Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
Genet Sel Evol ; 56(1): 21, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528443

RESUMO

BACKGROUND: There is a burgeoning interest in using insects as a sustainable source of food and feed, particularly by capitalising on various waste materials and by-products that are typically considered of low value. Enhancing the commercial production of insects can be achieved through two main approaches: optimising environmental conditions and implementing selective breeding strategies. In order to successfully target desirable traits through selective breeding, having a thorough understanding of the genetic parameters pertaining to those traits is essential. In this study, a full-sib half-sib mating design was used to estimate variance components and heritabilities for larval size and survival at day seven of development, development time and survival from egg to adult, and to estimate correlations between these traits, within an outbred population of house flies (Musca domestica), using high-throughput phenotyping for data collection. RESULTS: The results revealed low to intermediate heritabilities and positive genetic correlations between all traits except development time and survival to day seven of development and from egg to adulthood. Surprisingly, larval size at day seven exhibited a comparatively low heritability (0.10) in contrast to development time (0.25), a trait that is believed to have a stronger association with overall fitness. A decline in family numbers resulting from low mating success and high overall mortality reduced the amount of available data which resulted in large standard errors for the estimated parameters. Environmental factors made a substantial contribution to the phenotypic variation, which was overall high for all traits. CONCLUSIONS: There is potential for genetic improvement in all studied traits and estimates of genetic correlations indicate a partly shared genetic architecture among the traits. All estimates have large standard errors. Implementing high-throughput phenotyping is imperative for the estimation of genetic parameters in fast developing insects, and facilitates age synchronisation, which is vital in a breeding population. In spite of endeavours to minimise non-genetic sources of variation, all traits demonstrated substantial influences from environmental components. This emphasises the necessity of thorough attention to the experimental design before breeding is initiated in insect populations.


Assuntos
Característica Quantitativa Herdável , Seleção Artificial , Animais , Genótipo , Fenótipo , Insetos
2.
Sci Rep ; 14(1): 3869, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365996

RESUMO

Improving feed utilization efficiency is a challenge in aquaculture. Therefore, we developed an indirect benchmark to use in selecting trout for improved efficiency of feed utilization on plant protein (soy)-based diets, with the long-term goal of reducing the cost of commercial trout production. We used a four-part integrative approach to identify feed efficient individuals among 1595 fish coming from 12 genetically selected families by establishing the phenotypic relationship between feed conversion ratio (FCR) and body weight variations using compensatory feeding regimes. Additionally, we examined the nutritional composition of fish filet for each efficiency phenotype during the compensatory regimen. Our findings showed that the fish with the lowest weight loss during a feed deprivation period and the highest weight gain during the refeeding period (FD-/RF +) demonstrated the lowest FCR (FCR = 0.99) and consisted of individuals from several lines. This finding confirms the possibility of improving feed efficiency in mixed lines. Although feeding period has an effect on nutritional composition of fillet, such selection criteria did not show an effect on groups. Overall, successful selection for the improvement of feed efficiency will have a broad application to commercial fish selective breeding programs, leading to increased aquaculture sustainability in the long run.


Assuntos
Oncorhynchus mykiss , Humanos , Animais , Oncorhynchus mykiss/genética , Proteínas de Plantas/genética , Dieta , Seleção Artificial , Peso Corporal/genética , Ração Animal/análise
3.
Genes Brain Behav ; 23(1): e12887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373143

