Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.304
Filtrar
1.
Food Microbiol ; 120: 104490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431333

RESUMO

Sporeforming bacteria are a concern in some food raw materials, such as cocoa powder. Samples (n = 618) were collected on two farms and at several stages during cocoa powder manufacture in three commercial processing lines to determine the impact of each stage on bacterial spore populations. Mesophilic aerobic, mesophilic anaerobic, thermophilic aerobic, and Bacillus cereus spore populations were enumerated in all the samples. Genetic diversity in B. cereus strains (n = 110) isolated from the samples was examined by M13 sequence-based PCR typing, partial sequencing of the panC gene, and the presence/absence of ces and cspA genes. The counts of different groups of sporeforming bacteria varied amongst farms and processing lines. For example, the counts of mesophilic aerobic spore-forming (MAS) populations of cocoa bean fermentation were lower than 1 log spore/g in Farm 1 but higher than 4 log spore/g in Farm 2. B. cereus isolated from cocoa powder was also recovered from cocoa beans, nibs, and samples after roasting, refining, and pressing, which indicated that B. cereus spores persist throughout cocoa processing. Phylogenetic group IV was the most frequent (73%), along with processing. Strains from phylogenetic group III (14 %) did not show the ces gene's presence.


Assuntos
Bacillus cereus , Chocolate , Bacillus cereus/genética , Filogenia , Anaerobiose , Esporos Bacterianos/genética , Microbiologia de Alimentos , Contagem de Colônia Microbiana
2.
Environ Monit Assess ; 196(4): 352, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466376

RESUMO

With characterized for complex and maximum substance (suspended solids, broke up oil, a mixture of inorganic and chromium sulfides), tannery wastewater was subjected to a treatment process on removal of chemical oxygen demand (COD) via upstream anaerobic sludge blanket reactor where we found reduced departure efficiencies and that process limits were affected by the assortments in regular stacking rates, closeness of chromium, and sulfides. Hence, a combination of the aerobic-anaerobic hybrid reactor was set up for sequential treatment to determine possible COD reduction. This study investigated the biological degradation of tannery wastewater in a laboratory-scale sequential up-flow aerobic-anaerobic reactor. The aerobic zone at the top was packed with spherical ball-shaped polyhedral polypropylene, and the anaerobic zone at the bottom was packed medium with granular media. The aeration flow rate varied by 2 L/min, 4 L/min, and 6 L/min in the aerobic zone, and the reactor maintained an organic loading rate (OLR) of 5 kg COD/m3/d. Parameters like COD and gas yield assess the performance of the reactor. The maximum COD of 86% is removed in the anaerobic zone with an aeration rate of 6 L/min, and the 1800-mL methane gas yield is measured by the 29th day.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Monitoramento Ambiental , Cromo , Sulfetos , Eliminação de Resíduos Líquidos , Oxigênio
3.
Huan Jing Ke Xue ; 45(2): 1080-1089, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471945

