Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.408
Filtrar
1.
J Bone Miner Res ; 39(1): 39-49, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38630876

RESUMO

Aerobic exercise reduces circulating ionized Ca (iCa) and increases parathyroid hormone (PTH), but the cause and consequences on Ca handling are unknown. The objective of this study was to determine the effects of strenuous exercise on Ca kinetics using dual stable Ca isotopes. Twenty-one healthy women (26.4 ± 6.7 yr) completed a randomized, crossover study entailing two 6-d iterations consisting of either 60 min of treadmill walking at 65% VO2max wearing a vest weighing 30% body weight on study days 1, 3, and 5 (exercise [EX]), or a rest iteration (rest [REST]). On day 1, participants received intravenous 42Ca and oral 44Ca. Isotope ratios were determined by thermal ionization mass spectrometry. Kinetic modeling determined fractional Ca absorption (FCA), Ca deposition (Vo+), resorption (Vo-) from bone, and balance (Vbal). Circulating PTH and iCa were measured before, during, and after each exercise/rest session. Data were analyzed by paired t-test or linear mixed models using SPSS. iCa decreased and PTH increased (P < .001) during each EX session and were unchanged during REST. On day 1, urinary Ca was lower in the EX pool (25 ± 11 mg) compared to REST (38 ± 16 mg, P = .001), but did not differ over the full 24-h collection (P > .05). FCA was greater during EX (26.6 ± 8.1%) compared to REST (23.9 ± 8.3%, P < .05). Vbal was less negative during EX (-61.3 ± 111 mg) vs REST (-108 ± 23.5 mg, P < .05), but VO+ (574 ± 241 vs 583 ± 260 mg) and VO- (-636 ± 243 vs -692 ± 252 mg) were not different (P > .05). The rapid reduction in circulating iCa may be due to a change in the miscible Ca pool, resulting in increased PTH and changes in intestinal absorption and renal Ca handling that support a more positive Ca balance.


Assuntos
Cálcio da Dieta , Cálcio , Humanos , Feminino , Cálcio/metabolismo , Estudos Cross-Over , Hormônio Paratireóideo , Exercício Físico , Absorção Intestinal
2.
AAPS J ; 26(3): 44, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575716

RESUMO

Mechanistic modeling of in vitro experiments using metabolic enzyme systems enables the extrapolation of metabolic clearance for in vitro-in vivo predictions. This is particularly important for successful clearance predictions using physiologically based pharmacokinetic (PBPK) modeling. The concept of mechanistic modeling can also be extended to biopharmaceutics, where in vitro data is used to predict the in vivo pharmacokinetic profile of the drug. This approach further allows for the identification of parameters that are critical for oral drug absorption in vivo. However, the routine use of this analysis approach has been hindered by the lack of an integrated analysis workflow. The objective of this tutorial is to (1) review processes and parameters contributing to oral drug absorption in increasing levels of complexity, (2) outline a general physiologically based biopharmaceutic modeling workflow for weak acids, and (3) illustrate the outlined concepts via an ibuprofen (i.e., a weak, poorly soluble acid) case example in order to provide practical guidance on how to integrate biopharmaceutic and physiological data to better understand oral drug absorption. In the future, we plan to explore the usefulness of this tutorial/roadmap to inform the development of PBPK models for BCS 2 weak bases, by expanding the stepwise modeling approach to accommodate more intricate scenarios, including the presence of diprotic basic compounds and acidifying agents within the formulation.


Assuntos
Biofarmácia , Modelos Biológicos , Solubilidade , Administração Oral , Ibuprofeno , Simulação por Computador , Absorção Intestinal/fisiologia
3.
Toxicol In Vitro ; 97: 105813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522493