RESUMO

Domesticated animals have been developed by selecting desirable traits following the initial unconscious selection stage, and now exhibit phenotypes desired by humans. Tameness is a common behavioural trait found in all domesticated animals. At the same time, these domesticated animals exhibit a variety of morphological, behavioural, and physiological traits that differ from their wild counterparts of their ancestral species. These traits are collectively referred to as domestication syndrome. However, whether this phenomenon exists is debatable. Previously, selective breeding has been used to enhance active tameness, a motivation to interact with humans, in wild heterogeneous stock mice derived from eight wild inbred strains. In the current study, we used tame mice to study how selective breeding for active tameness affects behavioural and morphological traits. A series of behavioural and morphological analyses on mice showed an increased preference for social stimuli and a longer duration of engagement in non-aggressive behaviour. However, no differences were observed in exploratory or anxiety-related behaviours. Similarly, selection for tameness did not affect ultrasonic vocalisations in mice, and no changes were observed in known morphological traits associated with domestication syndrome. These results suggest that there may be a link between active tameness and sociability and provide insights into the relationship between tameness and other behaviours in the context of domestication.


Assuntos
Comportamento Animal , Domesticação , Humanos , Animais , Camundongos , Comportamento Animal/fisiologia , Animais Domésticos/genética , Seleção Artificial , Agressão/fisiologia
4.
Waste Manag ; 177: 252-265, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354633

RESUMO

The larvae of black soldier fly (BSFL) convert organic waste into insect proteins used as feedstuff for livestock and aquaculture. BSFL production performance is considerably reduced during winter season. Herein, the intraspecific diversity of ten commercial BSF colonies collected in China was evaluated. The Bioforte colony was subjected to selective breeding at 12 °C and 16 °C to develop cold-tolerant BSF with improved production performance. After breeding for nine generations, the weight of larvae, survival rate, and the dry matter conversion rate significantly increased. Subsequently, intestinal microbiota in the cold-tolerant strain showed that bacteria belonging to Morganella, Dysgonomonas, Salmonella, Pseudochrobactrum, and Klebsiella genera were highly represented in the 12 °C bred, while those of Acinetobacter, Pseudochrobactrum, Enterococcus, Comamonas, and Leucobacter genera were significantly represented in the 16 °C bred group. Metagenomic revealed that several animal probiotics of the Enterococcus and Vagococcus genera were greatly enriched in the gut of larvae bred at 16 °C. Moreover, bacterial metabolic pathways including carbohydrate, lipid, amino acids, and cofactors and vitamins, were significantly increased, while organismal systems and human diseases was decreased in the 16 °C bred group. Transcriptomic analysis revealed that the upregulated differentially expressed genes in the 16 °C bred groups mainly participated in Autophagy-animal, AMPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Hippo signaling pathway at day 34 under 16 °C conditions, suggesting their significant role in the survival of BSFL. Taken together, these results shed lights on the role of intestinal microflora and gene pathways in the adaptation of BSF larvae to cold stress.


Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Humanos , Larva/genética , Seleção Artificial , Aminoácidos , Dípteros/genética
5.
Heredity (Edinb) ; 132(2): 98-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172577

RESUMO

Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address environmental contingencies and concerns. Here, we introduce an "end-to-end" selective tree breeding framework that: (1) leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding phase through the utilization of readily available wind-pollinated (OP) families. Individuals' breeding values generated from multi-trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-ancestry trade-offs and traits' correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing population growing on three sites in British Columbia, Canada, clearly demonstrating our method's superiority in capturing most of the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively.


Assuntos
Melhoramento Vegetal , Seleção Artificial , Árvores , Colúmbia Britânica , Genômica/métodos , Estudos Multicêntricos como Assunto , Fenótipo , Seleção Genética , Árvores/genética
6.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37991999

