Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.589
Filtrar
1.
Biochemistry ; 63(8): 969-983, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623046

RESUMO

Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats. Currently, it is unknown how stress causes replication stalling within [AT/TA] microsatellite repeats. To investigate this, we utilized FRET to characterize the structures of [AT/TA]25 sequences and also reconstituted lagging strand replication to characterize the progression of pol δ holoenzymes through A+T-rich sequences. The results indicate that [AT/TA]25 sequences adopt hairpins that are unwound by the major ssDNA-binding complex, RPA, and the progression of pol δ holoenzymes through A+T-rich sequences saturated with RPA is dependent on the template sequence and dNTP concentration. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on dNTP concentration, whereas the effects of RPA on the replication of A+T-rich, nonstructure-forming sequences are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how [AT/TA] microsatellite repeats contribute to genome instability.


Assuntos
DNA Polimerase III , Replicação do DNA , Humanos , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Repetições de Microssatélites , DNA de Cadeia Simples/genética , Nucleotídeos , Holoenzimas/genética
2.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624117

RESUMO

Bio-templated luminescent noble metal nanoclusters (NCs) have attracted great attention for their intriguing physicochemical properties. Continuous efforts are being made to prepare NCs with high fluorescence quantum yield (QY), good biocompatibility, and tunable emission properties for their widespread practical applications as new-generation environment-friendly photoluminescent materials in materials chemistry and biological systems. Herein, we explored the unique photophysical properties of silver nanoclusters (AgNCs) templated by cytosine-rich customized hairpin DNA. Our results indicate that a 36-nucleotide containing hairpin DNA with 20 cytosine (C20) in the loop can encapsulate photostable red-emitting AgNCs with an absolute QY of ∼24%. The luminescent properties in these DNA-templated AgNCs were found to be linked to the coupling between the surface plasmon and the emitter. These AgNCs exhibited excellent thermal sensitivity and were employed to produce high-quality white light emission with an impressive color rendering index of 90 in the presence of dansyl chloride. In addition, the as-prepared luminescent AgNCs possessing excellent biocompatibility can effectively mark the nuclear region of HeLa cells and can be employed as a luminescent probe to monitor the cellular dynamics at a single molecular resolution.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Prata/química , Citosina/química , Células HeLa , DNA/química , Replicação do DNA , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , Técnicas Biossensoriais/métodos
3.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619457

RESUMO

In our recent publication, we have proposed a revised base excision repair pathway in which DNA polymerase ß (Polß) catalyzes Schiff base formation prior to the gap-filling DNA synthesis followed by ß-elimination. In addition, the polymerase activity of Polß employs the "three-metal ion mechanism" instead of the long-standing "two-metal ion mechanism" to catalyze phosphodiester bond formation based on the fact derived from time-resolved x-ray crystallography that a third Mg2+ was captured in the polymerase active site after the chemical reaction was initiated. In this study, we develop the models of the uncross-linked and cross-linked Polß complexes and investigate the "three-metal ion mechanism" vs the "two-metal ion mechanism" by using the quantum mechanics/molecular mechanics molecular dynamics simulations. Our results suggest that the presence of the third Mg2+ ion stabilizes the reaction-state structures, strengthens correct nucleotide binding, and accelerates phosphodiester bond formation. The improved understanding of Polß's catalytic mechanism provides valuable insights into DNA replication and damage repair.


Assuntos
DNA Polimerase beta , Catálise , Replicação do DNA , Magnésio , Simulação de Dinâmica Molecular , Biocatálise
4.
Protein Sci ; 33(5): e4981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591662

