is an effective means of identifying a molecular diagnosis in individuals with nonisolated MAC and may identify putatively damaging variants that would be missed if only a clinically available ophthalmologic gene panel was obtained. Our data also suggest that deleterious variants in BRCA2, BRIP1, KAT6A, KAT6B, NSF, RAC1, SMARCA4, SMC1A, and TUBA1A can contribute to the development of MAC.


Assuntos
Anoftalmia , Coloboma , Microftalmia , Animais , Humanos , Anoftalmia/diagnóstico , Anoftalmia/genética , Coloboma/diagnóstico , Coloboma/genética , Sequenciamento do Exoma , Microftalmia/diagnóstico , Microftalmia/genética , Algoritmos , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição/genética , Histona Acetiltransferases
9.
EBioMedicine ; 102: 105048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484556

RESUMO

BACKGROUND: Tobacco is the main risk factor for developing lung cancer. Yet, while some heavy smokers develop lung cancer at a young age, other heavy smokers never develop it, even at an advanced age, suggesting a remarkable variability in the individual susceptibility to the carcinogenic effects of tobacco. We characterized the germline profile of subjects presenting these extreme phenotypes with Whole Exome Sequencing (WES) and Machine Learning (ML). METHODS: We sequenced germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age (extreme cases) or who did not develop lung cancer at an advanced age (extreme controls), selected from databases including over 6600 subjects. We selected individual coding genetic variants and variant-rich genes showing a significantly different distribution between extreme cases and controls. We validated the results from our discovery cohort, in which we analysed by WES extreme cases and controls presenting similar phenotypes. We developed ML models using both cohorts. FINDINGS: Mean age for extreme cases and controls was 50.7 and 79.1 years respectively, and mean tobacco consumption was 34.6 and 62.3 pack-years. We validated 16 individual variants and 33 variant-rich genes. The gene harbouring the most validated variants was HLA-A in extreme controls (4 variants in the discovery cohort, p = 3.46E-07; and 4 in the validation cohort, p = 1.67E-06). We trained ML models using as input the 16 individual variants in the discovery cohort and tested them on the validation cohort, obtaining an accuracy of 76.5% and an AUC-ROC of 83.6%. Functions of validated genes included candidate oncogenes, tumour-suppressors, DNA repair, HLA-mediated antigen presentation and regulation of proliferation, apoptosis, inflammation and immune response. INTERPRETATION: Individuals presenting extreme phenotypes of high and low risk of developing tobacco-associated lung adenocarcinoma show different germline profiles. Our strategy may allow the identification of high-risk subjects and the development of new therapeutic approaches. FUNDING: See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Pessoa de Meia-Idade , Idoso , Sequenciamento do Exoma , Predisposição Genética para Doença , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fenótipo , Células Germinativas/patologia
10.
Prenat Diagn ; 44(4): 465-479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441167

RESUMO

OBJECTIVES: In October 2020, rapid prenatal exome sequencing (pES) was introduced into routine National Health Service (NHS) care in England. This study aimed to explore parent experiences and their information and support needs from the perspective of parents offered pES and of health professionals involved in its delivery. METHODS: In this qualitative study, semi-structured interviews were conducted with 42 women and 6 male partners and 63 fetal medicine and genetic health professionals. Interviews were transcribed verbatim and analysed using thematic analysis. RESULTS: Overall views about pES were positive and parents were grateful to be offered the test. Highlighted benefits of pES included the value of the additional information for pregnancy management and planning for future pregnancies. An anxious wait for results was common, often associated with the need to make decisions near to 24 weeks in pregnancy when there are legal restrictions for late termination. Descriptions of dealing with uncertainty were also common, even when results had been returned. Many parents described pES results as informing decision-making around whether or not to terminate pregnancy. Some professionals were concerned that a non-informative result could be overly reassuring and highlighted that careful counselling was needed to ensure parents have a good understanding of what the result means for their pregnancy. Emotional support from professionals was valued; however, some parents felt that post-test support was lacking. CONCLUSION: Parents and professionals welcomed the introduction of pES. Results inform parents' decision-making around the termination of pregnancy. When there are no diagnostic findings or uncertain findings from pES, personalised counselling that considers scans and other tests are crucial. Directing parents to reliable online sources of information and providing emotional support throughout could improve their experiences of care.