RESUMO

Chickens were domesticated >4,000 years ago, probably first for fighting them and only later as a source of food. Fighting chickens, commonly known as gamecocks, continue to be bred throughout the world, but the genetic relationships among geographically diverse gamecocks and with nongame chickens are not known. Here, we sequenced the genomes of 44 geographically diverse gamecocks and 62 nongame chickens representing a variety of breeds. We combined these sequences with published genomes to generate the most diverse chicken genomes dataset yet assembled, with 307 samples. We found that gamecocks do not form a homogeneous group, yet they share genetic similarities that distinguish them from nongame chickens. Such similarities are likely the result of a common origin before their local diversification into, or mixing with nongame chickens. Particularly noteworthy is a variant in an intron of the isoprenoid synthase domain containing gene (ISPD), an extreme outlier present at a frequency of 89% in gamecocks but only 4% in nongame chickens. The ISPD locus has the strongest signal of selection in gamecocks, suggesting it is important for fighting performance. Because ISPD variants that are highly prevalent in gamecocks are still segregating in nongame chickens, selective breeding may help reduce its frequency in farm conditions in which aggression is not a desired trait. Altogether, our work provides genomic resources for agricultural genetics, uncovers a common origin for gamecocks from around the world and what distinguishes them genetically from chickens bred for purposes other than fighting, and points to ISPD as the most important locus related to fighting performance.


Assuntos
Galinhas , Genoma , Animais , Galinhas/genética , Sequência de Bases , Loci Gênicos , Seleção Artificial
7.
Behav Processes ; 213: 104973, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38013137

RESUMO

Locomotor play is vigorous and seemingly purposeless behavior, commonly observed in young mammals. It can be costly in terms of energy expenditure, increased injury risk, and predator exposure. The main hypothesized benefit of locomotor play is enhancement of neuromuscular development, with effects persisting into adulthood. We hypothesized that levels of locomotor play would have evolved as a correlated response to artificial selection for increased voluntary exercise behavior. We studied mice from 4 replicate lines bred for voluntary wheel running (High Runner or HR) at 6-8 weeks of age and four non-selected Control (C) lines. Mice were weaned at 21 days of age and play behavior was observed for generations 20 (22-24 days old), 68 (22-23 days old), and 93 (15 days old). We quantified locomotor play as (1) rapid, horizontally directed jerk-run sequences and (2) vertical "bouncing." We used focal sampling to continuously record behavior in cages containing 4-6 individuals during the first 2-3 h of the dark cycle. Observations were significantly repeatable between observers and days. A two-way, mixed-model simultaneously tested effects of linetype (HR vs. C), sex, and their interaction. Contrary to our hypothesis, HR and C lines did not differ in any generation, nor did we find sex differences. However, differences among the replicate HR lines and among the replicate C lines were detected, and may be attributed to the effects of random genetic drift (and possibly founder effects). Thus, play behavior did evolve in this selection experiment, but not as a correlated response to selection for voluntary exercise.


Assuntos
Atividade Motora , Seleção Artificial , Camundongos , Feminino , Animais , Masculino , Atividade Motora/fisiologia , Deriva Genética , Desmame , Caracteres Sexuais , Seleção Genética , Mamíferos
8.
Trop Anim Health Prod ; 55(6): 363, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857943

RESUMO

The domestication of animals has rendered horns less necessary for survival. Moreover, the use of polled and disbudded animals is interesting in order to avoid injuries of animals and handlers, among other advantages. We therefore conducted a comparative economic analysis of different traditional disbudding techniques versus selective breeding for polledness in Nelore cattle, the main beef breed of tropical systems in Brazil. The cost to obtain animals without horns was estimated in three different scenarios: disbudding with hot iron, disbudding with caustic paste, and phenotypic selection for polled animals. Price quotations of the materials were obtained in different states of the country and averaged. An initial frequency of horned animals of 92.16% was obtained based on the records of the Brazilian Association of Zebu Breeders. Selective breeding was found to be the best cost-effective scenario. This result differs from intensive production systems of dairy cattle in which traditional disbudding continues to be the best cost-effective scenario. The main explanation is the lack of difference in the price of Nelore semen from polled and horned bulls. Phenotypic selection for polled animals is the best cost-effective method, and it is in accordance with welfare practices. Care should be taken regarding the intensive use of few polled breeding animals in order to avoid inbreeding depression in other traits.


