Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
2.
Int J Biol Macromol ; 199: 252-263, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34995670

RESUMO

Translation of RNA to protein is a key feature of cellular life. The fidelity of this process mainly depends on the availability of correctly charged tRNAs. Different domains of tRNA synthetase (aaRS) maintain translation quality by ensuring the proper attachment of particular amino acid with respective tRNA, thus it establishes the rule of genetic code. However occasional errors by aaRS generate mischarged tRNAs, which can become lethal to the cells. Accurate protein synthesis necessitates hydrolysis of mischarged tRNAs. Various cis and trans-editing proteins are identified which recognize these mischarged products and correct them by hydrolysis. Trans-editing proteins are homologs of cis-editing domains of aaRS. The trans-editing proteins work in close association with aaRS, Ef-Tu, and ribosome to prevent global mistranslation and ensures correct charging of tRNA. In this review, we discuss the major trans-editing proteins and compared them with their cis-editing counterparts. We also discuss their structural features, biochemical activity and role in maintaining cellular protein homeostasis.


Assuntos
Aminoacil-tRNA Sintetases , Biossíntese de Proteínas , Aminoacil-tRNA Sintetases/química , Biossíntese de Proteínas/fisiologia , Modificação Traducional de Proteínas/fisiologia , RNA de Transferência/química
4.
PLoS Negl Trop Dis ; 15(9): e0009759, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534217

RESUMO

Visceral leishmaniasis (VL) is caused by protozoa belonging to the Leishmania donovani complex and is considered the most serious and fatal form among the different types of leishmaniasis, if not early diagnosed and treated. Among the measures of disease control stand out the management of infected dogs and the early diagnosis and appropriate treatment of human cases. Several antigens have been characterized for use in the VL diagnosis, among them are the recombinant kinesin-derived antigens from L. infantum, as rK39 and rKDDR. The main difference between these antigens is the size of the non-repetitive kinesin region and the number of repetitions of the 39 amino acid degenerate motif (6.5 and 8.5 repeats in rK39 and rKDDR, respectively). This repetitive region has a high antigenicity score. To evaluate the effect of increasing the number of repeats on diagnostic performance, we designed the rKDDR-plus antigen, containing 15.3 repeats of the 39 amino acid degenerate motif, besides the absence of the non-repetitive portion from L. infantum kinesin. Its performance was evaluated by enzyme-linked immunosorbent assay (ELISA) and rapid immunochromatographic test (ICT), and compared with the kinesin-derived antigens (rKDDR and rK39). In ELISA with human sera, all recombinant antigens had a sensitivity of 98%, whereas the specificity for rKDDR-plus, rKDDR and rK39 was 100%, 96% and 71%, respectively. When evaluated canine sera, the ELISA sensitivity was 97% for all antigens, and the specificity for rKDDR-plus, rKDDR and rK39 was 98%, 91% and 83%, respectively. Evaluation of the ICT/rKDDR-plus, using human sera, showed greater diagnostic sensitivity (90%) and specificity (100%), when compared to the IT LEISH (79% and 98%, respectively), which is based on the rK39 antigen. These results suggest that the increased presence of repetitive motifs in the rKDDR-plus protein improves the diagnostic performance of serological tests by increasing the specificity and accuracy of the diagnosis.


Assuntos
Antígenos de Protozoários/sangue , Leishmania infantum , Leishmaniose Visceral/veterinária , Proteínas de Protozoários/genética , Testes Sorológicos/veterinária , Animais , Doenças do Cão , Cães , Humanos , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/parasitologia , Modificação Traducional de Proteínas , Proteínas de Protozoários/química , Proteínas Recombinantes , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Zoonoses
5.
Nucleic Acids Res ; 49(16): 9459-9478, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34358325