RESUMO

Translesion DNA synthesis pathways are necessary to ensure bacterial replication in the presence of DNA damage. Translesion DNA synthesis carried out by the PolV mutasome is well-studied in Escherichia coli, but ~one third of bacteria use a functionally homologous protein complex, consisting of ImuA, ImuB, and ImuC (also called DnaE2). Numerous in vivo studies have shown that all three proteins are required for translesion DNA synthesis and that ImuC is the error-prone polymerase, but the roles of ImuA and ImuB are unclear. Here we carry out biochemical characterization of ImuA and a truncation of ImuB from Myxococcus xanthus. We find that ImuA is an ATPase, with ATPase activity enhanced in the presence of DNA. The ATPase activity is likely regulated by the C-terminus, as loss of the ImuA C-terminus results in DNA-independent ATP hydrolysis. We also find that ImuA binds a variety of DNA substrates, with DNA binding affinity affected by the addition of ADP or adenylyl-imidodiphosphate. An ImuB truncation also binds DNA, with lower affinity than ImuA. In the absence of DNA, ImuA directly binds ImuB with moderate affinity. Finally, we show that ImuA and ImuB self-interact, but that ImuA is predominantly a monomer, while truncated ImuB is a trimer in vitro. Together, with our findings and the current literature in the field, we suggest a model for translesion DNA synthesis, where a trimeric ImuB would provide sufficient binding sites for DNA, the ß-clamp, ImuC, and ImuA, and where ImuA ATPase activity may regulate assembly and disassembly of the translesion DNA synthesis complex.


Assuntos
Myxococcus xanthus , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , 60535 , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/genética , Replicação do DNA
5.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567819

RESUMO

Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.


Assuntos
Complexo de Reconhecimento de Origem , Proteínas de Saccharomyces cerevisiae , Humanos , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação/genética , Sítios de Ligação , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromossomos Humanos/metabolismo , DNA/metabolismo , Proteínas de Ciclo Celular/metabolismo
6.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612916

RESUMO

Eukaryotic REV1 serves as a scaffold protein for the coordination of DNA polymerases during DNA translesion synthesis. Besides this structural role, REV1 is a Y-family DNA polymerase with its own distributive deoxycytidyl transferase activity. However, data about the accuracy and efficiency of DNA synthesis by REV1 in the literature are contrasting. Here, we expressed and purified the full-length human REV1 from Saccharomyces cerevisiae and characterized its activity on undamaged DNA and a wide range of damaged DNA templates. We demonstrated that REV1 carried out accurate synthesis opposite 8-oxoG and O6-meG with moderate efficiency. It also replicated thymine glycol surprisingly well in an error-prone manner, but was blocked by the intrastrand 1,2-GG cisplatin crosslink. By using the 1,N6-ethenoadenine and 7-deaza-adenine lesions, we have provided biochemical evidence of the importance for REV1 functioning of the Hoogsteen face of template A, the second preferable template after G.


Assuntos
Adenina , Proteínas de Saccharomyces cerevisiae , Humanos , Cisplatino , Dano ao DNA , Replicação do DNA , Nucleotidiltransferases/genética , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Biol Cell ; 35(5): ar68, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568781

RESUMO

The ability of bacteria to maintain chromosomal integrity throughout their life cycle is crucial for survival. In Caulobacter crescentus, the polar factor TipN has been proposed to be involved with the partitioning system ParABS. Cells with tipN knocked out display subtle segregation defects of the centromere-like region parS. We hypothesized that TipN's role with parS segregation is obscured by other forces that are ParABS-independent. To test our hypothesis, we removed one of those forces - chromosome replication - and analyzed the role of TipN with ParA. We first confirm that ParA retains its ability to transport the centromeric region parS from the stalked pole to the opposite pole in the absence of chromosome replication. Our data revealed that in the absence of chromosome replication, TipN becomes essential for ParA's ability to transport parS. Furthermore, we identify a potential connection between the replication initiator DnaA and TipN. Although TipN is not essential for viability, tipN knockout cells lose viability when the regulation of DnaA levels is altered. Our data suggest that the DnaA-dependent susceptibility of tipN knockout cells is connected to parS segregation. Collectively, this work provides insights into the complex regulation involved in the coordination of chromosome replication and segregation in bacteria.


Assuntos
Caulobacter crescentus , Caulobacter crescentus/genética , Segregação de Cromossomos , Cromossomos Bacterianos/genética , Replicação do DNA , Centrômero , Proteínas de Bactérias
8.
Sci Rep ; 14(1): 7708, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565932

RESUMO

Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.