Assuntos
Pais , Medicina Estatal , Gravidez , Humanos , Masculino , Feminino , Sequenciamento do Exoma , Pais/psicologia , Inglaterra , Aconselhamento , Pesquisa Qualitativa
11.
Mol Biol Rep ; 51(1): 449, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536562

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is a heritable connective tissue disorder characterized by bone deformities, fractures and reduced bone mass. OI can be inherited as a dominant, recessive, or X-linked disorder. The mutational spectrum has shown that autosomal dominant mutations in the type I collagen-encoding genes are responsible for OI in 85% of the cases. Apart from collagen genes, mutations in more than 20 other genes, such as CRTAP, CREB3L1, MBTPS2, P4HB, SEC24D, SPARC, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, WNT1, BMP1, TMEM38B, and IFITM5 have been reported in OI. METHODS AND RESULTS: To understand the genetic cause of OI in four cases, we conducted whole exome sequencing, followed by Sanger sequencing. In case #1, we identified a novel c.506delG homozygous mutation in the WNT1 gene, resulting in a frameshift and early truncation of the protein at the 197th amino acid. In cases #2, 3 and 4, we identified a heterozygous c.838G > A mutation in the COL1A2 gene, resulting in a p.Gly280Ser substitution. The clinvar frequency of this mutation is 0.000008 (GnomAD-exomes). This mutation has been identified by other studies as well and appears to be a mutational hot spot. These pathogenic mutations were found to be absent in 96 control samples analyzed for these sites. The presence of these mutations in the cases, their absence in controls, their absence or very low frequency in general population, and their evaluation using various in silico prediction tools suggested their pathogenic nature. CONCLUSIONS: Mutations in the WNT1 and COL1A2 genes explain these cases of osteogenesis imperfecta.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Proteína Wnt1 , Humanos , Colágeno Tipo I/genética , Sequenciamento do Exoma , Mutação/genética , Osteogênese Imperfeita/genética , Proteína Wnt1/genética
12.
Placenta ; 149: 13-17, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484495

RESUMO

INTRODUCTION: Placental chorangioma is a benign non-trophoblastic vascular proliferation of the placental chorion favored to represent hamartoma-like or hyperplastic capillary lesions. As the exact pathophysiology has not been established, we investigated the molecular characteristics of placental chorangiomas using exploratory whole exome sequencing. METHODS: Three cases were retrospectively selected and whole exome sequencing was performed on macrodissected lesions. DNA extraction, DNA quantification, library preparation and sequencing were performed with IDT xGen™ Exome Hybridization Panel v2 for library capture. Sequencing data was analyzed with an in-house bioinformatics pipeline for single-nucleotide variants and insertions/deletions. RESULTS: All neonates were delivered at term and had birth weights ranging from 11th-35th percentile for gestational age. All mothers presented with hypertensive disorder during pregnancy. Chorangiomas ranged from 0.7 cm to 5.1 cm and were well-circumscribed near the fetal surface. Case 1 showed a background of chorangiosis and acute subchorionitis, while case 2 had foci of chronic lymphocytic villitis. Whole exome sequencing did not reveal any significant pathologic variants. DISCUSSIONS: The absence of molecular alteration in placental chorangioma is likely indicative of the reactive/non-neoplastic nature of this lesion. The presence of compromised blood flow in the form of hypertensive disorders in our cases may be one of its underlying pathophysiologic mechanisms.


