Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.653
Filtrar
1.
Sci Adv ; 10(11): eadk1273, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478605

RESUMO

Sex-specific behaviors are critical for reproduction and species survival. The sex-specifically spliced transcription factor fruitless (fru) helps establish male courtship behaviors in invertebrates. Forcing male-specific fru (fruM) splicing in Drosophila melanogaster females produces male-typical behaviors while disrupting female-specific behaviors. However, whether fru's joint role in specifying male and inhibiting female behaviors is conserved across species is unknown. We used CRISPR-Cas9 to force FruM expression in female Drosophila virilis, a species in which males and females produce sex-specific songs. In contrast to D. melanogaster, in which one fruM allele is sufficient to generate male behaviors in females, two alleles are needed in D. virilis females. D. virilis females expressing FruM maintain the ability to sing female-typical song as well as lay eggs, whereas D. melanogaster FruM females cannot lay eggs. These results reveal potential differences in fru function between divergent species and underscore the importance of studying diverse behaviors and species for understanding the genetic basis of sex differences.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Feminino , Masculino , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corte , Comportamento Sexual Animal , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo
2.
Behav Brain Funct ; 20(1): 5, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493127

RESUMO

Fruit fly courtship behaviors composed of a series of actions have always been an important model for behavioral research. While most related studies have focused only on total courtship behaviors, specific courtship elements have often been underestimated. Identifying these courtship element details is extremely labor intensive and would largely benefit from an automatic recognition system. To address this issue, in this study, we established a vision-based fly courtship behavior recognition system. The system based on the proposed image processing methods can precisely distinguish body parts such as the head, thorax, and abdomen and automatically recognize specific courtship elements, including orientation, singing, attempted copulation, copulation and tapping, which was not detectable in previous studies. This system, which has high identity tracking accuracy (99.99%) and high behavioral element recognition rates (> 97.35%), can ensure correct identification even when flies completely overlap. Using this newly developed system, we investigated the total courtship time, and proportion, and transition of courtship elements in flies across different ages and found that male flies adjusted their courtship strategy in response to their physical condition. We also identified differences in courtship patterns between males with and without successful copulation. Our study therefore demonstrated how image processing methods can be applied to automatically recognize complex animal behaviors. The newly developed system will largely help us investigate the details of fly courtship in future research.


Assuntos
Corte , Comportamento Sexual Animal , Animais , Masculino , Comportamento Sexual Animal/fisiologia , Drosophila/fisiologia , Comportamento Animal , Copulação
3.
Sci Rep ; 14(1): 6411, 2024 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494531

RESUMO

Physiological status can influence social behavior, which in turn can affect physiology and health. Previously, we reported that tumor growth in Drosophila virgin females depends on the social context, but did not investigate the underlying physiological mechanisms. Here, we sought to characterize the signal perceived between tumorous flies, ultimately discovering that the tumor suppressive effect varies depending on reproductive status. Firstly, we show that the tumor suppressive effect is neither dependent on remnant pheromone-like products nor on the microbiota. Transcriptome analysis of the heads of these tumorous flies reveals social-dependent gene-expression changes related to nervous-system activity, suggesting that a cognitive-like relay might mediate the tumor suppressive effect. The transcriptome also reveals changes in the expression of genes related to mating behavior. Surprisingly, we observed that this social-dependent tumor-suppressive effect is lost in fertilized females. After mating, Drosophila females change their behavior-favoring offspring survival-in response to peptides transferred via the male ejaculate, a phenomenon called "male manipulation". Remarkably, the social-dependent tumor suppressive effect is restored in females mated by sex-peptide deficient males. Since male manipulation has likely been selected to favor male gene transmission, our findings indicate that this evolutionary trait impedes social-dependent tumor growth slowdown.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Masculino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Comportamento Sexual Animal/fisiologia , Peptídeos/metabolismo , Reprodução
4.
Ecol Lett ; 27(3): e14404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519842

RESUMO

Behavioural flexibility might help animals cope with costs of genetic variants under selection, promoting genetic adaptation. However, it has proven challenging to experimentally link behavioural flexibility to the predicted compensation of population-level fitness. We tested this prediction using the field cricket Teleogryllus oceanicus. In Hawaiian populations, a mutation silences males and protects against eavesdropping parasitoids. To examine how the loss of this critical acoustic communication signal impacts offspring production and mate location, we developed a high-resolution, individual-based tracking system for low-light, naturalistic conditions. Offspring production did not differ significantly in replicate silent versus singing populations, and fitness compensation in silent conditions was associated with significantly increased locomotion in both sexes. Our results provide evidence that flexible behaviour can promote genetic adaptation via compensation in reproductive output and suggest that rapid evolution of animal communication systems may be less constrained than previously appreciated.