Assuntos
RecQ Helicases , Origem de Replicação , Animais , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , Replicação do DNA , Xenopus laevis/metabolismo , DNA/metabolismo
9.
BMC Microbiol ; 24(1): 107, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561651

RESUMO

BACKGROUND: Belonging to the Actinobacteria phylum, members of the Rhodococcus genus thrive in soil, water, and even intracellularly. While most species are non-pathogenic, several cause respiratory disease in animals and, more rarely, in humans. Over 100 phages that infect Rhodococcus species have been isolated but despite their importance for Rhodococcus ecology and biotechnology applications, little is known regarding the molecular genetic interactions between phage and host during infection. To address this need, we report RNA-Seq analysis of a novel Rhodococcus erythopolis phage, WC1, analyzing both the phage and host transcriptome at various stages throughout the infection process. RESULTS: By five minutes post-infection WC1 showed upregulation of a CAS-4 family exonuclease, putative immunity repressor, an anti-restriction protein, while the host showed strong upregulation of DNA replication, SOS repair, and ribosomal protein genes. By 30 min post-infection, WC1 DNA synthesis genes were strongly upregulated while the host showed increased expression of transcriptional and translational machinery and downregulation of genes involved in carbon, energy, and lipid metabolism pathways. By 60 min WC1 strongly upregulated structural genes while the host showed a dramatic disruption of metal ion homeostasis. There was significant expression of both host and phage non-coding genes at all time points. While host gene expression declined over the course of infection, our results indicate that phage may exert more selective control, preserving the host's regulatory mechanisms to create an environment conducive for virion production. CONCLUSIONS: The Rhodococcus genus is well recognized for its ability to synthesize valuable compounds, particularly steroids, as well as its capacity to degrade a wide range of harmful environmental pollutants. A detailed understanding of these phage-host interactions and gene expression is not only essential for understanding the ecology of this important genus, but will also facilitate development of phage-mediated strategies for bioremediation as well as biocontrol in industrial processes and biomedical applications. Given the current lack of detailed global gene expression studies on any Rhodococcus species, our study addresses a pressing need to identify tools and genes, such as F6 and rpf, that can enhance the capacity of Rhodococcus species for bioremediation, biosynthesis and pathogen control.


Assuntos
Bacteriófagos , Rhodococcus , Humanos , Bacteriófagos/genética , Rhodococcus/genética , Rhodococcus/metabolismo , Transcriptoma , Replicação do DNA
10.
Sci Rep ; 14(1): 7731, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565928

RESUMO

Data storage in DNA has recently emerged as a promising archival solution, offering space-efficient and long-lasting digital storage solutions. Recent studies suggest leveraging the inherent redundancy of synthesis and sequencing technologies by using composite DNA alphabets. A major challenge of this approach involves the noisy inference process, obstructing large composite alphabets. This paper introduces a novel approach for DNA-based data storage, offering, in some implementations, a 6.5-fold increase in logical density over standard DNA-based storage systems, with near-zero reconstruction error. Combinatorial DNA encoding uses a set of clearly distinguishable DNA shortmers to construct large combinatorial alphabets, where each letter consists of a subset of shortmers. We formally define various combinatorial encoding schemes and investigate their theoretical properties. These include information density and reconstruction probabilities, as well as required synthesis and sequencing multiplicities. We then propose an end-to-end design for a combinatorial DNA-based data storage system, including encoding schemes, two-dimensional (2D) error correction codes, and reconstruction algorithms, under different error regimes. We performed simulations and show, for example, that the use of 2D Reed-Solomon error correction has significantly improved reconstruction rates. We validated our approach by constructing two combinatorial sequences using Gibson assembly, imitating a 4-cycle combinatorial synthesis process. We confirmed the successful reconstruction, and established the robustness of our approach for different error types. Subsampling experiments supported the important role of sampling rate and its effect on the overall performance. Our work demonstrates the potential of combinatorial shortmer encoding for DNA-based data storage and describes some theoretical research questions and technical challenges. Combining combinatorial principles with error-correcting strategies, and investing in the development of DNA synthesis technologies that efficiently support combinatorial synthesis, can pave the way to efficient, error-resilient DNA-based storage solutions.


Assuntos
Replicação do DNA , DNA , Análise de Sequência de DNA/métodos , DNA/genética , Algoritmos , Armazenamento e Recuperação da Informação
11.
Nat Commun ; 15(1): 2210, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472229

RESUMO

The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.