RESUMO

The aims of the current study included characterizing the intestinal transport mechanism of polystyrene microplastics (MPs) with different charges and sizes in the intestinal epithelial cell model and determining the inhibitory effect of green tea extracts (GTEs) on the intestinal absorption of MPs in Caco-2 cells. The smaller sizes, which included diameters of 0.2 µm, of amine-modified MPs compared to either larger size (1 µm diameter, or carboxylate-MPs (0.2 and 1 µm diameter) significantly lowered the cell viability of caco-2 cells that were measured by MTT assay (p < 0.05). The transported amount (particles/mL of the cell media) of amine-modified MPs by the Caco-2 cell, was not dependent according to the concentrations, energy, or temperature, but it was higher than the carboxylate-modified MPs. The co-treatment of GTEs with the amine-modified MPs inhibited Caco-2 cell cytotoxicity as well as reduced the production of intracellular reactive oxygen species (ROS) in HepG2 generated by the exposure of amine-modified MPs. The GTEs co-treatment also increased trans-epithelial electrical resistances (TEER) and reduced the transportation of Lucifer Yellow via the Caco-2 monolayer compared to only the amine-modified MPs exposure. The GTEs treatment led to a decrease in the number of amine-modified MPs transported to the basal side of the Caco-2 monolayer. The results from our study suggest that the consumption of GTEs could enhance the intestinal barrier function by recovering intestinal epithelial cell damage induced by MPs, which resulted in a decrease of the intestinal absorption of MPs.


Assuntos
Microplásticos , Poliestirenos , Humanos , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos , Células CACO-2 , Antioxidantes , Absorção Intestinal , Chá , Aminas
4.
Mol Pharm ; 21(4): 1745-1755, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501717

RESUMO

Drug-rich droplets formed through liquid-liquid phase separation (LLPS) have the potential to enhance the oral absorption of drugs. This can be attributed to the diffusion of these droplets into the unstirred water layer (UWL) of the gastrointestinal tract and their reservoir effects on maintaining drug supersaturation. However, a quantitative understanding of the effect of drug-rich droplets on intestinal drug absorption is still lacking. In this study, the enhancement of intestinal drug absorption through the formation of drug-rich droplets was quantitatively evaluated on a mechanistic basis. To obtain fenofibrate (FFB)-rich droplets, an amorphous solid dispersion (ASD) of FFB/hypromellose (HPMC) was dispersed in an aqueous medium. Physicochemical characterization confirmed the presence of nanosized FFB-rich droplets in the supercooled liquid state within the FFB/HPMC ASD dispersion. An in situ single-pass intestinal perfusion (SPIP) assay in rats demonstrated that increased quantities of FFB-rich nanodroplets enhanced the intestinal absorption of FFB. The effective diffusion of FFB-rich nanodroplets through UWL would partially contribute to the improved FFB absorption. Additionally, confocal laser scanning microscopy (CLSM) of cross sections of the rat intestine after the administration of fluorescently labeled FFB-rich nanodroplets showed that these nanodroplets were directly taken up by small intestinal epithelial cells. Therefore, the direct uptake of drug-rich nanodroplets by the small intestine is a potential mechanism for improving FFB absorption in the intestine. To quantitatively evaluate the impact of FFB-rich droplets on the FFB absorption enhancement, we determined the apparent permeabilities of the FFB-rich nanodroplets and dissolved FFB based on the SPIP results. The apparent permeability of the FFB-rich nanodroplets was 110-130 times lower than that of dissolved FFB. However, when the FFB-rich nanodroplet concentration was several hundred times higher than that of dissolved FFB, the FFB-rich nanodroplets contributed significantly to FFB absorption improvement. The present study highlights that drug-rich nanodroplets play a direct role in enhancing drug absorption in the gastrointestinal tract, indicating their potential for further improvement of oral absorption from ASD formulations.


Assuntos
Fenofibrato , 60422 , Ratos , Animais , Preparações Farmacêuticas , Fenofibrato/química , Absorção Intestinal , Intestinos , Solubilidade
5.
Nutr Clin Pract ; 39 Suppl 1: S17-S28, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429962

RESUMO

Fat malabsorption is central to the pathophysiology of short bowel syndrome (SBS). It occurs in patients with insufficient intestinal surface area and/or function to maintain metabolic and growth demands. Rapid intestinal transit and impaired bile acid recycling further contribute to fat malabsorption. A significant portion of patients require parenteral nutrition (PN) for their survival but may develop sepsis and liver dysfunction as a result. Despite advancements in the treatment of SBS, fat malabsorption remains a chronic issue for this vulnerable patient population. Peer-reviewed literature was assessed on the topic of fat malabsorption in SBS. Current management of patients with SBS involves dietary considerations, PN management, antidiarrheals, glucagon-like peptide 2 agonists, and multidisciplinary teams. Clinical trials have focused on improving intestinal fat absorption by facilitating fat digestion with pancreatic enzymes. Targeting fat malabsorption in SBS is a potential pathway to improving lifestyle and reducing morbidity and mortality in this rare disease.