Assuntos
Hemangioma , Hipertensão , Doenças Placentárias , Recém-Nascido , Gravidez , Feminino , Humanos , Placenta/patologia , Doenças Placentárias/genética , Doenças Placentárias/patologia , Estudos Retrospectivos , Sequenciamento do Exoma , Hemangioma/genética , Hemangioma/patologia , DNA
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 322-325, 2024 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-38448022

RESUMO

OBJECTIVE: To explore the genetic etiology for a Chinese pedigree affected with Treacher-Collins syndrome (TCS) through whole exome sequencing (WES). METHODS: A TCS pedigree which was diagnosed at the Women and Children's Hospital Affiliated to Qingdao University on February 5, 2020 was selected as the study subject. Following collection of clinical data, WES was carried out. Candidate variant was validated through Sanger sequencing and bioinformatic analysis. RESULTS: The WES results showed that the proband has harbored a heterozygous c.3337C>T variant of the TCOF1 gene, and Sanger sequencing confirmed that his mother and brother also carried the same variant. Based on guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted as pathogenic (PVS1+PM2_Supporting+PP4). CONCLUSION: The heterozygous c.3337C>T variant of the TCOF1 gene probably underlay the pathogenesis of TCS in this pedigree.


Assuntos
Povo Asiático , Disostose Mandibulofacial , Criança , Feminino , Humanos , Masculino , Povo Asiático/genética , China , Sequenciamento do Exoma , Disostose Mandibulofacial/genética , Mães , Proteínas Nucleares/genética , Linhagem , Fosfoproteínas/genética
14.
Mol Genet Genomic Med ; 12(4): e2400, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546032

RESUMO

BACKGROUND: Phosphoserine aminotransferase deficiency (PSATD) is an autosomal recessive disorder associated with hypertonia, psychomotor retardation, and acquired microcephaly. Patients with PSATD have low concentrations of serine in plasma and cerebrospinal fluid. METHODS: We reported a 2-year-old female child with developmental delay, dyskinesia, and microcephaly. LC-MS/MS was used to detect amino acid concentration in the blood and whole-exome sequencing (WES) was used to identify the variants. PolyPhen-2 web server and PyMol were used to predict the pathogenicity and changes in the 3D model molecular structure of protein caused by variants. RESULTS: WES demonstrated compound heterozygous variants in PSAT1, which is associated with PSATD, with a paternal likely pathogenic variant (c.235G>A, Gly79Arg) and a maternal likely pathogenic variant (c.43G>C, Ala15Pro). Reduced serine concentration in LC-MS/MS further confirmed the diagnosis of PSATD in this patient. CONCLUSIONS: Our findings demonstrate the importance of WES combined with LC-MS/MS reanalysis in the diagnosis of genetic diseases and expand the PSAT1 variant spectrum in PSATD. Moreover, we summarize all the cases caused by PSAT1 variants in the literature. This case provides a vital reference for the diagnosis of future cases.


Assuntos
Microcefalia , Transtornos Psicomotores , Convulsões , Transaminases , Pré-Escolar , Feminino , Humanos , Cromatografia Líquida , Sequenciamento do Exoma , 60705 , Microcefalia/genética , Microcefalia/diagnóstico , Serina/genética , Espectrometria de Massas em Tandem , Transaminases/deficiência
15.
Clin Exp Med ; 24(1): 51, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441683

RESUMO

Intravascular large B-cell lymphoma (IVLBCL) is a rare aggressive extranodal non-Hodgkin lymphoma. The predominant, if not exclusive, growth of neoplastic cells within the lumina of small-sized vessels represents the hallmark of the disease. Diagnosis is challenging due to the absence of marked lymphadenopathy, the highly heterogeneous clinical presentation, and the rarity of the condition. Clinical presentation is characterized by variable combinations of nonspecific signs and symptoms (such as fever and weight loss), organ-specific focal manifestations due to altered perfusion, and hemophagocytic syndrome. The rarity of this entity and the paucity of neoplastic cells in biopsy samples hamper the study of recurrent molecular abnormalities. The purpose of this study was to explore the feasibility of a different approach to recover a sufficient amount of DNA of acceptable quality to perform next-generation sequencing studies. Here, we report the findings of whole-exome next-generation sequencing performed on a fresh-frozen cutaneous sample of IVLBCL, paired with the patient saliva used as germline DNA. To increase the cancer cell fraction, only the subcutaneous tissue was selected. With this approach, we obtained high-quality DNA and were able to identify oncogenic mutations specific for this entity and recapitulating its post-germinal center origin, even if the tumor fraction was low. Molecular studies performed on fresh-frozen cutaneous sample are feasible in IVLBCL, especially when analysis is restricted to the subcutaneous tissue. Wide adoption of this reproducible and cost-effective approach may foster further studies, which may be of help in supporting diagnosis, providing pathogenetic insights, and guiding treatment decisions.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Humanos , Sequenciamento do Exoma , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Tela Subcutânea , DNA
16.
Pharmacogenomics ; 25(4): 197-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511470