RESUMO

Tetrachloroethylene (PCE) and trichloroethylene (TCE) are typical volatile halogenated organic compounds in groundwater that pose serious threats to the ecological environment and human health. To obtain an anaerobic microbial consortium capable of efficiently dechlorinating PCE and TCE to a non-toxic end product and to explore its potential in treating contaminated groundwater, an anaerobic microbial consortium W-1 that completely dechlorinated PCE and TCE to ethylene was obtained by repeatedly feeding PCE or TCE into the contaminated groundwater collected from an industrial site. The dechlorination rates of PCE and TCE were (120.1 ±4.9) µmol·ï¼ˆL·d)-1 and (172.4 ±21.8) µmol·ï¼ˆL·d)-1 in W-1, respectively. 16S rRNA gene amplicon sequencing and quantitative PCR (qPCR) showed that the relative abundance of Dehalobacter increased from 1.9% to 57.1%, with the gene copy number increasing by 1.7×107 copies per 1 µmol Cl- released when 98.3 µmol of PCE was dechlorinated to cis-1,2-dichloroethylene (cis-1,2-DCE). The relative abundance of Dehalococcoides increased from 1.1% to 53.8% when cis-1,2-DCE was reductively dechlorinated to ethylene. The growth yield of Dehalococcoides gene copy number increased by 1.7×108 copies per 1 µmol Cl- released for the complete reductive dechlorination of PCE to ethylene. The results indicated that Dehalobacter and Dehalococcoides cooperated to completely detoxify PCE. When TCE was used as the only electron acceptor, the relative abundance of Dehalococcoides increased from (29.1 ±2.4)% to (7.7 ±0.2)%, and gene copy number increased by (1.9 ±0.4)×108 copies per 1 µmol Cl- released, after dechlorinating 222.8 µmol of TCE to ethylene. The 16S rRNA gene sequence of Dehalococcoides LWT1, the main functional dehalogenating bacterium in enrichment culture W-1, was obtained using PCR and Sanger sequencing, and it showed 100% similarity with the 16S rRNA gene sequence of D. mccartyi strain 195. The anaerobic microbial consortium W-1 was also bioaugmented into the groundwater contaminated by TCE at a concentration of 418.7 µmol·L-1. The results showed that (69.2 ±9.8)% of TCE could be completely detoxified to ethylene within 28 days with a dechlorination rate of (10.3 ±1.5) µmol·ï¼ˆL·d)-1. This study can provide the microbial resource and theoretical guidance for the anaerobic microbial remediation in PCE or TCE-contaminated groundwater.


Assuntos
Chloroflexi , Dicloretos de Etileno , Tetracloroetileno , Tricloroetileno , Humanos , Anaerobiose , RNA Ribossômico 16S/genética , Etilenos , Dicloroetilenos , Biodegradação Ambiental , Chloroflexi/genética
4.
Water Sci Technol ; 89(5): 1179-1194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483492

RESUMO

The study investigated the denitrification effect of the iron autotrophic denitrification process for removing nitrite under anaerobic conditions, utilizing sponge iron as the electron donor. When the C/N ratio equaled 1, defined as the ratio of chemical oxygen demand to total nitrogen (TN), and the influent nitrite nitrogen (NO2--N) was at 80 mg/L, the average steady-state TN effluent concentration of this system was 41.94 mg/L during the 79-day experiment. The TN value exhibited a significant decrease compared to both the sponge iron system (68.69 mg/L) and the carbon source system (56.50 mg/L). Sponge iron is beneficial for providing an electron donor and ensuring an anaerobic system, fostering an environment that promotes microorganism growth while effectively inhibiting the conversion of nitrite to nitrate. In addition, carbon sources play a vital role in ensuring microorganism growth and reproduction, thereby aiding in TN removal. The optimal parameters based on the effectiveness of TN removal in the iron autotrophic denitrification system were determined to be s-Fe0 dosage of 30 g/L and C/N = 1.5. These results suggest that the iron autotrophic denitrification process, driven by sponge iron, can effectively remove nitrite under anaerobic conditions.


Assuntos
Desnitrificação , Nitritos , Anaerobiose , Reatores Biológicos , Carbono , Ferro , Nitrogênio
5.
Arch Microbiol ; 206(4): 141, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441685

RESUMO

A strictly anaerobic, motile bacterium, designated as strain Ai-910T, was isolated from the sludge of an anaerobic digestion tank in China. Cells were Gram-stain-negative rods. Optimal growth was observed at 38 °C (growth range 25-42 °C), pH 8.5 (growth range 5.5-10.5), and under a NaCl concentration of 0.06% (w/v) (range 0-2.0%). Major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The respiratory quinone was MK-7. Using xylose as the growth substrate, succinate was produced as the fermentation product. Phylogenetic analysis based on the 16 S rRNA gene sequences indicated that strain Ai-910T formed a distinct phylogenetic lineage that reflects a new genus in the family Marinilabiliaceae, sharing high similarities to Alkaliflexus imshenetskii Z-7010T (92.78%), Alkalitalea saponilacus SC/BZ-SP2T (92.51%), and Geofilum rubicundum JAM-BA0501T (92.36%). Genomic similarity (average nucleotide identity and digital DNA-DNA hybridization) values between strain Ai-910T and its phylogenetic neighbors were below 65.27 and 16.90%, respectively, indicating that strain Ai-910T represented a novel species. The average amino acid identity between strain Ai-910T and other related members of the family Marinilabiliaceae were below 69.41%, supporting that strain Ai-910T was a member of a new genus within the family Marinilabiliaceae. Phylogenetic, genomic, and phenotypic analysis revealed that strain Ai-910T was distinguished from other phylogenetic relatives within the family Marinilabiliaceae. The genome size was 3.10 Mbp, and the DNA G + C content of the isolate was 42.8 mol%. Collectively, differences of the phenotypic and phylogenetic features of strain Ai-910T from its close relatives suggest that strain Ai-910T represented a novel species in a new genus of the family Marinilabiliaceae, for which the name Xiashengella succiniciproducens gen. nov., sp. nov. was proposed. The type strain of Xiashengella succiniciproducens is Ai-910T (= CGMCC 1.17893T = KCTC 25,304T).