Assuntos
Cornos , Bovinos , Animais , Masculino , Seleção Artificial , Fenótipo , Sêmen , Indústria de Laticínios/métodos
9.
Poult Sci ; 102(11): 103031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716235

RESUMO

Body weight of chicken is a typical quantitative trait, which shows phenotypic variations due to selective breeding. Despite some QTL loci have been obtained, the body weight of native chicken breeds in different geographic regions varies greatly, its genetic basis remains unresolved questions. To address this issue, we analyzed 117 Chinese indigenous chickens from 10 breeds (Huiyang Bearded, Xinhua, Hotan Black, Baicheng You, Liyang, Yunyang Da, Jining Bairi, Lindian, Beijing You, Tibetan). We applied fixation index (FST) analysis to find selected genomic regions and genes associated with body weight traits. Our study suggests that NELL1, XYLT1, and NCAPG/LCORL genes are strongly selected in the body weight trait of Chinese indigenous chicken breeds. In addition, the IL1RAPL1 gene was strongly selected in large body weight chickens, while the PCDH17 and CADM2 genes were strongly selected in small body weight chickens. This result suggests that the patterns of genetic variation of native chicken and commercial chicken, and/or distinct local chicken breeds may follow different evolutionary mechanisms.


Assuntos
Galinhas , Animais , Peso Corporal/genética , Galinhas/genética , Genômica , Metagenômica , Polimorfismo de Nucleotídeo Único , China , Seleção Artificial/genética
10.
Genet Sel Evol ; 55(1): 67, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770844

RESUMO

BACKGROUND: Harmful social behaviours, such as injurious feather pecking in poultry and tail biting in swine, reduce animal welfare and production efficiency. While these behaviours are heritable, selective breeding is still limited due to a lack of individual phenotyping methods for large groups and proper genetic models. In the near future, large-scale longitudinal data on social behaviours will become available, e.g. through computer vision techniques, and appropriate genetic models will be needed to analyse such data. In this paper, we investigated prospects for genetic improvement of social traits recorded in large groups by (1) developing models to simulate and analyse large-scale longitudinal data on social behaviours, and (2) investigating required sample sizes to obtain reasonable accuracies of estimated genetic parameters and breeding values (EBV). RESULTS: Latent traits were defined as representing tendencies of individuals to be engaged in social interactions by distinguishing between performer and recipient effects. Animal movement was assumed random and without genetic variation, and performer and recipient interaction effects were assumed constant over time. Based on the literature, observed-scale heritabilities ([Formula: see text]) of performer and recipient effects were both set to 0.05, 0.1, or 0.2, and the genetic correlation ([Formula: see text]) between those effects was set to - 0.5, 0, or 0.5. Using agent-based modelling, we simulated ~ 200,000 interactions for 2000 animals (~ 1000 interactions per animal) with a half-sib family structure. Variance components and breeding values were estimated with a general linear mixed model. The estimated genetic parameters did not differ significantly from the true values. When all individuals and interactions were included in the analysis, the accuracy of EBV was 0.61, 0.70, and 0.76 for [Formula: see text] = 0.05, 0.1, and 0.2, respectively (for [Formula: see text]= 0). Including 2000 individuals each with only ~ 100 interactions, already yielded promising accuracies of 0.47, 0.60, and 0.71 for [Formula: see text] = 0.05, 0.1, and 0.2, respectively (with [Formula: see text] = 0). Similar results were found with [Formula: see text] of - 0.5 or 0.5. CONCLUSIONS: We developed models to simulate and genetically analyse social behaviours for animals that are kept in large groups, anticipating the availability of large-scale longitudinal data in the near future. We obtained promising accuracies of EBV with ~ 100 interactions per individual, which would correspond to a few weeks of recording. Therefore, we conclude that animal breeding can be a promising strategy to improve social behaviours in livestock.