RESUMO

DDX3 is a multifaceted RNA helicase of the DEAD-box family that plays central roles in all aspects of RNA metabolism including translation initiation. Here, we provide evidence that the Leishmania DDX3 ortholog functions in post-initiation steps of translation. We show that genetic depletion of DDX3 slows down ribosome movement resulting in elongation-stalled ribosomes, impaired translation elongation and decreased de novo protein synthesis. We also demonstrate that the essential ribosome recycling factor Rli1/ABCE1 and termination factors eRF3 and GTPBP1 are less recruited to ribosomes upon DDX3 loss, suggesting that arrested ribosomes may be inefficiently dissociated and recycled. Furthermore, we show that prolonged ribosome stalling triggers co-translational ubiquitination of nascent polypeptide chains and a higher recruitment of E3 ubiquitin ligases and proteasome components to ribosomes of DDX3 knockout cells, which further supports that ribosomes are not elongating optimally. Impaired elongation of translating ribosomes also results in the accumulation of cytoplasmic protein aggregates, which implies that defects in translation overwhelm the normal quality controls. The partial recovery of translation by overexpressing Hsp70 supports this possibility. Collectively, these results suggest an important novel contribution of DDX3 to optimal elongation of translating ribosomes by preventing prolonged translation stalls and stimulating recycling of arrested ribosomes.


Assuntos
Leishmania infantum/genética , Biossíntese de Proteínas , RNA Helicases/genética , Ribossomos/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Biossíntese Peptídica/genética , Peptídeos/genética , Modificação Traducional de Proteínas/genética , Proteínas Ribossômicas/genética , Ubiquitina-Proteína Ligases/genética
6.
Cancer Sci ; 112(10): 4064-4074, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34251713

RESUMO

Programmed cell death ligand 1 (PD-L1) is a major immunosuppressive checkpoint protein expressed by tumor cells to subvert anticancer immunity. Recent studies have shown that ionizing radiation (IR) upregulates the expression of PD-L1 in tumor cells. However, whether an IR-induced DNA damage response (DDR) directly regulates PD-L1 expression and the functional significance of its upregulation are not fully understood. Here, we show that IR-induced upregulation of PD-L1 expression proceeds through both transcriptional and post-translational mechanisms. Upregulated PD-L1 was predominantly present on the cell membrane, resulting in T-cell apoptosis in a co-culture system. Using mass spectrometry, we identified PD-L1 interacting proteins and found that BCLAF1 (Bcl2 associated transcription factor 1) is an important regulator of PD-L1 in response to IR. BCLAF1 depletion decreased PD-L1 expression by promoting the ubiquitination of PD-L1. In addition, we show that CMTM6 is upregulated in response to IR and participates in BCLAF1-dependent PD-L1 upregulation. Finally, we demonstrated that the ATM/BCLAF1/PD-L1 axis regulated PD-L1 stabilization in response to IR. Together, our findings reveal a novel regulatory mechanism of PD-L1 expression in the DDR.


Assuntos
Antígeno B7-H1/metabolismo , Radiação Ionizante , Proteínas Repressoras/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Antígeno B7-H1/efeitos da radiação , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Técnicas de Cocultura , Dano ao DNA , Humanos , Células Jurkat , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/efeitos da radiação , Espectrometria de Massas , Proteínas da Mielina/metabolismo , Proteínas da Mielina/efeitos da radiação , Proteínas de Neoplasias/metabolismo , Modificação Traducional de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/deficiência , Linfócitos T/citologia , Linfócitos T/efeitos da radiação , Proteínas Supressoras de Tumor/deficiência , Ubiquitinação , Regulação para Cima/efeitos da radiação
7.
Cancer Sci ; 112(10): 4087-4099, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34309973