Assuntos
Bactérias , Ácido Succínico , Anaerobiose , Filogenia , Succinatos , DNA
6.
Curr Microbiol ; 81(5): 117, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492090

RESUMO

Atrazine is an important herbicide that has been widely used for weed control in recent decades. However, with the extensive use of atrazine, its residue seriously pollutes the environment. Therefore, the microbial degradation and detoxification of atrazine have received extensive attention. To date, the aerobic degradation pathway of atrazine has been well studied; however, little is known about its anaerobic degradation in the environment. In this study, an anaerobic microbial consortium capable of efficiently degrading atrazine was enriched from soil collected from an herbicide-manufacturing plant. Six metabolites including hydroxyatrazine, deethylatrazine, N-isopropylammelide, deisopropylatrazine, cyanuric acid, and the novel metabolite 4-ethylamino-6-isopropylamino-1,3,5-triazine (EIPAT) were identified, and two putative anaerobic degradation pathways of atrazine were proposed: a hydrolytic dechlorination pathway is similar to that seen in aerobic degradation, and a novel pathway initiated by reductive dechlorination. During enrichment, Denitratisoma, Thiobacillus, Rhodocyclaceae_unclassified, Azospirillum, and Anaerolinea abundances significantly increased, dominating the enriched consortium, indicating that they may be involved in atrazine degradation. These findings provide valuable evidence for elucidating the anaerobic catabolism of atrazine and facilitating anaerobic remediation of residual atrazine pollution.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Atrazina/análise , Atrazina/química , Atrazina/metabolismo , Herbicidas/metabolismo , Solo/química , Anaerobiose , Consórcios Microbianos , Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo/metabolismo
7.
Sci Total Environ ; 922: 171339, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428595

RESUMO

Inappropriate sterilization strategies inhibit microalgal growth when culturing microalgae with anaerobic digestate. This study aimed to scientifically select a low-cost disinfection pretreatment of anaerobic digestate for large-scale microalgae cultivations. In this work, three different methods, including autoclaving, ultraviolet or NaClO treatments, were employed to sterilize the municipal anaerobic digestate. Scenedesmus quadricauda was then cultured in diluted liquid digestate for the simultaneous lipid production and nutrient removal. The results indicated that the growth of S. quadricauda was inhibited after NaClO treatment due to the residual free chlorine. The 15-min ultraviolet effectively mitigated microbial contamination and increasing nutrient availability, enhancing the electron transport of microalgal photosynthesis. After 6-days cultivation, the microalgal biomass concentration of the ultraviolet group was 1.09 g/L, comparable to that of the autoclaving group (1.15 g/L). High nutrient removal efficiency was observed: COD (93.30 %), NH4+-N (92.56 %), TN (85.82 %) and TP (95.12 %). Moreover, S. quadricauda outcompeted the indigenous microorganisms, contributing to its dominance in the culture system of ultraviolet group. The facultative anaerobe Comamonadaceae and aerobes Moraxellaceae, rather than strict anaerobe Paludibacteraceae and Bacteroidetes_vadinHA17, played vital roles in synergistic removal of contaminants by bacteria and algae. The potential competition for nitrogen and phosphorus by bacteria contributed to the ultraviolet group having the greatest lipid content (48.19 %). Therefore, this work suggested using 15-min ultraviolet treatment for anaerobic digestate in large-scale microalgae cultivation.