Assuntos
Síndrome do Intestino Curto , Humanos , Síndrome do Intestino Curto/complicações , Síndrome do Intestino Curto/terapia , Intestinos , Nutrição Parenteral , Absorção Intestinal , Dieta
6.
Nutr Clin Pract ; 39 Suppl 1: S6-S16, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429963

RESUMO

Fat digestion and absorption play crucial roles in maintaining energy homeostasis and supporting essential physiological functions. The initial stage of fat digestion occurs in the stomach, where gastric lipase begins the hydrolysis of triglycerides. However, most fat digestion takes place in the small intestine via pancreatic enzymes and bile salts. Emulsification of fat by bile acids facilitates enzymatic action, breaking down triglycerides into free fatty acids and monoglycerides, which are then able to be absorbed by enterocytes. Fat malabsorption can result from various underlying conditions, such as exocrine pancreatic insufficiency, bile acid disorders, or intestinal diseases. The clinical manifestations of fat malabsorption include steatorrhea, malnutrition, and deficiencies of fat-soluble vitamins. Diagnostic approaches involve assessing fecal fat levels, imaging studies, and various functional tests to identify the specific etiology. This review article will describe the normal physiologic process of fat digestion and absorption and discuss various pathophysiology that can lead to fat malabsorption within the gastrointestinal tract as well as their respective diagnostic testing modalities. Effective digestion of fat is essential for overall health, because it allows for absorption of many essential nutrients, plays an integral role in cellular and structural function, and supplies energy to the body. When this is dysfunctional, disorders of malabsorption can occur. This article will give a brief overview of the physiologic process of fat digestion and absorption in healthy individuals as well as review important pathophysiology that can lead to fat malabsorption within the gastrointestinal tract and current diagnostic testing modalities.


Assuntos
Insuficiência Pancreática Exócrina , Síndromes de Malabsorção , Humanos , Gorduras na Dieta , Absorção Intestinal , Insuficiência Pancreática Exócrina/diagnóstico , Insuficiência Pancreática Exócrina/etiologia , Triglicerídeos , Ácidos e Sais Biliares , Digestão , Técnicas e Procedimentos Diagnósticos/efeitos adversos , Síndromes de Malabsorção/diagnóstico
7.
J Med Chem ; 67(7): 5683-5698, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38498697

RESUMO

Developing orally bioavailable drugs demands an understanding of absorption in early drug development. Traditional methods and physicochemical properties optimize absorption for rule of five (Ro5) compounds; beyond rule of five (bRo5) drugs necessitate advanced tools like the experimental measure of exposed polarity (EPSA) and the AbbVie multiparametric score (AB-MPS). Analyzing AB-MPS and EPSA against ∼1000 compounds with human absorption data and ∼10,000 AbbVie tool compounds (∼1000 proteolysis targeting chimeras or PROTACs, ∼7000 Ro5s, and ∼2000 bRo5s) revealed new patterns of physicochemical trends. We introduced a high-throughput "polarity reduction" descriptor: ETR, the EPSA-to-topological polar surface area (TPSA) ratio, highlights unique bRo5 and PROTAC subsets for specialized drug design strategies for effective absorption. Our methods and guidelines refine drug design by providing innovative in vitro approaches, enhancing physicochemical property optimization, and enabling accurate predictions of intestinal absorption in the complex bRo5 domain.