Assuntos
Proteínas Quinases , Transdução de Sinais , Proteínas Quinases/metabolismo , Fosforilação , Proteína de Replicação A/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Dano ao DNA , DNA de Cadeia Simples , Reparo do DNA
12.
PLoS Biol ; 22(3): e3002552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502677

RESUMO

Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.


Assuntos
Replicação do DNA , DNA de Cadeia Simples , Humanos , DNA de Cadeia Simples/genética , Replicação do DNA/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Ligação Proteica , Ubiquitinação , Dano ao DNA , Instabilidade Genômica , DNA Helicases/genética , DNA Helicases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Science ; 383(6688): 1215-1222, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484065

RESUMO

DNA replication is initiated at multiple loci to ensure timely duplication of eukaryotic genomes. Sister replication forks progress bidirectionally, and replication terminates when two convergent forks encounter one another. To investigate the coordination of replication forks, we developed a replication-associated in situ HiC method to capture chromatin interactions involving nascent DNA. We identify more than 2000 fountain-like structures of chromatin contacts in human and mouse genomes, indicative of coupling of DNA replication forks. Replication fork interaction not only occurs between sister forks but also involves forks from two distinct origins to predetermine replication termination. Termination-associated chromatin fountains are sensitive to replication stress and lead to coupled forks-associated genomic deletions in cancers. These findings reveal the spatial organization of DNA replication forks within the chromatin context.


Assuntos
Cromatina , Replicação do DNA , DNA , Genoma Humano , Animais , Humanos , Camundongos , Cromatina/química , DNA/química , DNA/genética , Conformação Proteica , Sequenciamento de Nucleotídeos em Larga Escala
14.
Elife ; 122024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488661

RESUMO

R-loops are non-canonical DNA structures that form during transcription and play diverse roles in various physiological processes. Disruption of R-loop homeostasis can lead to genomic instability and replication impairment, contributing to several human diseases, including cancer. Although the molecular mechanisms that protect cells against such events are not fully understood, recent research has identified fork protection factors and DNA damage response proteins as regulators of R-loop dynamics. In this study, we identify the Werner helicase-interacting protein 1 (WRNIP1) as a novel factor that counteracts transcription-associated DNA damage upon replication perturbation. Loss of WRNIP1 leads to R-loop accumulation, resulting in collisions between the replisome and transcription machinery. We observe co-localization of WRNIP1 with transcription/replication complexes and R-loops after replication perturbation, suggesting its involvement in resolving transcription-replication conflicts. Moreover, WRNIP1-deficient cells show impaired replication restart from transcription-induced fork stalling. Notably, transcription inhibition and RNase H1 overexpression rescue all the defects caused by loss of WRNIP1. Importantly, our findings highlight the critical role of WRNIP1 ubiquitin-binding zinc finger (UBZ) domain in preventing pathological persistence of R-loops and limiting DNA damage, thereby safeguarding genome integrity.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Replicação do DNA , Proteínas de Ligação a DNA , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , DNA , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Hidrolases/genética , Dedos de Zinco
15.
Methods Enzymol ; 694: 137-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492949

RESUMO

This chapter explores advanced single-molecule techniques for studying protein-DNA interactions, particularly focusing on Replication Protein A (RPA) using a force-fluorescence setup. It combines magnetic tweezers (MT) with total internal reflection fluorescence (TIRF) microscopy, enabling detailed observation of DNA behavior under mechanical stress. The chapter details the use of DNA hairpins and bare DNA to examine RPA's binding dynamics and its influence on DNA's mechanical properties. This approach provides deeper insights into RPA's role in DNA replication, repair, and recombination, highlighting its significance in maintaining genomic stability.


Assuntos
DNA de Cadeia Simples , DNA , Fluorescência , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo
16.
Curr Opin Genet Dev ; 85: 102161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447236

RESUMO

Sustaining cell identity and function across cell division is germane to human development, healthspan, and cancer avoidance. This relies significantly on propagation of chromatin organization between cell generations, as chromatin presents a barrier to cell fate and cell state conversions. Inheritance of chromatin states across the many cell divisions required for development and tissue homeostasis represents a major challenge, especially because chromatin is disrupted to allow passage of the DNA replication fork to synthesize the two daughter strands. This process also leads to a twofold dilution of epigenetic information in histones, which needs to be accurately restored for faithful propagation of chromatin states across cell divisions. Recent research has identified distinct multilayered mechanisms acting to propagate epigenetic information to daughter strands. Here, we summarize key principles of how epigenetic information in parental histones is transferred across DNA replication and how new histones robustly acquire the same information postreplication, representing a core component of epigenetic cell memory.