Assuntos
Microalgas , Scenedesmus , Raios Ultravioleta , Anaerobiose , Bactérias , Biomassa , Nitrogênio , Bacteroidetes , Lipídeos
8.
Water Res ; 253: 121354, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428359

RESUMO

DNA-based monitoring of microbial communities that are responsible for the performance of anaerobic digestion of sewage wastes has the potential to improve resource recoveries for wastewater treatment facilities. By treating sludge with propidium monoazide (PMA) prior to amplicon sequencing, this study explored how the presence of DNA from dead microbial biomass carried over with feed sludge may mislead process-relevant biomarkers, and whether primer choice impacts such assessments. Four common primers were selected for amplicon preparation, also to determine if universal primers have sufficient taxonomic or functional coverage for monitoring ecological performance; or whether two domain-specific primers for Bacteria and Archaea are necessary. Anaerobic sludges of three municipal continuously stirred-tank reactors in Victoria, Australia, were sampled at one time-point. A total of 240 amplicon libraries were sequenced on a Miseq using two universal and two domain-specific primer pairs. Untargeted metabolomics was chosen to complement biological interpretation of amplicon gene-based functional predictions. Diversity, taxonomy, phylogeny and functional potentials were systematically assessed using PICRUSt2, which can predict community wide pathway abundance. The two chosen universal primers provided similar diversity profiles of abundant Bacteria and Archaea, compared to the domain-specific primers. About 16 % of all detected prokaryotic genera covering 30 % of total abundances and 6 % of PICRUSt2-estimated pathway abundances were affected by PMA. This showed that dead biomass in the anaerobic digesters impacted DNA-based assessments, with implications for predicting active processes, such as methanogenesis, denitrification or the identification of organisms associated with biological foams. Hence, instead of running two sequencing runs with two different domain-specific primers, we propose conducting PMA-seq with universal primer pairs for routine performance monitoring. However, dead sludge biomass may have some predictive value. In principal component analysis the compositional variation of 239 sludge metabolites resembled that of 'dead-plus-alive' biomass, suggesting that dead organisms contributed to the potentially process-relevant sludge metabolome.


Assuntos
Monitoramento Biológico , Esgotos , Esgotos/microbiologia , Anaerobiose , Bactérias/metabolismo , Archaea/metabolismo , DNA/metabolismo , Vitória , Reatores Biológicos/microbiologia , Metano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
9.
Waste Manag ; 178: 331-338, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430747

RESUMO

The combination of microbial electrolytic cells and anaerobic digestion (MEC-AD) became an efficient method to improve CO2 capture for waste sludge treatment. By adding CaCl2 and wollastonite, the CO2 sequestration effect with mineral carbonation under 0 V and 0.8 V was studied. The results showed that applied voltage could increase dissolved chemical oxygen demand (SCOD) degradation efficiency and biogas yield effectively. In addition, wollastonite and CaCl2 exhibited different CO2 sequestration performances due to different Ca2+ release characteristics. Wollastonite appeared to have a better CO2 sequestration effect and provided a wide margin of pH change, but CaCl2 released Ca2+ directly and decreased the pH of the MEC-AD system. The results showed methane yield reached 137.31 and 163.50 mL/g SCOD degraded and CO2 content of biogas is only 12.40 % and 2.22 % under 0.8 V with CaCl2 and wollastonite addition, respectively. Finally, the contribution of chemical CO2 sequestration by mineral carbonation and biological CO2 sequestration by hydrogenotrophic methanogenesis was clarified with CaCl2 addition. The chemical and biological CO2 sequestration percentages were 46.79 % and 53.21 % under 0.8 V, respectively. With the increased applied voltage, the contribution of chemical CO2 sequestration rose accordingly. The findings in this study are of great significance for further comprehending the mechanism of calcium addition on CO2 sequestration in the MEC-AD system and providing guidance for the later engineering application.