Assuntos
Descoberta de Drogas , Quimera de Direcionamento de Proteólise , Humanos , Descoberta de Drogas/métodos , Desenho de Fármacos , Absorção Intestinal , Proteólise
8.
Food Funct ; 15(7): 3496-3506, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38463011

RESUMO

A potential osteogenic tetradecapeptide with the amino acid sequence GETNPADSKPGSIR (P-GM-2) was identified from Gadus morhua. The present study aimed to elucidate its absorption and transport properties using Caco-2/HT29-MTX co-culture monolayers and to evaluate its osteogenic activity using an ovariectomized mouse model. The results showed that P-GM-2 could cross Caco-2/HT29-MTX co-culture barriers intactly with an apparent permeability coefficient of 4.02 × 10-6 cm s-1via the TJ-mediated passive paracellular pathway. Pharmacokinetic results revealed that P-GM-2 was detectable in the blood of mice within 5 min of oral administration and reached its maximum concentration at 30 min. Furthermore, the oral administration of P-GM-2 for a duration of three months has been found to effectively regulate the secretion of key markers of bone turnover, thereby protecting against bone microstructure degeneration and bone loss in ovariectomized mice. Importantly, no toxicity related to the treatment was observed. Taken together, these findings offer valuable insights into the absorption and transport mechanisms of P-GM-2, highlighting its potential as a safe and effective active ingredient for preventing osteoporosis.


Assuntos
Absorção Intestinal , Peptídeos , Humanos , Camundongos , Animais , Células CACO-2 , Absorção Intestinal/fisiologia , Células HT29 , Permeabilidade , Peptídeos/farmacologia , Peptídeos/metabolismo , Transporte Biológico/fisiologia
9.
Int J Pharm ; 654: 123957, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430950

RESUMO

The oral bioavailability of therapeutic peptides is generally low. To increase peptide transport across the gastrointestinal barrier, permeation enhancers are often used. Despite their widespread use, mechanistic knowledge of permeation enhancers is limited. To address this, we here investigate the interactions of six commonly used permeation enhancers with lipid membranes in simulated intestinal environments. Specifically, we study the interactions of the permeation enhancers sodium caprate, dodecyl maltoside, sodium cholate, sodium dodecyl sulfate, melittin, and penetratin with epithelial cell-like model membranes. To mimic the molecular composition of the real intestinal environment, the experiments are performed with two peptide drugs, salmon calcitonin and desB30 insulin, in fasted-state simulated intestinal fluid. Besides providing a comparison of the membrane interactions of the studied permeation enhancers, our results demonstrate that peptide drugs as well as intestinal-fluid components may substantially change the membrane activity of permeation enhancers. This highlights the importance of testing permeation enhancement in realistic physiological environments and carefully choosing a permeation enhancer for each individual peptide drug.


Assuntos
Absorção Intestinal , Mucosa Intestinal , Humanos , Mucosa Intestinal/metabolismo , Células CACO-2 , Absorção Intestinal/fisiologia , Transporte Biológico , Lipídeos , Permeabilidade
10.
ACS Biomater Sci Eng ; 10(3): 1517-1529, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38377553

RESUMO

The etiology of diabetic nephropathy (DN) is complex, and the incidence is increasing year by year. The patient's kidney showed oxidative stress damage, increasing active oxygen species (ROS) content, and vasoconstriction. Due to poor drug solubility and low renal accumulation, the current treatment regimens have not effectively alleviated glomerulopathy and other kidney damage caused by DN. Therefore, it is of great significance to explore new treatment strategies and drug delivery systems. Here, we constructed an oral nanodelivery system (Tel/CAN@CS-DA) that reduced oxidative stress and vasoconstriction. Deoxycholic acid (DA)-modified nanoparticles entered into intestinal epithelial cells (Caco2 cells) via the bile acid biomimetic pathway, then escaped from the lysosomes and eventually spat out the cells, increasing the oral absorption of nanoparticles. Chitosan (CS) nanoparticles could achieve renal targeting through specific binding with a renal giant protein receptor and deliver drugs to renal tubule epithelial cells (HK-2 cells). In vitro studies also proved that telmisartan (Tel) and canagliflozin (CAN) effectively removed cellular reactive oxygen species (ROS) and reduced HK-2 cell apoptosis caused by high glucose. In the in vivo model induced by streptozotocin (STZ), the results showed that the nanosystem not only elevated AMPK protein expression, inhibited angiotensin II (Ang II) protein expression to effectively reduce oxidative stress level, dilated renal blood vessels but also reduced the degree of inflammation and fibrosis. Overall, Tel/CAN@CS-DA multifunctional oral nanosystem can effectively treat DN with low toxicity, which provides a new idea for the treatment of DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células CACO-2 , Vasoconstrição , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Estresse Oxidativo , Telmisartan/farmacologia , Telmisartan/uso terapêutico , Absorção Intestinal
11.
Eur J Pharm Sci ; 195: 106720, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311258