Assuntos
Críquete , Gryllidae , Masculino , Feminino , Animais , Comportamento Sexual Animal , Vocalização Animal , Havaí , Mutação , Gryllidae/genética , Evolução Biológica
5.
Science ; 383(6689): 1368-1373, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513020

RESUMO

Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by Heliconius butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two Heliconius species have evolved the same preferences for red patterns by exchanging genetic material through hybridization. Neural expression of regucalcin1 correlates with visual preference across populations, and disruption of regucalcin1 with CRISPR-Cas9 impairs courtship toward conspecific females, providing a direct link between gene and behavior. Our results support a role for hybridization during behavioral evolution and show how visually guided behaviors contributing to adaptation and speciation are encoded within the genome.


Assuntos
Borboletas , Preferência de Acasalamento Animal , Animais , Feminino , Borboletas/genética , Comportamento Sexual Animal , Genoma , Hibridização Genética , Seleção Sexual
6.
Proc Biol Sci ; 291(2019): 20240099, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503332

RESUMO

In many species, establishing and maintaining a territory is critical to survival and reproduction, and an animal's ability to do so is strongly influenced by the presence and density of competitors. Here we manipulate social conditions to study the alternative reproductive tactics displayed by genetically identical, age-matched laboratory mice competing for territories under ecologically realistic social environmental conditions. We introduced adult males and females of the laboratory mouse strain C57BL/6J into a large, outdoor field enclosure containing defendable resource zones under one of two social conditions. We first created a low-density social environment, such that the number of available territories exceeded the number of males. After males established stable territories, we introduced a pulse of intruder males and observed the resulting defensive and invasive tactics employed. In response to this change in social environment, males with large territories invested more in patrolling but were less effective at excluding intruder males as compared with males with small territories. Intruding males failed to establish territories and displayed an alternative tactic featuring greater exploration as compared with genetically identical territorial males. Alternative tactics did not lead to equal reproductive success-males that acquired territories experienced greater survival and had greater access to females.


Assuntos
Comportamento Sexual Animal , Condições Sociais , Masculino , Feminino , Camundongos , Animais , Comportamento Sexual Animal/fisiologia , Camundongos Endogâmicos C57BL , Territorialidade , Reprodução/fisiologia
7.
Proc Biol Sci ; 291(2017): 20231848, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38412966

RESUMO

Theories of ageing predict that investment in reproduction will trade-off against survival and later-life reproduction. Recent evidence from invertebrates suggests that just perceiving cues of a potential mate's presence can reduce lifespan, particularly in males, and that activation of neuroendocrine reward pathways associated with mating can alleviate these effects. Whether similar effects occur in vertebrates remains untested. We tested whether exposure to olfactory cues from the opposite sex would influence mortality and reproductive senescence in male mice. We observed that males exposed to female olfactory cues from middle- to old age (from 10 to 24 months of age) showed reduced late-life fertility, irrespective of whether they had also been allowed to mate with females earlier in life. Males that were exposed to female odours in conjunction with mating also showed an increased mortality rate across the exposure period, indicating that olfactory cues from females can increase male mortality in some environments. Our results show that exposure to female odours can influence reproductive ageing and mortality in male mice, highlighting that sensory perception of mates may be an important driver of life-history trade-offs in mammals.


Assuntos
Sinais (Psicologia) , Comportamento Sexual Animal , Feminino , Masculino , Camundongos , Animais , Comportamento Sexual Animal/fisiologia , Reprodução/fisiologia , Envelhecimento/fisiologia , Fertilidade , Mamíferos
8.
Proc Biol Sci ; 291(2016): 20240054, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351799

RESUMO

In males, large testes size signifies high sperm production and is commonly linked to heightened sperm competition levels. It may also evolve as a response to an elevated risk of sperm depletion due to multiple mating or large clutch sizes. Conversely, weapons, mate or clutch guarding may allow individuals to monopolize mating events and preclude sperm competition, thereby reducing the selection of large testes. Herein, we examined how paternal care, sexual size dimorphism (SSD), weaponry and female fecundity are linked to testes size in glassfrogs. We found that paternal care was associated with a reduction in relative testes size, suggesting an evolutionary trade-off between testes size and parenting. Although females were slightly larger than males and species with paternal care tended to have larger clutches, there was no significant relationship between SSD, clutch size and relative testes size. These findings suggest that the evolution of testes size in glassfrogs is influenced by sperm competition risk, rather than sperm depletion risk. We infer that clutch guarding precludes the risk of fertilization by other males and consequently diminishes selective pressure for larger testes. Our study highlights the prominent role of paternal care in the evolution of testes size in species with external fertilization.