Assuntos
Cruzamento , Gado , Humanos , Suínos , Animais , Gado/genética , Seleção Artificial , Comportamento Social , Fenótipo , Modelos Genéticos
11.
Brain Behav Evol ; 98(5): 245-263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37604130

RESUMO

Uncovering relationships between neuroanatomy, behavior, and evolution are important for understanding the factors that control brain function. Voluntary exercise is one key behavior that both affects, and may be affected by, neuroanatomical variation. Moreover, recent studies suggest an important role for physical activity in brain evolution. We used a unique and ongoing artificial selection model in which mice are bred for high voluntary wheel-running behavior, yielding four replicate lines of high runner (HR) mice that run ∼3-fold more revolutions per day than four replicate nonselected control (C) lines. Previous studies reported that, with body mass as a covariate, HR mice had heavier whole brains, non-cerebellar brains, and larger midbrains than C mice. We sampled mice from generation 66 and used high-resolution microscopy to test the hypothesis that HR mice have greater volumes and/or cell densities in nine key regions from either the midbrain or limbic system. In addition, half of the mice were given 10 weeks of wheel access from weaning, and we predicted that chronic exercise would increase the volumes of the examined brain regions via phenotypic plasticity. We replicated findings that both selective breeding and wheel access increased total brain mass, with no significant interaction between the two factors. In HR compared to C mice, adjusting for body mass, both the red nucleus (RN) of the midbrain and the hippocampus (HPC) were significantly larger, and the whole midbrain tended to be larger, with no effect of wheel access nor any interactions. Linetype and wheel access had an interactive effect on the volume of the periaqueductal gray (PAG), such that wheel access increased PAG volume in C mice but decreased volume in HR mice. Neither linetype nor wheel access affected volumes of the substantia nigra, ventral tegmental area, nucleus accumbens, ventral pallidum (VP), or basolateral amygdala. We found no main effect of either linetype or wheel access on neuronal densities (numbers of cells per unit area) for any of the regions examined. Taken together, our results suggest that the increased exercise phenotype of HR mice is related to increased RN and hippocampal volumes, but that chronic exercise alone does not produce such phenotypes.


Assuntos
Núcleo Rubro , Seleção Artificial , Camundongos , Animais , Área Tegmentar Ventral , Mesencéfalo , Hipocampo
12.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37565490

RESUMO

Reliable and high-throughput genotyping platforms are of immense importance for identifying and dissecting genomic regions controlling important phenotypes, supporting selection processes in breeding programs, and managing wild populations and germplasm collections. Amongst available genotyping tools, single nucleotide polymorphism arrays have been shown to be comparatively easy to use and generate highly accurate genotypic data. Single-species arrays are the most commonly used type so far; however, some multi-species arrays have been developed for closely related species that share single nucleotide polymorphism markers, exploiting inter-species cross-amplification. In this study, the suitability of a multiplexed plant-animal single nucleotide polymorphism array, including both closely and distantly related species, was explored. The performance of the single nucleotide polymorphism array across species for diverse applications, ranging from intra-species diversity assessments to parentage analysis, was assessed. Moreover, the value of genotyping pooled DNA of distantly related species on the single nucleotide polymorphism array as a technique to further reduce costs was evaluated. Single nucleotide polymorphism performance was generally high, and species-specific single nucleotide polymorphisms proved suitable for diverse applications. The multi-species single nucleotide polymorphism array approach reported here could be transferred to other species to achieve cost savings resulting from the increased throughput when several projects use the same array, and the pooling technique adds another highly promising advancement to additionally decrease genotyping costs by half.