RESUMO

Membrane permeability is one of the main determinants for the absorption, distribution, metabolism and excretion of compounds and is therefore of crucial importance for successful drug development. Experiments with artificial phospholipid membranes have shown that the intrinsic membrane permeability (P0) of compounds is well-predicted by the solubility-diffusion model (SDM). However, using the solubility-diffusion model to predict the P0 of biological Caco-2 and MDCK cell membranes has proven unreliable so far. Recent publications revealed that many published P0 extracted from Caco-2 and MDCK experiments are incorrect. In this work, we therefore used a small self-generated set as well as a large revised set of experimental Caco-2 and MDCK data from literature to compare experimental and predicted P0. The P0 extracted from Caco-2 and MDCK experiments were systematically lower than the P0 predicted by the solubility-diffusion model. However, using the following correlation: log P0,Caco-2/MDCK = 0.84 log P0,SDM - 1.85, P0 of biological Caco-2 and MDCK cell membranes was well-predicted by the solubility-diffusion model.


Assuntos
Absorção Intestinal , Animais , Cães , Humanos , Células CACO-2 , Células Madin Darby de Rim Canino , Solubilidade , Permeabilidade da Membrana Celular , Permeabilidade
12.
Zhongguo Zhong Yao Za Zhi ; 49(2): 509-517, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403326

RESUMO

This study investigated the absorption profile of Wuwei Qingzhuo San in different intestinal segments and the absorption characteristics of its alkaloids(piperine, piperanine, piperlonguminine, and dihydropiperlonguminine). The everted gut sac model was established, and the chemical components of Wuwei Qingzhuo San in different intestinal segments were detected by UPLC-Q-TOF-MS. The content of piperine, piperanine, piperlonguminine, and dihydropiperlonguminine in intestinal absorption fluid was determined by UPLC-Q-TRAP-MS and the absorption parameters were calculated. The absorption characteristics in different intestinal segments at different time were analyzed. As a result, 27, 27, 8, and 6 absorbent components from Wuwei Qingzhuo San were detected in the intestinal cyst fluid of jejunum, ileum, duodenum, and colon by UPLC-Q-TOF-MS technology, respectively. It was also found that piperine, piperanine, piperlonguminine, and dihydropiperlonguminine from Wuwei Qingzhuo San showed linear absorption in various intestinal segments, with r values exceeding 0.9. In terms of absorption content, the components were ranked as piperine>piperanine>dihydropiperlonguminine>piperlonguminine in various intestinal segments, but the absorption rate and mechanism of each component varied. The results demonstrate that the absorption of the components of Wuwei Qingzhuo San in different intestinal segments is selective and is not a simple semi-permeable membrane permeation process.


Assuntos
Alcaloides , Piperidinas , Alcamidas Poli-Insaturadas , Benzodioxóis , Absorção Intestinal
13.
J Agric Food Chem ; 72(7): 3622-3632, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38347764

RESUMO

The stimulation of host iron absorption is a promising antianemia strategy adjunctive/alternative to iron intervention. Here, gum arabic (GA) containing 3.14 ± 0.56% hydroxyproline-rich protein with repetitive X-(Pro/Hyp)n motifs was found to increase iron reduction, uptake, and transport to upregulate duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), ferroportin, and hephaestin to inhibit hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) and to stabilize HIF2α in polarized Caco-2 cell monolayers in a dose-dependent manner, and this was dependent on its protein fraction, rather than the polysaccharide fraction. Three abundant GA-derived hydroxyproline-containing dipeptides of Hyp-Hyp, Pro-Hyp, and Ser-Hyp were detected by liquid chromatography-mass spectrometry in the lysates of polarized Caco-2 cell monolayers at the maximum levels of  0.167 ± 0.021, 0.134 ± 0.017, and 0.089 ± 0.015 µg/mg of protein, respectively, and showed desirable docking affinity energy values of -7.53, - 7.91, and -7.39 kcal/mol, respectively, against human PHD3. GA-derived peptides also acutely increased duodenal HIF2α stability and Dcytb, DMT1, ferroportin, and hephaestin transcription in rats (P < 0.05). Overall, GA-derived hydroxyproline-rich peptides stimulated intestinal iron absorption via PHD inhibition, HIF2α stabilization, and subsequent upregulation of iron transport proteins.