Assuntos
Poder Familiar , Testículo , Humanos , Masculino , Feminino , Animais , Sêmen , Espermatozoides/fisiologia , Reprodução , Comportamento Sexual Animal/fisiologia
9.
Proc Natl Acad Sci U S A ; 121(10): e2310841121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412134

RESUMO

Connectomics research has made it more feasible to explore how neural circuits can generate multiple outputs. Female sexual drive provides a good model for understanding reversible, long-term functional changes in motivational circuits. After emerging, female flies avoid male courtship, but they become sexually receptive over 2 d. Mating causes females to reject further mating for several days. Here, we report that pC1 neurons, which process male courtship and regulate copulation behavior, exhibit increased CREB (cAMP response element binding protein) activity during sexual maturation and decreased CREB activity after mating. This increased CREB activity requires the neuropeptide Dh44 (Diuretic hormone 44) and its receptors. A subset of the pC1 neurons secretes Dh44, which stimulates CREB activity and increases expression of the TRP channel Pyrexia (Pyx) in more pC1 neurons. This, in turn, increases pC1 excitability and sexual drive. Mating suppresses pyx expression and pC1 excitability. Dh44 is orthologous to the conserved corticotrophin-releasing hormone family, suggesting similar roles in other species.


Assuntos
Proteínas de Drosophila , Neuropeptídeos , Animais , Masculino , Feminino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Neuropeptídeos/metabolismo , Copulação/fisiologia , Corte , Hormônios , Comportamento Sexual Animal/fisiologia
10.
Sci Rep ; 14(1): 3432, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341450

RESUMO

Many nocturnally active fireflies use precisely timed bioluminescent patterns to identify mates, making them especially vulnerable to light pollution. As urbanization continues to brighten the night sky, firefly populations are under constant stress, and close to half of the species are now threatened. Ensuring the survival of firefly biodiversity depends on a large-scale conservation effort to monitor and protect thousands of populations. While species can be identified by their flash patterns, current methods require expert measurement and manual classification and are infeasible given the number and geographic distribution of fireflies. Here we present the application of a recurrent neural network (RNN) for accurate automated firefly flash pattern classification. Using recordings from commodity cameras, we can extract flash trajectories of individuals within a swarm and classify their species with an accuracy of approximately seventy percent. In addition to its potential in population monitoring, automated classification provides the means to study firefly behavior at the population level. We employ the classifier to measure and characterize the variability within and between swarms, unlocking a new dimension of their behavior. Our method is open source, and deployment in community science applications could revolutionize our ability to monitor and understand firefly populations.


Assuntos
Vaga-Lumes , Comportamento Sexual Animal , Humanos , Animais
11.
Oecologia ; 204(1): 119-132, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172416

RESUMO

Mismatches between current and potential species distributions are commonplace due to lags in the response of populations to changing environmental conditions. The prevailing mating system may contribute to such lags where it leads to mating failure at the range edge, but how active dispersers might mitigate these lags using social information to inform dispersal strategies warrants greater exploration. We used an individual-based model to explore how different mating systems for species that actively search for habitat can impose a filter on the ability to colonise empty, fragmented landscapes, and explored how using social information during dispersal can mitigate the lags caused by more constrained mating systems. The mate-finding requirements implemented in two-sex models consistently led to slower range expansion compared to those that were not mate limited (i.e., female only models), even when mating was polygynous. A mate-search settlement strategy reduced the proportion of unmated females at the range edge but had little impact on rate of spread. In contrast, a negative density-dependent settlement strategy resulted in much faster spread, which could be explained by a greater number of long-distance dispersal events. Our findings suggest that even low rates of mating failure at the range edge can lead to considerable lags in range expansion, though dispersal strategies that favour colonising more distant, sparsely occupied habitat patches may effectively mitigate these lags.


