Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.444
Filtrar
2.
Genome Med ; 16(1): 55, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605363

RESUMO

BACKGROUND: Most primary Triple Negative Breast Cancers (TNBCs) show amplification of the Epidermal Growth Factor Receptor (EGFR) gene, leading to increased protein expression. However, unlike other EGFR-driven cancers, targeting this receptor in TNBC yields inconsistent therapeutic responses. METHODS: To elucidate the underlying mechanisms of this variability, we employ cellular barcoding and single-cell transcriptomics to reconstruct the subclonal dynamics of EGFR-amplified TNBC cells in response to afatinib, a tyrosine kinase inhibitor (TKI) that irreversibly inhibits EGFR. RESULTS: Integrated lineage tracing analysis revealed a rare pre-existing subpopulation of cells with distinct biological signature, including elevated expression levels of Insulin-Like Growth Factor Binding Protein 2 (IGFBP2). We show that IGFBP2 overexpression is sufficient to render TNBC cells tolerant to afatinib treatment by activating the compensatory insulin-like growth factor I receptor (IGF1-R) signalling pathway. Finally, based on reconstructed mechanisms of resistance, we employ deep learning techniques to predict the afatinib sensitivity of TNBC cells. CONCLUSIONS: Our strategy proved effective in reconstructing the complex signalling network driving EGFR-targeted therapy resistance, offering new insights for the development of individualized treatment strategies in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Afatinib/farmacologia , Afatinib/uso terapêutico , Linhagem da Célula , Receptores ErbB , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral
3.
Glia ; 72(6): 1165-1182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497409

RESUMO

Oligodendrocytes (OLs) are key players in the central nervous system, critical for the formation and maintenance of the myelin sheaths insulating axons, ensuring efficient neuronal communication. In the last decade, the use of human induced pluripotent stem cells (iPSCs) has become essential for recapitulating and understanding the differentiation and role of OLs in vitro. Current methods include overexpression of transcription factors for rapid OL generation, neglecting the complexity of OL lineage development. Alternatively, growth factor-based protocols offer physiological relevance but struggle with efficiency and cell heterogeneity. To address these issues, we created a novel SOX10-P2A-mOrange iPSC reporter line to track and purify oligodendrocyte precursor cells. Using this reporter cell line, we analyzed an existing differentiation protocol and shed light on the origin of glial cell heterogeneity. Additionally, we have modified the differentiation protocol, toward enhancing reproducibility, efficiency, and terminal maturity. Our approach not only advances OL biology but also holds promise to accelerate research and translational work with iPSC-derived OLs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem da Célula , Reprodutibilidade dos Testes , Neurogênese , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
4.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
5.
Nat Commun ; 15(1): 2783, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555276

RESUMO

Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem da Célula/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento
6.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446206

RESUMO

Inhibitor of growth 4 and 5 (ING4, ING5) are structurally similar chromatin-binding proteins in the KAT6A, KAT6B and KAT7 histone acetyltransferase protein complexes. Heterozygous mutations in the KAT6A or KAT6B gene cause human disorders with cardiac defects, but the contribution of their chromatin-adaptor proteins to development is unknown. We found that Ing5-/- mice had isolated cardiac ventricular septal defects. Ing4-/-Ing5-/- embryos failed to undergo chorioallantoic fusion and arrested in development at embryonic day 8.5, displaying loss of histone H3 lysine 14 acetylation, reduction in H3 lysine 23 acetylation levels and reduced developmental gene expression. Embryonic day 12.5 Ing4+/-Ing5-/- hearts showed a paucity of epicardial cells and epicardium-derived cells, failure of myocardium compaction, and coronary vasculature defects, accompanied by reduced expression of epicardium genes. Cell adhesion gene expression and proepicardium outgrowth were defective in the ING4- and ING5-deficient state. Our findings suggest that ING4 and ING5 are essential for heart development and promote epicardium and epicardium-derived cell fates and imply mutation of the human ING5 gene as a possible cause of isolated ventricular septal defects.


Assuntos
Proteínas de Transporte , Comunicação Interventricular , Lisina , Humanos , Animais , Camundongos , Linhagem da Célula , Histonas , Acetilação , Cromatina , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas de Homeodomínio/genética , Proteínas de Ciclo Celular , Histona Acetiltransferases
7.
Results Probl Cell Differ ; 72: 83-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509253

RESUMO

It has long been assumed that a specific cell type arises following stepwise specification of cells corresponding to the branching of cell lineages. However, accumulating evidence indicates that multiple and even remote cell lineages can lead to the development of the same cells. Four examples giving different yet new insights will be discussed: skeletal muscle development from precursors with distinct initial histories of transcriptional regulation, lens cell development from remote lineages yet sharing basic transcription factors, blood cell development under intersectional pathways, and neural tissue development from cardiac precursors through the manipulation of just one component of epigenetic regulation. These examples provide flexible and nondogmatic perspectives on developmental cell regulation, fundamentally revising the old model relying on cell lineages.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula , Diferenciação Celular
8.
Sci Adv ; 10(13): eadn9998, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536915