Assuntos
Proteínas de Transporte , Ferro , Ratos , Humanos , Animais , Ferro/metabolismo , Proteínas de Transporte/metabolismo , Regulação para Cima , Goma Arábica , Hidroxiprolina , Células CACO-2 , Absorção Intestinal , Peptídeos/metabolismo
14.
Food Res Int ; 180: 114073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395550

RESUMO

We investigated the effects of fatty acid/ monoglyceride type and amount on the absorption of fat-soluble vitamins. Micelles or vesicles made with either caprylic acid (CA) + monocaprylin (MC) or oleic acid (OA) + monoolein (MO) at low or high concentrations were infused in bile duct-ligated mice. Retinol + retinyl ester and γ-tocopherol intestinal mucosa contents were higher in mice infused with CA + MC than with OA + MO (up to + 350 % for vitamin A and up to + 62 %, for vitamin E; p < 0.05). Cholecalciferol intestinal mucosa content was the highest in mice infused with micelles with CA + MC at 5 mg/mL (up to + 105 %, p < 0.05). Retinyl ester plasma response was higher with mixed assemblies formed at low concentration of FA + MG compared to high concentration (up to + 1212 %, p < 0.05), while no difference in cholecalciferol and γ-tocopherol plasma responses were measured. No correlation between size or zeta potential and vitamin absorption was found. The impact of FA and MG on fat-soluble vitamin absorption thus differs from one vitamin to another and should be considered to formulate adequate vitamin oral or enteral supplements.


Assuntos
Caprilatos , Ácidos Graxos , Glicerídeos , Monoglicerídeos , Camundongos , Animais , Ácidos Graxos/farmacologia , gama-Tocoferol , Ésteres de Retinil/farmacologia , Micelas , Absorção Intestinal , Vitaminas , Vitamina A/metabolismo , Colecalciferol , Ácido Oleico
15.
Drug Metab Pharmacokinet ; 55: 100997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367298

RESUMO

Meropenem (MEPM) is used for the treatment of serious infectious diseases solely as. INJECTABLE: Therefore, the development of an oral formulation would expand its clinical utility. To this end, an exact understanding of the absorption characteristics of MEPM is essential. In this study, MEPM absorption in the rat small intestine was investigated using an in situ loop technique and an in vitro diffusion chamber method. The disappearance ratios of MEPM (0.1 mM) were in the order of ileum > duodenum > jejunum. The extensive MEPM disappearance in the ileum was significantly reduced in the presence of foscarnet, a Na+-dependent phosphate transporter (NaPi-T) substrate, whereas glycylsarcosine, thiamine, taurocholic acid, and biapenem had no effects. The mucosal-to-serosal (M-to-S) permeation of MEPM across the rat ileal segments was very small under normal experimental conditions. However, on addition of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) to the experimental medium, the M-to-S permeation of MEPM markedly increased, showing a more than 7-fold greater apparent permeation coefficient. The present results suggest that MEPM is preferentially absorbed in the rat ileum, sharing with foscarnet, and that 1,25(OH)2D3 potentially activates the absorption of MEPM there. A likely candidate for involvement in MEPM absorption was NaPi-T or a related transporter.