Assuntos
Ecossistema , Comportamento Sexual Animal , Feminino , Animais
12.
Curr Biol ; 34(4): 808-824.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38295797

RESUMO

Many motor control systems generate multiple movements using a common set of muscles. How are premotor circuits able to flexibly generate diverse movement patterns? Here, we characterize the neuronal circuits that drive the distinct courtship songs of Drosophila melanogaster. Male flies vibrate their wings toward females to produce two different song modes-pulse and sine song-which signal species identity and male quality. Using cell-type-specific genetic reagents and the connectome, we provide a cellular and synaptic map of the circuits in the male ventral nerve cord that generate these songs and examine how activating or inhibiting each cell type within these circuits affects the song. Our data reveal that the song circuit is organized into two nested feedforward pathways with extensive reciprocal and feedback connections. The larger network produces pulse song, the more complex and ancestral song form. A subset of this network produces sine song, the simpler and more recent form. Such nested organization may be a common feature of motor control circuits in which evolution has layered increasing flexibility onto a basic movement pattern.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Feminino , Masculino , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Corte , Comportamento Sexual Animal/fisiologia , Neurônios/fisiologia
13.
J Evol Biol ; 37(1): 28-36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285664

RESUMO

Theory predicts that traits with heightened condition dependence, such as sexually selected traits, should be affected by inbreeding to a greater degree than other traits. The presence of environmental stress may compound the negative consequences of inbreeding depression. In this study, we examined inbreeding depression across multiple traits and whether it increased with a known form of environmental stress. We conducted our experiment using both sexes of the sexually dimorphic leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae). Adult male cactus bugs have enlarged hind legs used as weapons in male-male contests; these traits, and their homologue in females, have been previously found to exhibit high condition dependence. In this study, we employed a small developmental group size as an environmental stress challenge. Nymph N. femorata aggregate throughout their juvenile stages, and previous work has shown the negative effects of small group size on survivorship and body size. We found evidence of inbreeding depression for survival and seven of the eight morphological traits measured in both sexes. Inbreeding depression was higher for the size of the male weapon and the female homolog. Additionally, small developmental group size negatively affected survival to adulthood. However, small group size did not magnify the effects of inbreeding on morphological traits. These findings support the hypothesis that traits with heightened condition dependence exhibit higher levels of inbreeding depression.


Assuntos
Heterópteros , Depressão por Endogamia , Animais , Feminino , Masculino , Heterópteros/anatomia & histologia , Comportamento Sexual Animal , Fenótipo , Tamanho Corporal , Endogamia
14.
J Evol Biol ; 37(1): 110-122, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285662

RESUMO

Animals often mimic the behaviours or signals of conspecifics of the opposite sex while courting. We explored the potential functions of a novel female-like signal type in the courtship displays of male Enchenopa treehoppers. In these plant-feeding insects, males produce plant-borne vibrational advertisement signals, to which females respond with their own duetting signals. Males also produce a signal type that resembles the female duetting responses. We experimentally tested whether this signal modifies the behaviour of receivers. First, we tested whether the female-like signal would increase the likelihood of a female response. However, females were as likely to respond to playbacks with or without them. Second, we tested whether the female-like signal would inhibit competing males, but males were as likely to produce displays after playbacks with or without them. Hence, we found no evidence that this signal has an adaptive function, despite its presence in the courtship display, where sexual selection affects signal features. Given these findings, we also explored whether the behavioural and morphological factors of the males were associated with the production of the female-like signal. Males that produced this signal had higher signalling effort (longer and more frequent signals) than males that did not produce it, despite being in worse body condition. Lastly, most males were consistent over time in producing the female-like signal or not. These findings suggest that condition-dependent or motivational factors explain the presence of the female-like signal. Alternatively, this signal might not bear an adaptive function, and it could be a way for males to warm up or practice signalling, or even be a by-product of how signals are transmitted through the plant. We suggest further work that might explain our puzzling finding that a signal in the reproductive context might not have an adaptive function.


Assuntos
Hemípteros , Animais , Masculino , Feminino , Hemípteros/fisiologia , Comportamento Sexual Animal/fisiologia , Comunicação Animal , Insetos , Seleção Sexual
15.
Proc Natl Acad Sci U S A ; 121(3): e2312380120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38215185

RESUMO

Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has since followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appears to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, Sex Peptide Receptor, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Masculino , Evolução Biológica , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Reprodução/genética , Comportamento Sexual Animal
16.
J Econ Entomol ; 117(1): 218-229, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38195198