RESUMO

To explore the effect of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) on colorectal cancer (CRC) by recognizing the m6A modification of YAP mRNA thus activating ErbB2 expression. High expressions of IGF2BP2, YAP, and ErbB2 promoted the proliferation, migration and invasion of CRC cells and reduced their apoptosis. IGF2BP2 recognized the m6A on YAP mRNA and promoted the translation of mRNA. YAP regulated ErbB2 expression by promoting TEAD4 enrichment in ErbB2 promoter region. Therefore, IGF2BP2 promoted the expression of ErbB2 to enhance the proliferation, invasion and migration of CRC cells, to repress cell apoptosis, and to promote solid tumor formation in nude mice. IGF2BP2 activates the expression of ErbB2 by recognizing the m6A of YAP, thus affecting the cell cycle of CRC, inhibiting cell apoptosis, and promoting proliferation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a RNA/fisiologia , Receptor ErbB-2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Nus , Proteínas Musculares/metabolismo , Invasividade Neoplásica , Regiões Promotoras Genéticas , Modificação Traducional de Proteínas , RNA Mensageiro/metabolismo , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP
8.
Cancer Sci ; 112(10): 4075-4086, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34310804

RESUMO

The regulatory relationship between silent information regulator 2 (SIRT2) and glucose 6-phosphate dehydrogenase (G6PD) in clear cell renal cell carcinoma (ccRCC) is still unclear. The present study aimed to explore the function of SIRT2 and its regulatory effect on G6PD in ccRCC. The Cancer Genome Atlas data mining of SIRT2 was first analyzed. Quantitative real-time PCR and western blot analyses were used to assess the mRNA and protein expression levels, respectively. Cell viability, colony formation, cell cycle, cell apoptosis, and TUNEL assays and EdU staining were used to investigate the roles of SIRT2 in ccRCC proliferation and apoptosis. The coimmunoprecipitation (Co-IP) assay was used to analyze the association between SIRT2 and G6PD in ccRCC cells. Quantitative Co-IP assay was used to detect the levels of G6PD ubiquitination and small ubiquitin-related modifier 1 (SUMO1). An in vivo experiment was also carried out to confirm in vitro findings. The results indicated that SIRT2 promoted ccRCC proliferation and inhibited apoptosis by regulating cell cycle and apoptosis related proteins. Silent information regulator 2 interacted with G6PD, facilitated its activity through deacetylation, and increased its stability by reducing its ubiquitination and enhancing its SUMO1 modification. Silent information regulator 2 also promoted ccRCC tumor development in vivo. Taken together, the present study indicated that SIRT2 promoted ccRCC progression by increasing G6PD activity and stability, and it could be a potential new diagnostic and therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Cisteína Endopeptidases/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Neoplasias Renais/metabolismo , Sirtuína 2/fisiologia , Acetilação , Animais , Apoptose , Western Blotting , Carcinoma de Células Renais/patologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular , Bases de Dados Genéticas , Progressão da Doença , Feminino , Humanos , Imunoprecipitação , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Modificação Traducional de Proteínas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco , Ubiquitinação
9.
J Hepatol ; 75(1): 74-85, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33621634

RESUMO

BACKGROUND & AIMS: HBV remains a global threat to human health. It remains incompletely understood how HBV self-restricts in the host during most adult infections. Thus, we performed multi-omics analyses to systematically interrogate HBV-host interactions and the life cycle of HBV. METHODS: RNA-sequencing and ribosome profiling were conducted with cell-based models for HBV replication and gene expression. The novel translational events or products hereby detected were then characterized, and functionally assessed in both cell and mouse models. Moreover, quasi-species analyses of HBV subpopulations were conducted with patients at immune tolerance or activation phases, using next- or third-generation sequencing. RESULTS: We identified EnhI-SL (Enhancer I-stem loop) as a new cis element in the HBV genome; mutations disrupting EnhI-SL were found to elevate viral polymerase expression. Furthermore, while re-discovering HpZ/P', a previously under-explored isoform of HBV polymerase, we also identified HBxZ, a novel short isoform of HBX. Having confirmed their existence, we functionally characterized them as potent suppressors of HBV gene expression and genome replication. Mechanistically, HpZ/P' was found to repress HBV gene expression partially by interacting with, and sequestering SUPV3L1. Activation of the host immune system seemed to reduce the abundance of HBV mutants deficient in HpZ/P' or with disruptions in EnhI-SL. Finally, SRSF2, a host RNA spliceosome protein that is downregulated by HBV, was found to promote the splicing of viral pre-genomic RNA and HpZ/P' biogenesis. CONCLUSION: This study has identified multiple self-restricting HBV-host interactions. In particular, SRSF2-HpZ/P' appeared to constitute another negative feedback mechanism in the HBV life cycle. Targeting host splicing machinery might thus represent a strategy to intervene in HBV-host interactions. LAY SUMMARY: There remain many unknowns about the natural history of HBV infection in adults. Herein, we identified new HBV-host mechanisms which could be responsible for self-restricting infections. Targeting these mechanisms could be a promising strategy for the treatment of HBV infections.