Assuntos
Compostos de Cálcio , Dióxido de Carbono , Esgotos , Silicatos , Dióxido de Carbono/química , Anaerobiose , Biocombustíveis , Cloreto de Cálcio , Minerais , Carbonatos , Metano , Reatores Biológicos
10.
Bioresour Technol ; 398: 130515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437970

RESUMO

Two kinds of Fe2O3-modified digestate-derived biochar (BC) were prepared and their effects on anaerobic digestion (AD) of kitchen waste (40.0 g VS/L) were investigated, with BC and Fe2O3 addition used as a comparison. The results showed that Fe2O3-modified BC (Fe2O3-BC1 prepared by co-precipitation and Fe2O3-BC2 by impregnation) significantly increased methane yield (20.8 % and 16.4 %, respectively) and reduced volatile fatty acid concentration (35.6 % and 29.6 %, respectively). Microbial high-throughput analysis revealed that Fe2O3-modified BC selectively enriched Clostridium (47.3 %) and Methanosarcina (72.2 %), suggesting that direct interspecies electron transfer contributing to improved biogas production performance was established and enhanced. Correlation analysis indicated that biogas production performance was improved by the larger specific surface area (83.4 m2/g), pore volume (0.101 cm3/g), and iron content (97.4 g/Kg) of the BC. These results offer insights for enhancing the efficacy of AD processes using Fe2O3-modified BCs as additives.


Assuntos
Biocombustíveis , Carvão Vegetal , Compostos Férricos , Ferro , Anaerobiose
11.
J Environ Manage ; 355: 120565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461637

RESUMO

Raw liquid anaerobic digestate was synthesised into nutrient-dense solid digestates via acidification and evaporation. Acidification retained ammonium in the digestate whilst also donating the anion to free ammonium to form an ammonium salt. Digestate was treated with the addition of sulphuric, nitric, and phosphoric acid resulting in the formation of ammonium sulphate, ammonium nitrate and ammonium phosphate, respectively then evaporated into a solid fertiliser product. FTIR, XRD and SEM-EDS collectively confirm that the addition of acids completely converted the free ammonium in the raw digestate into their respective ammonium salt counterparts. Compounds of potassium chloride, silicon dioxide, calcium carbonate, magnesium ammonium phosphate, sodium nitrate, and sodium chloride were identified in all solid digestate samples. Plant growth and grain yield was higher in urea ammonium nitrate, raw liquid digestate and acidified digestate products compared to control and unacidified solid digestate. Urea ammonium nitrate and ammonium nitrate solid digestate had the highest dry shoot, likely due to the high available nitrogen found in both fertilisers. Overall, acidification and evaporation of liquid digestate can efficiently transform it into a valuable solid fertiliser with a high nutrient density. This process not only has the potential to mitigate handling and storage constraints of low nutrient density digestate in anaerobic digestion facilities but also offers a sustainable alternative to conventional fertilisers.


Assuntos
Compostos de Amônio , Nitratos , Eliminação de Resíduos , Ureia/análogos & derivados , Resíduos , Alimentos , Fertilizantes , Anaerobiose , Eliminação de Resíduos/métodos , Nitrogênio/análise
12.
J Environ Manage ; 355: 120194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430875

RESUMO

Strengthening the activity competitiveness of anaerobic ammonium oxidation (anammox) bacteria (AnAOB) under low nitrogen conditions is indispensable for mainstream anammox application. This study demonstrates that sponge iron addition (42.8 g/L) effectively increased apparent AnAOB activity and extracellular polymeric substance (EPS) production of low load anammox biofilms cultivated under low (influent of 60 mg N/L) and even ultra-low (influent of 10 mg N/L) nitrogen conditions. In-situ batch tests showed that after sponge iron addition the specific AnAOB activity in the low and ultra-low nitrogen systems further increased to 1.18 and 0.47 mmol/g VSS/h, respectively, with an apparent growth rate for AnAOB of 0.011 ± 0.001 d-1 and 0.004 ± 0.001 d-1, respectively. The averaged EPS concentration of anammox biofilm in both low (from 35.84 to 71.05 mg/g VSS) and ultra-low (from 44.14 to 57.59 mg/g VSS) nitrogen systems increased significantly, while a higher EPS protein/polysaccharide ratio, which was positively correlated with AnAOB activity, was observed in the low nitrogen system (3.54 ± 0.34) than that in the ultra-low nitrogen system (1.82 ± 0.10). In addition, Candidatus Brocadia was detected as dominant AnAOB in the anammox biofilm under the low (12.2 %) and ultra-low (24.7 %) nitrogen condition. Notably, the genus Streptomyces (26.3 %), capable for funge-like codenitrification, increased unexpectedly in the low nitrogen system, but not affecting the nitrogen removal performance. Therefore, using sponge iron to strengthen AnAOB activity under low nitrogen conditions is feasible, providing support for mainstream anammox applications.