RESUMO

Endoclita signifer Walker is the most destructive wood-boring pest of Eucalyptus in China, causing significant economic and ecological damage. As an insect of the primitive Lepidoptera family Hepialidae, E. signifer fly and mat for only 10-20 min at dusk. The courtship and mating behavior of E. signifer adults and whether male moths release sex pheromones are still unknown, especially since transitory flight survival strategies in primitive moths differ from advanced moths like noctuids. In this study, we first observed the courtship and mating behavior of E. signifer by considering the effects of space and then analyzed extracts of male hairbrushes using gas chromatography-electroantennogram detection. Our results indicated that during the courtship period, flying males form courtship fields, lekking, and chase flying females before mating with them; E. signifer were more successful in mating in larger spaces (Length × Width × Height = 9.6 × 7 × 4 m); 5 compounds in the hairbrushes of the male moths which elicited antennal responses of 2 sexes, despite at high concentrations. Combined with it, indicating that communication between male and female may rely on male sex pheromones. These findings can serve as a basis for studying the mechanisms of sex communication in E. signifer and developing sex pheromone-based trapping techniques.


Assuntos
Lepidópteros , Mariposas , Atrativos Sexuais , Feminino , Masculino , Animais , Atrativos Sexuais/farmacologia , Feromônios/farmacologia , Corte , Comportamento Sexual Animal , Mariposas/fisiologia
17.
Am Nat ; 203(1): 92-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207138

RESUMO

AbstractIn chorusing species, conspecific interference exerts strong selection on signal form and timing to maximize conspicuousness and attractiveness within the signaling milieu. We investigated how túngara frog calling strategies were influenced by varied social environments and male phenotypes and how calling interactions influenced female preferences. When chorusing, túngara frog calls consist of a whine typically followed by one to three chucks. In experimental choruses we saw that as chorus size increased, calls increasingly had their chucks overlapped by the high-amplitude beginning section of other callers' whines. Playback experiments revealed that such overlap reduced the attractiveness of calls to females but that appending additional chucks mitigated this effect. Thus, more elaborate calls were preferred when calls suffered overlap, although they were not preferred when overlap was absent. In response to increasing risk of overlap in larger choruses, males increased call elaboration. However, males overwhelmingly produced two-chuck calls in even the largest choruses, despite our results suggesting that additional chucks would more effectively safeguard calls. Furthermore, aspects of male phenotypes predicted to limit call elaboration had negligible or uncertain effects, suggesting that other constraints are operating. These results highlight how complex interrelations among signal form, signaling interactions, and the social environment shape the evolution of communication in social species.


Assuntos
Comportamento Sexual Animal , Vocalização Animal , Animais , Feminino , Masculino , Vocalização Animal/fisiologia , Comportamento Sexual Animal/fisiologia , Anuros/fisiologia
18.
J Exp Zool A Ecol Integr Physiol ; 341(3): 307-321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247297

RESUMO

Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.


Assuntos
Encéfalo , Répteis , Feminino , Masculino , Animais , Reprodução/fisiologia , Testosterona , Comportamento Sexual Animal/fisiologia
19.
Physiol Behav ; 275: 114451, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176291

RESUMO

Early exposure of does to sexually active bucks triggers early puberty onset correlating with neuroendocrine changes. However, the sensory pathways that are stimulated by the male are still unknown. Here, we assessed whether responses to olfactory stimuli are modulated by social experience (exposure to males or not) and/or endocrine status (prepubescent or pubescent). We used a calcium imaging approach on goat sensory cells from the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). For both cell types, we observed robust responses to active male hair in females under three physiological conditions: prepubescent females isolated from males (ISOL PrePub), pubescent females exposed to males (INT Pub) and isolated females (ISOL Pub). Response analysis showed overall greater proportion of responses to buck hair in ISOL PrePub. We hypothesized that females would be more responsive to active buck hair during the prepubertal period, with numerous responses perhaps originating from immature neurons. We also observed a greater proportion of mature olfactory neurons in the MOE and VNO of INT Pub females suggesting that male exposure can induce plastic changes on olfactory cell function and organization. To determine whether stimulation by male odor can advance puberty, we exposed prepubescent does to active buck hair (ODOR). In both ODOR and females isolated from males (ISOL) groups, puberty was reached one month after females exposed to intact bucks (INT), suggesting that olfactory stimulation is not sufficient to trigger puberty.


Assuntos
Ovulação , Comportamento Sexual Animal , Animais , Feminino , Masculino , Comportamento Sexual Animal/fisiologia , Estações do Ano , Ovulação/fisiologia , Olfato , Cabras/fisiologia
20.
PLoS Genet ; 20(1): e1011054, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236837

RESUMO

Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation.


Assuntos
Drosophila melanogaster , Neuropeptídeos , Comportamento Sexual Animal , Humanos , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Comportamento Sexual Animal/fisiologia , Reprodução/genética , Recompensa , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...