Assuntos
Foscarnet , Proteínas de Transporte de Fosfato , Vitamina D/análogos & derivados , Ratos , Animais , Foscarnet/farmacologia , Meropeném/farmacologia , Íleo , Absorção Intestinal
16.
Biopharm Drug Dispos ; 45(2): 71-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400763

RESUMO

This research aims to identify regional differences in vildagliptin absorption across the intestinal membrane. Furthermore, it was to investigate the effect of verapamil or metformin on vildagliptin absorptive clearance. The study utilized an in situ rabbit intestinal perfusion technique to determine vildagliptin oral absorption from duodenum, jejunum, ileum, and ascending colon. This was conducted both with and without perfusion of metformin or verapamil. The findings revealed that the vildagliptin absorptive clearance per unit length varied by site and was in the order as follows: ileum < jejunum < duodenum < ascending colon, implying that P-gp is significant in the reduction of vildagliptin absorption. Also, the arrangement cannot reverse intestinal P-gp, but the observations suggest that P-gp is significant in reducing vildagliptin absorption. Verapamil co-perfusion significantly increased the vildagliptin absorptive clearance by 2.4 and 3.2 fold through the jejunum and ileum, respectively. Metformin co-administration showed a non-significant decrease in vildagliptin absorptive clearance through all tested segments. Vildagliptin absorption was site-dependent and may be related to the intestinal P-glycoprotein content. This may aid in understanding the important elements that influence vildagliptin absorption, besides drug-drug interactions that can occur in type 2 diabetic patients taking vildagliptin in conjunction with other drugs that can modify the P-glycoprotein level.


Assuntos
Metformina , Animais , Humanos , Coelhos , Vildagliptina/farmacologia , Metformina/farmacologia , Verapamil/farmacologia , Absorção Intestinal , Intestinos , Subfamília B de Transportador de Cassetes de Ligação de ATP
17.
Int J Pharm ; 653: 123893, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38346600

RESUMO

The aim of the current work was to investigate the key factors that govern the success/failure of an ethanol-based solubility-enabling oral drug formulation, including the effects of the ethanol on the solubility of the drug, the permeability across the intestinal membrane, the drug's dissolution in the aqueous milieu of the gastrointestinal tract (GIT), and the resulting solubility-permeability interplay. The concentration-dependent effects of ethanol-based vehicles on the solubility, the in-vitro Caco-2 permeability, the in-vivo rat permeability, and the biorelevant dissolution of the BCS class II antiepileptic drug carbamazepine were studied, and a predictive model describing the solubility-permeability relationship was developed. Significant concentration-dependent solubility increase of CBZ was obtained with increasing ethanol levels, that was accompanied by permeability decrease, both in Caco-2 and in rat perfusion studies, demonstrating a tradeoff between the increased solubility afforded by the ethanol and a concomitant permeability decrease. When ethanol absorption was accounted for, an excellent agreement was achieved between the predicted permeability and the experimental data. Biorelevant dissolution studies revealed that minimal ethanol levels of 30 % and 50 % were needed to fully dissolve 1 and 5 mg CBZ dose respectively, with no drug precipitation.In conclusion, key factors to be accounted for when developing ethanol-based formulation include the drug's solubility, permeability, the solubility-permeability interplay, and the drug dose intended to be delivered. Only the minimal amount of ethanol sufficient to solubilize the drug dose throughout the GIT should be used, and not more than that, to avoid unnecessarily permeability loss, and to maximize overall drug absorption.


Assuntos
Química Farmacêutica , Etanol , Humanos , Ratos , Animais , Solubilidade , Composição de Medicamentos , Química Farmacêutica/métodos , Etanol/farmacologia , Células CACO-2 , Absorção Intestinal , Administração Oral , Permeabilidade , Carbamazepina/farmacologia
18.
PLoS One ; 19(1): e0292091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277356