Assuntos
Produtos do Gene pol/metabolismo , Vírus da Hepatite B , Hepatite B Crônica , Interações entre Hospedeiro e Microrganismos/imunologia , Replicação Viral , Animais , Descoberta de Drogas , Genoma Viral/fisiologia , Vírus da Hepatite B/enzimologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Humanos , Camundongos , Regiões Promotoras Genéticas , Modificação Traducional de Proteínas , Auto-Splicing de RNA Ribossômico/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia
10.
Nat Protoc ; 16(3): 1343-1375, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33514943

RESUMO

During maturation, eukaryotic precursor RNAs undergo processing events including intron splicing, 3'-end cleavage, and polyadenylation. Here we describe nanopore analysis of co-transcriptional processing (nano-COP), a method for probing the timing and patterns of RNA processing. An extension of native elongating transcript sequencing, which quantifies transcription genome-wide through short-read sequencing of nascent RNA 3' ends, nano-COP uses long-read nascent RNA sequencing to observe global patterns of RNA processing. First, nascent RNA is stringently purified through a combination of 4-thiouridine metabolic labeling and cellular fractionation. In contrast to cDNA or short-read-based approaches relying on reverse transcription or amplification, the sample is sequenced directly through nanopores to reveal the native context of nascent RNA. nano-COP identifies both active transcription sites and splice isoforms of single RNA molecules during synthesis, providing insight into patterns of intron removal and the physical coupling between transcription and splicing. The nano-COP protocol yields data within 3 d.


Assuntos
Modificação Traducional de Proteínas/fisiologia , Precursores de RNA/análise , Análise de Sequência de RNA/métodos , Animais , Éxons/genética , Humanos , Íntrons/genética , Modificação Traducional de Proteínas/genética , RNA/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Splicing de RNA/genética , RNA Mensageiro/genética , Transcrição Gênica/genética
11.
Eur J Immunol ; 51(1): 138-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686110

RESUMO

The IFN stimulated gene 15 (ISG15) encodes a 15-kDa ubiquitin-like protein, that is induced by type I IFNs and is conjugated to the bulk of newly synthesized polypeptides at the ribosome. ISG15 functions as an antiviral molecule possibly by being covalently conjugated to viral proteins and disturbing virus particle assembly. Here, we have investigated the effect of ISGylation on degradation and antigen presentation of viral and cellular proteins. ISGylation did not induce proteasomal degradation of bulk ISG15 target proteins neither after overexpressing ISG15 nor after induction by IFN-ß. The MHC class I cell surface expression of splenocytes derived from ISG15-deficient mice or mice lacking the catalytic activity of the major de-ISGylating enzyme USP18 was unaltered as compared to WT mice. Fusion of ubiquitin or FAT10 to the long-lived nucleoprotein (NP) of lymphocytic choriomeningitis virus accelerated the proteasomal degradation of NP while fusion to ISG15 did not detectably speed up NP degradation. Nevertheless, MHC-I restricted presentation of two epitopes of NP were markedly enhanced when it was fused to ISG15 similarly to fusion with ubiquitin or FAT10. Thus, we provide evidence that ISG15 can enhance the presentation of antigens on MHC-I most likely by promoting co-translational antigen processing.