Assuntos
Polimorfismo de Nucleotídeo Único , Seleção Artificial , Animais , Genótipo , Genômica/métodos , Fenótipo
13.
Genes Brain Behav ; 22(6): e12858, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37519068

RESUMO

Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Metilação de DNA , Masculino , Feminino , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Seleção Artificial , Epigênese Genética , Encéfalo/metabolismo , Hipocampo/metabolismo
14.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439323

RESUMO

In general, sustained high rates of physical activity require a high maximal aerobic capacity (V̇O2,max), which may also necessitate a high basal aerobic metabolism (BMR), given that the two metabolic states are linked via shared organ systems, cellular properties and metabolic pathways. We tested the hypotheses that (a) selective breeding for high voluntary exercise in mice would elevate both V̇O2,max and BMR, and (b) these increases are accompanied by increases in the size of some internal organs (ventricle, triceps surae muscle, liver, kidney, spleen, lung, brain). We measured 72 females from generations 88 and 96 of an ongoing artificial selection experiment comprising four replicate High Runner (HR) lines bred for voluntary daily wheel-running distance and four non-selected control lines. With body mass as a covariate, HR lines as a group had significantly higher V̇O2,max (+13.6%, P<0.0001), consistent with previous studies, but BMR did not significantly differ between HR and control lines (+6.5%, P=0.181). Additionally, HR mice did not statistically differ from control mice for whole-body lean or fat mass, or for the mass of any organ collected (with body mass as a covariate). Finally, mass-independent V̇O2,max and BMR were uncorrelated (r=0.073, P=0.552) and the only statistically significant correlation with an organ mass was for V̇O2,max and ventricle mass (r=0.285, P=0.015). Overall, our results indicate that selection for a behavioral trait can yield large changes in behavior without proportional modifications to underlying morphological or physiological traits.


Assuntos
Metabolismo Basal , Seleção Artificial , Feminino , Camundongos , Animais , Músculo Esquelético/fisiologia , Fenótipo , Ventrículos do Coração
15.
Carbohydr Polym ; 316: 121030, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321727

RESUMO

Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and ß-glucan. The highest fructan and ß-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of ß-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and ß-glucan content, and larger building blocks in amylopectin.


Assuntos
Hordeum , beta-Glucanas , Amilopectina/química , Hordeum/química , Seleção Artificial , Estrutura Molecular , Amido/química , Amilose/química
16.
Neurosci Biobehav Rev ; 152: 105292, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353047

RESUMO

Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.


Assuntos
Comportamento Animal , Seleção Artificial , Ratos , Animais , Ratos Wistar , Depressão/genética , Ansiedade/genética , Comorbidade , Modelos Animais de Doenças
17.
Trop Anim Health Prod ; 55(2): 132, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964827

RESUMO

The objective of this study was to estimate the genetic parameters for feed efficiency-related traits and their genetic correlations with growth, male fertility, and carcass traits using multi-trait analysis in Guzerat cattle. Further, it aimed to predict the direct and correlated responses for feed efficiency traits when selection was applied for growth, male fertility, and carcass traits. The evaluated traits were adjusted weight at 120 (W120), 210 (W210), 365 (W365), and 450 days of age (W450), adjusted scrotal circumference at 365 days of age (SC365) and at 450 days of age (SC450), scrotal circumference, ribeye area (REA), backfat thickness (BFT), rump fat thickness (RFT), residual feed intake (RFI), and dry matter intake (DMI). The genetic parameters were obtained by the restricted maximum likelihood method (REML), using an animal model in multi-trait analyses. The heritability estimates for W120, W210, W365, W450, SC365, and SC450 varied from low to high (0.17 to 0.39). The carcass traits, REA, BFT, and RFT, displayed low to moderate heritability estimates, 0.27, 0.10, and 0.31, respectively. The heritability estimates for RFI (0.15) and DMI (0.23) were low and moderate, respectively. The RFI showed low genetic correlations with growth traits, ranging from - 0.07 to 0.22, from 0.03 to 0.05 for scrotal circumference, and from - 0.35 to 0.16 for carcass, except for DMI, which ranged from 0.42 to 0.46. The RFI and DMI presented enough additive genetic variability to be used as selection criteria in Guzerat breed genetic improvement program. Additionally, the response to selection for RFI would be higher when selection is performed directly for this trait. The selection for residual feed intake would not promote unfavorable correlated responses for scrotal circumference, carcass (yield and finish), and growth traits. Therefore, the selection for more efficient animals would not compromise the productive, reproductive, and carcass performance, contributing to reduce the production costs, increasing the profitability and sustainability of beef cattle production in tropical areas.