RESUMO

Many of the pathological consequences of chronic kidney disease can be attributed to an elevation in serum phosphate levels. Current therapies focused on decreasing intestinal phosphate absorption to treat hyperphosphatemia are inadequate. The most effective therapeutic strategy may be to target multiple absorptive pathways. In this study, the ability of a novel inhibitor of the intestinal sodium hydrogen exchanger 3 (NHE3), LY3304000, which inhibits paracellular, diffusional uptake of phosphate, to work in combination with an inhibitor of the active transporter, sodium dependent phosphate cotransporter 2b (NPT2b), LY3358966, was explored. LY3304000 modestly inhibited the acute uptake of phosphate into plasma of rats, while surprisingly, it doubled the rate of phosphate uptake in mice, an animal model dominated by NPT2b mediated acute phosphate uptake. In rats, LY3004000 and LY3358966 work in concert to inhibit acute phosphate uptake. On top of LY3358966, LY3304000 further decreased the acute uptake of phosphate into plasma. Studies measuring the recovery of radiolabeled phosphate in the intestine demonstrated LY3304000 and LY3358966 synergistically inhibited the absorption of phosphate in rats. We hypothesize the synergism is because the NHE3 inhibitor, LY3304000, has two opposing effects on intestinal phosphate absorption in rats, first it decreases diffusion mediated paracellular phosphate absorption, while second, it simultaneously increases phosphate absorption through the NPT2b pathway. NHE3 inhibition decreases proton export from enterocytes and raises the cell surface pH. In vitro, NPT2b mediated phosphate transport is increased at higher pHs. The increased NPT2b mediated transport induced by NHE3 inhibition is masked in rats which have relatively low levels of NPT2b mediated phosphate transport, by the more robust inhibition of diffusion mediated phosphate absorption. Thus, the inhibition of NPT2b mediated phosphate transport in rats in the presence of NHE3 inhibition has an effect that exceeds its effect in the absence of NHE3 inhibition, leading to the observed synergism on phosphate absorption between NPT2b and NHE3 inhibition.


Assuntos
Fosfatos , Insuficiência Renal Crônica , Ratos , Camundongos , Animais , Fosfatos/metabolismo , Trocador 3 de Sódio-Hidrogênio , Roedores , Absorção Intestinal , Insuficiência Renal Crônica/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
19.
Eur J Pharm Sci ; 194: 106703, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224722

RESUMO

Predicting the absorption of drugs from enabling formulations is still challenging due to the limited capabilities of standard physiologically based biopharmaceutics models (PBBMs) to capture complex absorption processes. Amongst others, it is often assumed that both, molecularly and apparently dissolved drug in the gastrointestinal lumen are prone to absorption. A recently introduced method for measuring concentrations of molecularly dissolved drug in a dynamic in vitro dissolution setup using microdialysis has opened new opportunities to test this hypothesis and refine mechanistic PBBM approaches. In the present study, we compared results of PBBMs that used either molecularly or apparently dissolved concentrations in the simulated gastrointestinal lumen as input parameters. The in vitro dissolution data from three supersaturating formulations of Posaconazole (PCZ) were used as model input. The modeling outcome was verified using PCZ concentration vs. time profiles measured in human intestinal aspirates and in the blood plasma. When using apparently dissolved drug concentrations (i.e., the sum of colloid-associated and molecularly dissolved drug) the simulated systemic plasma exposures were overpredicted, most pronouncedly with the ASD-based tablet. However, if the concentrations of molecularly dissolved drug were used as input values, the PBBM resulted in accurate prediction of systemic exposures for all three PCZ formulations. The present study impressively demonstrated the value of considering molecularly dissolved drug concentrations as input value for PBBMs of supersaturating drug formulations.


Assuntos
Biofarmácia , Coloides , Humanos , Biofarmácia/métodos , Solubilidade , Administração Oral , Absorção Intestinal/fisiologia , Modelos Biológicos
20.
Cell Rep Med ; 5(1): 101363, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232698

RESUMO

Early time-restricted eating (eTRE) improves aspects of cardiometabolic health. Although the circadian system appears to regulate nutrient absorption, little is known about the effects of eTRE on intestinal absorption. In this randomized crossover trial, 16 healthy adults follow a controlled, weight maintenance diet for 9 days, consuming all calories between 0800 and 1400 (eTRE schedule) or 0800 and 2000 (control schedule). We measure the energy content of the diet, stool, and urine with bomb calorimetry and calculate intestinal energy absorption. The eTRE schedule is more effective than the control eating schedule for improving markers of cardiometabolic health, including 24-h mean glucose concentrations and glycemic variability, assessed as the mean amplitude of glycemic excursions. However, eTRE has no effect on intestinal energy and macronutrient absorption, gastrointestinal transit time, colonic hydrogen gas production, or stool microbial composition, suggesting eTRE does not impact gastrointestinal function. This trial is registered (ClinicalTrials.gov: NCT04877262).


Assuntos
Doenças Cardiovasculares , Dieta , Adulto , Humanos , Ingestão de Energia , Absorção Intestinal , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...