Assuntos
Apresentação de Antígeno/imunologia , Citocinas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ubiquitinas/imunologia , Animais , Citocinas/deficiência , Citocinas/genética , Citocinas/metabolismo , Células HEK293 , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Modificação Traducional de Proteínas/imunologia , Proteólise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/imunologia , Ubiquitinas/deficiência , Ubiquitinas/genética , Ubiquitinas/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165939, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882370

RESUMO

TAR DNA-binding protein 43 (TDP-43) is a nuclear RNA/DNA binding protein involved in mRNA metabolism. Aberrant mislocalization to the cytoplasm and formation of phosphorylated/aggregated TDP-43 inclusions remains the hallmark pathology in a spectrum of neurodegenerative diseases, including frontotemporal disorders and Alzheimer's disease. Eukaryotic Translation Initiation Factor 5A undergoes a unique post-translation modification of lysine to hypusine (K50), which determines eIF5A binding partners. We used a sodium arsenite-induced cellular stress model to investigate the role of hypusinated eIF5A (eIF5AHypK50) in governing TDP-43 cytoplasmic mislocalization and accumulation in stress granule. Our proteomics and functional data provide evidence that eIF5A interacts with TDP-43 in a hypusine-dependent manner. Additionally, we showed that following stress TDP-43 interactions with eIF5AHypK50 were induced both in the cytoplasm and stress granules. Pharmacological reduction of hypusination or mutations of lysine residues within the hypusine loop decreased phosphorylated and insoluble TDP-43 levels. The proteomic and biochemical analysis also identified nuclear pore complex importins KPNA1/2, KPNB1, and RanGTP as interacting partners of eIF5AHypK50. These findings are the first to provide a novel pathway and potential therapeutic targets that require further investigation in models of TDP-43 proteinopathies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Fatores de Iniciação de Peptídeos/metabolismo , Modificação Traducional de Proteínas , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células HeLa , Humanos , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética
13.
Brain ; 143(12): 3699-3716, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300544

RESUMO

The dopamine system in the midbrain is essential for volitional movement, action selection, and reward-related learning. Despite its versatile roles, it contains only a small set of neurons in the brainstem. These dopamine neurons are especially susceptible to Parkinson's disease and prematurely degenerate in the course of disease progression, while the discovery of new therapeutic interventions has been disappointingly unsuccessful. Here, we show that O-GlcNAcylation, an essential post-translational modification in various types of cells, is critical for the physiological function and survival of dopamine neurons. Bidirectional modulation of O-GlcNAcylation importantly regulates dopamine neurons at the molecular, synaptic, cellular, and behavioural levels. Remarkably, genetic and pharmacological upregulation of O-GlcNAcylation mitigates neurodegeneration, synaptic impairments, and motor deficits in an animal model of Parkinson's disease. These findings provide insights into the functional importance of O-GlcNAcylation in the dopamine system, which may be utilized to protect dopamine neurons against Parkinson's disease pathology.


Assuntos
Acetilglucosamina/metabolismo , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/patologia , Animais , Comportamento Animal , Sobrevivência Celular , Fenômenos Eletrofisiológicos , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/prevenção & controle , Doenças Neurodegenerativas/prevenção & controle , Optogenética , Doença de Parkinson/psicologia , Modificação Traducional de Proteínas , Sinapses/patologia , Regulação para Cima/efeitos dos fármacos
14.
J Mol Biol ; 432(24): 166694, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33137310