Assuntos
Compostos de Amônio , Nitrogênio , Matriz Extracelular de Substâncias Poliméricas , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Biofilmes , Oxirredução , Esgotos , Desnitrificação , Anaerobiose
13.
J Environ Manage ; 355: 120449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432012

RESUMO

N-acyl homoserine lactones (AHLs) function as signaling molecules influencing microbial community dynamics. This study investigates the impact of exogenously applied AHLs on methane production during waste-activated sludge (WAS) anaerobic digestion (AD). Nine AHL types, ranging from 10-4 to 10 µg/g VSS, were applied, comparing microbial community composition under optimal AHL concentrations. Firmicutes, Bacteroidetes, Chloroflexi, and Proteobacteria were identified in anaerobic digesters with C4-HSL, C6-HSL, and C8-HSL. Compared to the control, Halobacterota increased by 19.25%, 20.87%, and 9.33% with C7-HSL, C10-HSL, and C12-HSL. Exogenous C7-HSL enhanced the relative abundance of Methanosarcina, Romboutsia, Sedimentibacter, Proteiniclasticum, Christensenellaceae_R-7_group. C10-HSL increased Methanosarcina abundance. C4-HSL, C6-HSL, C8-HSL, C10-HSL, and C12-HSL showed potential to increase unclassified_Firmicutes. Functional Annotation of Prokaryotic Taxa (FAPROTAX) predicted AHLs' impact on related functional genes, providing insights into their role in AD methanogenesis regulation. This study aimed to enhance the understanding of the influence of different types of exogenous AHLs on AD and provide technical support for regulating the methanogenesis efficiency of AD by exogenous AHLs.


Assuntos
4-Butirolactona , 4-Butirolactona/análogos & derivados , Acil-Butirolactonas , Acil-Butirolactonas/farmacologia , Anaerobiose , 4-Butirolactona/farmacologia , Esgotos , Lactonas
14.
Environ Sci Technol ; 58(11): 4979-4988, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445630

RESUMO

Microbial methane oxidation has a significant impact on the methane flux from marine gas hydrate areas. However, the environmental fate of methane remains poorly constrained. We quantified the relative contributions of aerobic and anaerobic methanotrophs to methane consumption in sediments of the gas hydrate-bearing Sakata Knoll, Japan, by in situ geochemical and microbiological analyses coupled with 13C-tracer incubation experiments. The anaerobic ANME-1 and ANME-2 species contributed to the oxidation of 33.2 and 1.4% methane fluxes at 0-10 and 10-22 cm below the seafloor (bsf), respectively. Although the aerobic Methylococcaceae species consumed only 0.9% methane flux in the oxygen depleted 0.0-0.5 cmbsf zone, their metabolic activity was sustained down to 6 cmbsf (based on rRNA and lipid biosyntheses), increasing their contribution to 10.3%. Our study emphasizes that the co-occurrence of aerobic and anaerobic methanotrophy at the redox transition zone is an important determinant of methane flux.