Assuntos
Bovinos , Fenômenos Fisiológicos da Nutrição , Escroto , Aumento de Peso , Bovinos/fisiologia , Tecido Adiposo/anatomia & histologia , Composição Corporal/genética , Ingestão de Alimentos/fisiologia , Fertilidade/genética , Fenômenos Fisiológicos da Nutrição/genética , Escroto/anatomia & histologia , Seleção Artificial , Aumento de Peso/genética , Animais
18.
Mol Biol Rep ; 50(3): 2795-2812, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592290

RESUMO

Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.


Assuntos
Oryza , Humanos , Oryza/metabolismo , Inundações , Ecossistema , Seleção Artificial , Adaptação Fisiológica/genética
19.
Genetics ; 223(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305689

RESUMO

Replicate lines under uniform selection often evolve in different ways. Previously, analyses using whole-genome sequence data for individual mice (Mus musculus) from 4 replicate High Runner lines and 4 nonselected control lines demonstrated genomic regions that have responded consistently to selection for voluntary wheel-running behavior. Here, we ask whether the High Runner lines have evolved differently from each other, even though they reached selection limits at similar levels. We focus on 1 High Runner line (HR3) that became fixed for a mutation at a gene of major effect (Myh4Minimsc) that, in the homozygous condition, causes a 50% reduction in hindlimb muscle mass and many pleiotropic effects. We excluded HR3 from SNP analyses and identified 19 regions not consistently identified in analyses with all 4 lines. Repeating analyses while dropping each of the other High Runner lines identified 12, 8, and 6 such regions. (Of these 45 regions, 37 were unique.) These results suggest that each High Runner line indeed responded to selection somewhat uniquely, but also that HR3 is the most distinct. We then applied 2 additional analytical approaches when dropping HR3 only (based on haplotypes and nonstatistical tests involving fixation patterns). All 3 approaches identified 7 new regions (as compared with analyses using all 4 High Runner lines) that include genes associated with activity levels, dopamine signaling, hippocampus morphology, heart size, and body size, all of which differ between High Runner and control lines. Our results illustrate how multiple solutions and "private" alleles can obscure general signatures of selection involving "public" alleles.


Assuntos
Genômica , Seleção Artificial , Camundongos , Animais , Tamanho Corporal , Locomoção
20.
Genes (Basel) ; 13(12)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36553539

RESUMO

The present equine genetic variation mirrors the deep influence of intensive breeding programs during the last 200 years. Here, we provide a comprehensive current state of knowledge on the trends and prospects on the variation in the equine male-specific region of the Y chromosome (MSY), which was assembled for the first time in 2018. In comparison with the other 12 mammalian species, horses are now the most represented, with 56 documented MSY genes. However, in contrast to the high variability in mitochondrial DNA observed in many horse breeds from different geographic areas, modern horse populations demonstrate extremely low genetic Y-chromosome diversity. The selective pressures employed by breeders using pedigree data (which are not always error-free) as a predictive tool represent the main cause of this lack of variation in the Y-chromosome. Nevertheless, the detailed phylogenies obtained by recent fine-scaled Y-chromosomal genotyping in many horse breeds worldwide have contributed to addressing the genealogical, forensic, and population questions leading to the reappraisal of the Y-chromosome as a powerful genetic marker to avoid the loss of biodiversity as a result of selective breeding practices, and to better understand the historical development of horse breeds.


Assuntos
Seleção Artificial , Cromossomo Y , Cavalos/genética , Animais , Masculino , Cromossomo Y/genética , Filogenia , Linhagem , Polimorfismo de Nucleotídeo Único , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...