RESUMO

Many unanswered questions remain in understanding the biosynthesis of the peptide hormone insulin. Here we elucidate new aspects in the mechanism of co-translational translocation initiation of pre-proinsulin in the endoplasmic reticulum. We utilize a translational arrest peptide derived from the x-box-binding protein (Xbp1) to induce ribosomal stalling and generate translocation intermediates. We find that the insulin signal sequence is rather weakly gating and requires the assistance of auxiliary translocon components to initiate translocation. Probing the translational intermediates with chemical crosslinking, we identified an early interaction with the translocon-associated protein (TRAP) complex. The TRAPß subunit interacts with pre-proinsulin before the peptide enters the Sec61 translocon channel in a signal sequence-dependent manner. We describe the substrate sequence determinants that are recognized by TRAP on the cytosolic site of the membrane to facilitate substrate-specific opening of the Sec61 translocon channel. Our findings support the hypothesis that the TRAP-dependence is in part determined by the content of glycine and proline residues mainly within the signal sequence.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Insulina/genética , Glicoproteínas de Membrana/genética , Precursores de Proteínas/genética , Transporte Proteico/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Proteína 1 de Ligação a X-Box/genética , Retículo Endoplasmático/genética , Células HeLa , Humanos , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/ultraestrutura , Proteínas de Membrana/genética , Peptídeos/genética , Modificação Traducional de Proteínas/genética , Sinais Direcionadores de Proteínas/genética , Proteômica , Ribossomos/genética , Canais de Translocação SEC/genética
16.
Biomolecules ; 10(11)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218200

RESUMO

The number of people with dementia is increasing rapidly due to the increase in the aging population. Alzheimer's disease (AD) is a type of neurodegenerative dementia caused by the accumulation of abnormal proteins. Genetic mutations, smoking, and several other factors have been reported as causes of AD, but alterations in glycans have recently been demonstrated to play a role in AD. Amyloid-ß (Aß), a cleaved fragment of APP, is the source of senile plaque, a pathological feature of AD. APP has been reported to undergo N- and O-glycosylation, and several Polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) have been shown to have catalytic activity for the transfer of GalNAc to APP. Since O-glycosylation in the proximity of a cleavage site in many proteins has been reported to be involved in protein processing, O-glycans may affect the cleavage of APP during the Aß production process. In this report, we describe new findings on the O-glycosylation of APP and Aß production.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Modificação Traducional de Proteínas/fisiologia , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Glicosilação , Humanos
17.
Mediators Inflamm ; 2020: 8198963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029105

RESUMO

The novel coronavirus is not only causing respiratory problems, but it may also damage the heart, kidneys, liver, and other organs; in Wuhan, 14 to 30% of COVID-19 patients have lost their kidney function and now require either dialysis or kidney transplants. The novel coronavirus gains entry into humans by targeting the ACE2 receptor that found on lung cells, which destroy human lungs through cytokine storms, and this leads to hyperinflammation, forcing the immune cells to destroy healthy cells. This is why some COVID-19 patients need intensive care. The inflammatory chemicals released during COVID-19 infection cause the liver to produce proteins that defend the body from infections. However, these proteins can cause blood clotting, which can clog blood vessels in the heart and other organs; as a result, the organs are deprived of oxygen and nutrients which could ultimately lead to multiorgan failure and consequent progression to acute lung injury, acute respiratory distress syndrome, and often death. However, there are novel protein modification tools called the QTY code, which are similar in their structure to antibodies, which could provide a solution to excess cytokines. These synthetic proteins can be injected into the body to bind the excess cytokines created by the cytokine storm; this will eventually remove the excessive cytokines and inhibit the severe symptoms caused by the COVID-19 infection. In this review, we will focus on cytokine storm in COVID-19 patients, their impact on the body organs, and the potential treatment by QTY code-designed detergent-free chemokine receptors.