RESUMO

Whole-exome sequencing (WES) is widely used in clinical settings; however, the exploration of its use in pharmacogenomic analysis remains limited. Our study compared the variant callings for 28 core absorption, distribution, metabolism and elimination genes by WES and array-based technology using clinical trials samples. The results revealed that WES had a positive predictive value of 0.71-0.92 and a sensitivity of single-nucleotide variants between 0.68 and 0.95, compared with array-based technology, for the variants in the commonly targeted regions of the WES and PhamacoScan™ assay. Besides the common variants detected by both assays, WES identified 200-300 exclusive variants per sample, totalling 55 annotated exclusive variants, including important modulators of metabolism such as rs2032582 (ABCB1) and rs72547527 (SULT1A1). This study highlights the potential clinical advantages of using WES to identify a wider range of genetic variations and enabling precision medicine.


Assuntos
Exoma , Farmacogenética , Humanos , Sequenciamento do Exoma , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
17.
Genes (Basel) ; 15(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540416

RESUMO

Non-alcoholic steatohepatitis (NASH, also known as MASH) is a severe form of non-alcoholic fatty liver disease (NAFLD, also known as MASLD). Emerging data indicate that the progression of the disease to MASH is higher in postmenopausal women and that genetic susceptibility increases the risk of MASH-related cirrhosis. This study aimed to investigate the association between genetic polymorphisms in MASH and sexual dimorphism. We applied whole-exome sequencing (WES) to identify gene variants in 8 age-adjusted matched pairs of livers from both male and female patients. Sequencing alignment, variant calling, and annotation were performed using standard methods. Polymerase chain reaction (PCR) coupled with Sanger sequencing and immunoblot analysis were used to validate specific gene variants. cBioPortal and Gene Set Enrichment Analysis (GSEA) were used for actionable target analysis. We identified 148,881 gene variants, representing 57,121 and 50,150 variants in the female and male cohorts, respectively, of which 251 were highly significant and MASH sex-specific (p < 0.0286). Polymorphisms in CAPN14, SLC37A3, BAZ1A, SRP54, MYH11, ABCC1, and RNFT1 were highly expressed in male liver samples. In female samples, Polymorphisms in RGSL1, SLC17A2, HFE, NLRC5, ACTN4, SBF1, and ALPK2 were identified. A heterozygous variant 1151G>T located on 18q21.32 for ALPK2 (rs3809983) was validated by Sanger sequencing and expressed only in female samples. Immunoblot analysis confirmed that the protein level of ß-catenin in female samples was 2-fold higher than normal, whereas ALPK2 expression was 0.5-fold lower than normal. No changes in the protein levels of either ALPK2 or ß-catenin were observed in male samples. Our study suggests that the perturbation of canonical Wnt/ß-catenin signaling observed in postmenopausal women with MASH could be the result of polymorphisms in ALPK2.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Feminino , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , beta Catenina/genética , Sequenciamento do Exoma , Polimorfismo Genético , Proteínas que Contêm Bromodomínio , Proteínas Cromossômicas não Histona/genética , Partícula de Reconhecimento de Sinal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases/genética
18.
Transl Psychiatry ; 14(1): 141, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461185