Assuntos
Epigenoma , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Epigênese Genética/genética , Cromatina/genética , Ciclo Celular/genética , Divisão Celular , Replicação do DNA/genética
17.
Commun Biol ; 7(1): 331, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491227

RESUMO

During the Omicron wave, previous variants such as BA.2, BA.4, and BA.5 were replaced by newer variants with additional mutations in the spike protein. These variants, BA.4.6, BQ.1.1, and XBB, have spread in different countries with different degrees of success. Here, we evaluated the replicative ability and pathogenicity of BA.4.6, BQ1.1, and XBB clinical isolates in male Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with these Omicron subvariants, the replicative ability of BQ.1.1 and XBB in lung tissue was higher than that of BA.4.6 and BA.5. Of note, BQ.1.1 was lethal in both male and female transgenic human ACE2 hamsters. In competition assays, XBB replicated better than BQ.1.1 in the nasal turbinate tissues of female hamsters previously infected with Omicron BA.2. These results suggest that newer Omicron subvariants in the XBB family are still evolving and should be closely monitored.


Assuntos
Bioensaio , Replicação do DNA , Animais , Cricetinae , Feminino , Humanos , Masculino , Animais Geneticamente Modificados , Mesocricetus , Mutação
18.
Nat Commun ; 15(1): 1915, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429336

RESUMO

Artificial biomolecular condensates are emerging as a versatile approach to organize molecular targets and reactions without the need for lipid membranes. Here we ask whether the temporal response of artificial condensates can be controlled via designed chemical reactions. We address this general question by considering a model problem in which a phase separating component participates in reactions that dynamically activate or deactivate its ability to self-attract. Through a theoretical model we illustrate the transient and equilibrium effects of reactions, linking condensate response and reaction parameters. We experimentally realize our model problem using star-shaped DNA motifs known as nanostars to generate condensates, and we take advantage of strand invasion and displacement reactions to kinetically control the capacity of nanostars to interact. We demonstrate reversible dissolution and growth of DNA condensates in the presence of specific DNA inputs, and we characterize the role of toehold domains, nanostar size, and nanostar valency. Our results will support the development of artificial biomolecular condensates that can adapt to environmental changes with prescribed temporal dynamics.


Assuntos
Condensados Biomoleculares , Empacotamento do DNA , Replicação do DNA , Conversão Gênica , Motivos de Nucleotídeos
19.
Protein Sci ; 33(4): e4959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511671

RESUMO

Single-stranded DNA binding proteins (SSBs) are ubiquitous across all domains of life and play essential roles via stabilizing and protecting single-stranded (ss) DNA as well as organizing multiprotein complexes during DNA replication, recombination, and repair. Two mammalian SSB paralogs (hSSB1 and hSSB2 in humans) were recently identified and shown to be involved in various genome maintenance processes. Following our recent discovery of the liquid-liquid phase separation (LLPS) propensity of Escherichia coli (Ec) SSB, here we show that hSSB2 also forms LLPS condensates under physiologically relevant ionic conditions. Similar to that seen for EcSSB, we demonstrate the essential contribution of hSSB2's C-terminal intrinsically disordered region (IDR) to condensate formation, and the selective enrichment of various genome metabolic proteins in hSSB2 condensates. However, in contrast to EcSSB-driven LLPS that is inhibited by ssDNA binding, hSSB2 phase separation requires single-stranded nucleic acid binding, and is especially facilitated by ssDNA. Our results reveal an evolutionarily conserved role for SSB-mediated LLPS in the spatiotemporal organization of genome maintenance complexes. At the same time, differential LLPS features of EcSSB and hSSB2 point to functional adaptations to prokaryotic versus eukaryotic genome metabolic contexts.


Assuntos
DNA , 60422 , Animais , Humanos , Proteínas de Ligação a DNA/química , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...