Assuntos
Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Receptores de Quimiocinas/uso terapêutico , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/terapia , Síndrome da Liberação de Citocina/imunologia , Citocinas/antagonistas & inibidores , Desenho de Fármacos , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/imunologia , Modelos Moleculares , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/terapia , Pandemias , Pneumonia Viral/terapia , Engenharia de Proteínas , Modificação Traducional de Proteínas , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
18.
Parasit Vectors ; 13(1): 477, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948226

RESUMO

BACKGROUND: Iron plays essential roles in the pathogenesis and proliferation of Trichomonas vaginalis, the causative agent of the most prevalent non-viral human sexually transmitted infection. We previously demonstrated that under iron deficiency, the endogenous nitric oxide (NO) is accumulated and capable of regulating the survival of T. vaginalis. Herein, we aim to explore the influence of NO on the activity of the pyruvate-reducing enzyme lactate dehydrogenase in T. vaginalis (TvLDH). METHODS: Levels of lactate and pyruvate were detected for determining glycolysis activity in T. vaginalis under iron deficiency. Quantitative PCR was performed to determine the expression of TvLDH. S-nitrosylated (SNO) proteomics was conducted to identify the NO-modified proteins. The activities of glyceraldehyde-3-phosphate dehydrogenase (TvGAPDH) and TvLDH were measured after sodium nitrate treatment. The effects of protein nitrosylation on the production of cellular reducing power were examined by measuring the amount of nicotinamide adenine dinucleotide (NAD) and the ratio of the NAD redox pair (NAD+/NADH). RESULTS: We found that although the glycolytic pathway was activated in cells under iron depletion, the level of pyruvate was decreased due to the increased level of TvLDH. By analyzing the SNO proteome of T. vaginalis upon iron deficiency, we found that TvLDH is one of the glycolytic enzymes modified by SNO. The production of pyruvate was significantly reduced after nitrate treatment, indicating that protein nitrosylation accelerated the consumption of pyruvate by increasing TvLDH activity. Nitrate treatment also induced NAD oxidation, suggesting that protein nitrosylation was the key posttranslational modification controlling cellular redox status. CONCLUSIONS: We demonstrated that NO-mediated protein nitrosylation plays pivotal roles in the regulation of glycolysis, pyruvate metabolism, and the activity of TvLDH. The recycling of oxidized NAD catalyzed by TvLDH provided the reducing power that allowed T. vaginalis to adapt to the iron-deficient environment.


Assuntos
Cisteína/metabolismo , Ferro/metabolismo , L-Lactato Desidrogenase/metabolismo , Proteínas de Protozoários/metabolismo , Trichomonas vaginalis/enzimologia , Glicólise , Ferro/análise , L-Lactato Desidrogenase/genética , NAD/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Modificação Traducional de Proteínas , Proteínas de Protozoários/genética , Ácido Pirúvico/metabolismo , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo
19.
Nat Commun ; 11(1): 4258, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848127

RESUMO

Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Substituição de Aminoácidos , Sítios de Ligação/genética , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Células HEK293 , Humanos , Técnicas In Vitro , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos , Dobramento de Proteína , Modificação Traducional de Proteínas/genética , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , Supressão Genética , Temperatura
20.
Biol Chem ; 401(11): 1199-1214, 2020 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-32769215

RESUMO

The mitochondrial ATP synthase is a multi-subunit enzyme complex located in the inner mitochondrial membrane which is essential for oxidative phosphorylation under physiological conditions. In this review, we analyse the enzyme functions involved in cancer progression by dissecting specific conditions in which ATP synthase contributes to cancer development or metastasis. Moreover, we propose the role of ATP synthase in the formation of the permeability transition pore (PTP) as an additional mechanism which controls tumour cell death. We further describe transcriptional and translational modifications of the enzyme subunits and of the inhibitor protein IF1 that may promote adaptations leading to cancer metabolism. Finally, we outline ATP synthase gene mutations and epigenetic modifications associated with cancer development or drug resistance, with the aim of highlighting this enzyme complex as a potential novel target for future anti-cancer therapy.


Assuntos
Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neoplasias/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Poro de Transição de Permeabilidade Mitocondrial/análise , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/análise , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Neoplasias/genética , Neoplasias/patologia , Modificação Traducional de Proteínas , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas/análise , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...