Assuntos
Archaea , Sedimentos Geológicos , Archaea/genética , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Anaerobiose , Metano , RNA Ribossômico 16S/genética , Oxirredução , Filogenia
15.
J Environ Manage ; 355: 120475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447511

RESUMO

The production of biogas from organic waste has attracted considerable interest as a solution to current energy and waste management challenges. This study explored the methane (CH4) production potential of swine manure (SM), food waste (FW), and tomato waste (TW) and the changes in the microbial community involved in the anaerobic digestion process. The results revealed that the CH4 production potentials of the four kinds of SM samples were influenced by the characteristics of SM (e.g., age and storage period). Among the four kinds of SM samples, the CH4 yield from the manure directly sampled from primiparous sows (SM3) was the highest. The CH4 yield was significantly improved when SM3 was co-digested with FW, but not with TW. The addition of SM fostered a stable CH4 production community by enhancing the interaction between methanogens and syntrophic bacteria. Furthermore, the addition of FW as a co-substrate may improve the functional redundancy structure of the methanogenesis-associated network. Overall, the characteristics of SM must be considered to achieve consistent CH4 yield efficiency from anaerobic digestion since CH4 production potentials of SM can be different. Also, the contribution of co-substrate to the synergistic relationship between methanogens and syntrophic bacteria can be considered when a co-substrate is selected in order to enhace CH4 yield from SM.


Assuntos
Eliminação de Resíduos , Animais , Suínos , Feminino , Anaerobiose , Reatores Biológicos , Esterco/microbiologia , Alimentos , Metano , Biocombustíveis/análise , Bactérias , Digestão
16.
J Environ Manage ; 355: 120348, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457889

RESUMO

Treatment of high-strength wastewater is critical for the aquatic environment and receiving water bodies around the globe. Untreated or partially treated high-strength wastewater may cause severe damage to the existing water bodies. Various high-rate anaerobic bioreactors have been developed in the last decades for treating high-strength wastewater. High-rate anaerobic bioreactors are effective in treating industrial wastewater and provide energy in the form of methane as well. However, the physical or chemical properties of high-strength industrial wastewater, sometimes, disrupt the functioning of a high-rate anaerobic bioreactor. For example, the disintegration of granular sludge in up flow anaerobic sludge blanket reactor or membrane blocking in an anaerobic membrane bioreactor are the results of a high-strength wastewater treatment which hamper the proper functioning and may harm the wastewater treatment plant economically. Biochar, if added to these bioreactors, may help to alleviate the ill-functioning of high-rate anaerobic bioreactors. The primary mechanisms by biochar work in these bioreactors are direct interspecies electron transfer, microbial immobilization, or gene level alternations in microbial structure. The present article explores and reviews the recent application of biochar in a high-rate anaerobic bioreactor treating high-strength industrial wastewater.


Assuntos
Carvão Vegetal , Águas Residuárias , Purificação da Água , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Reatores Biológicos , Metano , Água
17.
Environ Microbiol Rep ; 16(2): e13235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444262

RESUMO

The integrated fixed-film activated sludge (IFAS) process is considered one of the cutting-edge solutions to the traditional wastewater treatment challenges, allowing suspended sludge and attached biofilm to grow in the same system. In addition, the coupling of IFAS with anaerobic ammonium oxidation (Anammox) can further improve the efficiency of biological denitrification. This paper summarises the research progress of IFAS coupled with the anammox process, including partial nitrification anammox, simultaneous partial nitrification anammox and denitrification, and partial denitrification anammox technologies, and describes the factors that limit the development of related processes. The effects of dissolved oxygen, influent carbon source, sludge retention time, temperature, microbial community, and nitrite-oxidising bacteria inhibition methods on the anammox of IFAS are presented. At the same time, this paper gives an outlook on future research focus and engineering practice direction of the process.


Assuntos
Compostos de Amônio , Oxidação Anaeróbia da Amônia , Anaerobiose , Esgotos , Biofilmes
18.
Sci Rep ; 14(1): 5904, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467656