RESUMO

Major depressive disorder (MDD) is a common mental illness worldwide and is triggered by an intricate interplay between environmental and genetic factors. Although there are several studies on common variants in MDD, studies on rare variants are relatively limited. In addition, few studies have examined the genetic contributions to neurostructural alterations in MDD using whole-exome sequencing (WES). We performed WES in 367 patients with MDD and 161 healthy controls (HCs) to detect germline and copy number variations in the Korean population. Gene-based rare variants were analyzed to investigate the association between the genes and individuals, followed by neuroimaging-genetic analysis to explore the neural mechanisms underlying the genetic impact in 234 patients with MDD and 135 HCs using diffusion tensor imaging data. We identified 40 MDD-related genes and observed 95 recurrent regions of copy number variations. We also discovered a novel gene, FRMPD3, carrying rare variants that influence MDD. In addition, the single nucleotide polymorphism rs771995197 in the MUC6 gene was significantly associated with the integrity of widespread white matter tracts. Moreover, we identified 918 rare exonic missense variants in genes associated with MDD susceptibility. We postulate that rare variants of FRMPD3 may contribute significantly to MDD, with a mild penetration effect.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Imagem de Tensor de Difusão , Sequenciamento do Exoma , Variações do Número de Cópias de DNA , Neuroimagem
19.
Front Endocrinol (Lausanne) ; 15: 1334342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469147

RESUMO

Early-onset obesity is a rising health concern influenced by heredity. However, many monogenic obesity variants (MOVs) remain to be discovered due to differences in ethnicity and culture. Additionally, patients with known MOVs have shown limited weight loss after bariatric surgery, suggesting it can be used as a screening tool for new candidates. In this study, we performed whole-exome sequencing (WES) combined with postoperative data to detect candidate MOVs in a cohort of 62 early-onset obesity and 9 late-onset obesity patients. Our findings demonstrated that patients with early-onset obesity preferred a higher BMI and waist circumference (WC). We confirmed the efficacy of the method by identifying a mutation in known monogenic obesity gene, PCSK1, which resulted in less weight loss after surgery. 5 genes were selected for further verification, and a frameshift variant in CAMKK2 gene: NM_001270486.1, c.1614dup, (p. Gly539Argfs*3) was identified as a novel candidate MOV. This mutation influenced the improvement of metabolism after bariatric surgery. In conclusion, our data confirm the efficacy of WES combined with postoperative data in detecting novel candidate MOVs and c.1614dup (CAMKK2) might be a promising MOV, which needs further confirmation. This study enriches the human monogenic obesity mutation database and provides a scientific basis for clinically accurate diagnosis and treatment.


Assuntos
Mutação da Fase de Leitura , Obesidade , Humanos , Sequenciamento do Exoma , Obesidade/genética , Obesidade/cirurgia , Mutação , Redução de Peso , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
20.
Front Endocrinol (Lausanne) ; 15: 1258982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444585

RESUMO

Genome-wide association studies have identified several hundred loci associated with type 2 diabetes mellitus (T2DM). Additionally, pathogenic variants in several genes are known to cause monogenic diabetes that overlaps clinically with T2DM. Whole-exome sequencing of related individuals with T2DM is a powerful approach to identify novel high-penetrance disease variants in coding regions of the genome. We performed whole-exome sequencing on four related individuals with T2DM - including one individual diagnosed at the age of 33 years. The individuals were negative for mutations in monogenic diabetes genes, had a strong family history of T2DM, and presented with several characteristics of metabolic syndrome. A missense variant (p.N2291D) in the type 2 ryanodine receptor (RyR2) gene was one of eight rare coding variants shared by all individuals. The variant was absent in large population databases and affects a highly conserved amino acid located in a mutational hotspot for pathogenic variants in Catecholaminergic polymorphic ventricular tachycardia (CPVT). Electrocardiogram data did not reveal any cardiac abnormalities except a lower-than-normal resting heart rate (< 60 bpm) in two individuals - a phenotype observed in CPVT individuals with RyR2 mutations. RyR2-mediated Ca2+ release contributes to glucose-mediated insulin secretion and pathogenic RyR2 mutations cause glucose intolerance in humans and mice. Analysis of glucose tolerance testing data revealed that missense mutations in a CPVT mutation hotspot region - overlapping the p.N2291D variant - are associated with complete penetrance for glucose intolerance. In conclusion, we have identified an atypical missense variant in the RyR2 gene that co-segregates with diabetes in the absence of overt CPVT.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Adulto , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Sequenciamento do Exoma , Estudo de Associação Genômica Ampla , Glucose , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...