RESUMO

Agricultural residues such as rice straw (RS) are desirable raw materials for biogas generation. However, the recalcitrant nature of RS hinders biogas production, and its low bulk density increases storage space requirements, transportation needs, and overall costs. These challenges could be resolved by pretreatment and pelletization. In this study, various thermal pretreatments were performed, and the best conditions (temperature and time) were identified. Also, rice straw and cow dung pellets (RCP) at different food-to-microorganism (F/M) ratios (0.5-2.5) were prepared. Parameters such as bulk density, moisture absorption, and drop shatter tests were conducted to evaluate the physical properties. Finally, the biochemical methane potential (BMP) study of the best RCP with varying total solids (TS: 4-12%) content was investigated. The results indicate that hot air oven pretreatment (for 60 min at 120 °C) resulted in maximum solubilization. In physical characteristics, RCP with an F/M ratio of 2.5 pellets was ideal. The bulk density of RCP 2.5 was found to be around 25 times that of the raw. Also, the TS 8% yielded maximum biomethane (279 mL/g-VSconsumed) as compared to other TS contents. Overall, this study will propel the growth of bioenergy while simultaneously tackling the pressing issues related to RS management.


Assuntos
Oryza , Animais , Feminino , Bovinos , Oryza/química , Biocombustíveis , Anaerobiose , Alimentos , Reatores Biológicos , Metano
19.
Bioresour Technol ; 398: 130548, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458263

RESUMO

Anaerobic fermentation (AF) has been identified as a promising method of transforming waste activated sludge (WAS) into high-value products (e.g., short-chain fatty acids (SCFAs)). This study developed thiosulfate/FeCl3 pre-treatment and investigated the effects of different thiosulfate/FeCl3 ratios (S:Fe = 3:1, 3:2, 1:1, 3:4 and 3:5) on SCFA production and sulfur transformation during the AF of WAS. At a S:Fe ratio of 1:1, the maximal SCFA yield (933.3 mg COD/L) and efficient H2S removal (96.5 %) were obtained. S:Fe ratios ≤ 1:1 not only benefited hydrolysis and acidification but largely mitigated H2S generation. These results were supported by the enriched acidogens and reduced sulfur-reducing bacteria (SRB). Molecular ecological network analysis further revealed that the keystone taxon (g_Saccharimonadales) was found in S:Fe = 1:1, together with reductions in associations among methanogens, acidogens and SRB. This work provides a strategy for enhancing high-value product recovery from WAS and minimising H2S emissions.


Assuntos
Cloretos , Compostos Férricos , Microbiota , Esgotos , Fermentação , Esgotos/microbiologia , Anaerobiose , Tiossulfatos , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio
20.
J Sports Sci Med ; 23(1): 8-16, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455442

RESUMO

This study compared the effects of a 6-week short sprint interval training (sSIT) on male and female basketball players' bio-motor abilities, aerobic fitness, and anaerobic power. Using a randomized controlled trial design, 40 basketball players of similar training backgrounds were randomly assigned to two training groups of females (n = 10) and males (n = 10) or two control groups of females and males (each of 10). The training groups performed 3 sets of 10 × 5-second all-out interval running, with a 1:3 work-to-recovery ratio, and a 3-minute rest between sets. The players were evaluated for bio-motor abilities, including muscular power assessed through the vertical jump, agility measured using a T-test and Illinois change of direction (COD) test, and maximal sprint speed measured by a 20-meter sprint test. Also, aerobic fitness was assessed by evaluating maximum oxygen consumption (V̇O2max) through the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR 1) test before and after the 6-week training period. After the intervention, both training groups (females and males) demonstrated significant improvements in vertical jump (effect size [ES] = 1.29, 1.06, respectively), peak power output (ES = 1.27, 1.39), T-test (ES = -0.56, -0.58), Illinois COD test (ES = -0.88, -1.1), 20-m sprint (ES = -1.09, -0.55), Yo-Yo IR1 performance (ES = 2.18, 2.20), and V̇O2max (ES = 2.28, 1.75). Gender did not exhibit any significant impact on the extent of changes observed over time. The results of this study suggest that adaptations in aerobic fitness and bio-motor abilities measured in this experiment in response to sSIT are similar across genders, and gender differences should not be a major concern when implementing sSIT in basketball players.


Assuntos
Desempenho Atlético , Basquetebol , Treinamento Intervalado de Alta Intensidade , Corrida , Humanos , Masculino , Feminino , Desempenho Atlético/fisiologia , Basquetebol/fisiologia , Anaerobiose , Corrida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...