RESUMO

Cortical neurogenesis follows a simple lineage: apical radial glia cells (RGCs) generate basal progenitors, and these produce neurons. How this occurs in species with expanded germinal zones and a folded cortex, such as human, remains unclear. We used single-cell RNA sequencing from individual cortical germinal zones in ferret and barcoded lineage tracking to determine the molecular diversity of progenitor cells and their lineages. We identified multiple RGC classes that initiate parallel lineages, converging onto a common class of newborn neuron. Parallel RGC classes and transcriptomic trajectories were repeated across germinal zones and conserved in ferret and human, but not in mouse. Neurons followed parallel differentiation trajectories in the gyrus and sulcus, with different expressions of human cortical malformation genes. Progenitor cell lineage multiplicity is conserved in the folded mammalian cerebral cortex.


Assuntos
Córtex Cerebral , Furões , Animais , Camundongos , Humanos , Linhagem da Célula/fisiologia , Neurônios/fisiologia , Diferenciação Celular , Neurogênese
9.
Cells ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38534326

RESUMO

Mechanosensation is a fundamental function through which cells sense mechanical stimuli by initiating intracellular ion currents. Ion channels play a pivotal role in this process by orchestrating a cascade of events leading to the activation of downstream signaling pathways in response to particular stimuli. Piezo1 is a cation channel that reacts with Ca2+ influx in response to pressure sensation evoked by tension on the cell lipid membrane, originating from cell-cell, cell-matrix, or hydrostatic pressure forces, such as laminar flow and shear stress. The application of such forces takes place in normal physiological processes of the cell, but also in the context of different diseases, where microenvironment stiffness or excessive/irregular hydrostatic pressure dysregulates the normal expression and/or activation of Piezo1. Since Piezo1 is expressed in several blood cell lineages and mutations of the channel have been associated with blood cell disorders, studies have focused on its role in the development and function of blood cells. Here, we review the function of Piezo1 in different blood cell lineages and related diseases, with a focus on megakaryocytes and platelets.


Assuntos
Canais Iônicos , Transdução de Sinais , Linhagem da Célula , Canais Iônicos/metabolismo , Transporte de Íons , Membrana Celular/metabolismo
10.
Nat Commun ; 15(1): 2744, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553478

RESUMO

Assigning single cell transcriptomes to cellular lineage trees by lineage tracing has transformed our understanding of differentiation during development, regeneration, and disease. However, lineage tracing is technically demanding, often restricted in time-resolution, and most scRNA-seq datasets are devoid of lineage information. Here we introduce Gene Expression Memory-based Lineage Inference (GEMLI), a computational tool allowing to robustly identify small to medium-sized cell lineages solely from scRNA-seq datasets. GEMLI allows to study heritable gene expression, to discriminate symmetric and asymmetric cell fate decisions and to reconstruct individual multicellular structures from pooled scRNA-seq datasets. In human breast cancer biopsies, GEMLI reveals previously unknown gene expression changes at the onset of cancer invasiveness. The universal applicability of GEMLI allows studying the role of small cell lineages in a wide range of physiological and pathological contexts, notably in vivo. GEMLI is available as an R package on GitHub ( https://github.com/UPSUTER/GEMLI ).


Assuntos
Perfilação da Expressão Gênica , Software , Humanos , Linhagem da Célula/genética , Análise de Sequência de RNA , Análise da Expressão Gênica de Célula Única , Análise de Célula Única
11.
Nature ; 628(8006): 162-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538791

RESUMO

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Assuntos
Imunidade Adaptativa , Envelhecimento , Linhagem da Célula , Células-Tronco Hematopoéticas , Linfócitos , Células Mieloides , Rejuvenescimento , Animais , Feminino , Masculino , Camundongos , Imunidade Adaptativa/imunologia , Envelhecimento/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Inflamação/imunologia , Inflamação/patologia , Linfócitos/citologia , Linfócitos/imunologia , Linfopoese , Células Mieloides/citologia , Células Mieloides/imunologia , Mielopoese , Fenótipo , Linfócitos T/citologia , Linfócitos T/imunologia , Vírus/imunologia
12.
Front Immunol ; 15: 1362140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510246

RESUMO

Exhausted CD8+T cells represent a distinct cellular lineage that emerges during both chronic infections and cancers. Recent studies have shown that persistent antigen exposure can drive the differentiation of precursor exhausted CD8+T cells, termed Tpex cells, which are characterized as TCF-1+PD-1+CD8+T cells. Elevated Tpex cell frequencies in the tumor microenvironment (TME) are associated with improved overall survival (OS) in cancer patients and heightened responsiveness to anti-PD-1 therapy. In our present study, we utilized multi-color immunohistochemistry (mIHC) to determine the localization and clinical implications of tumor-infiltrating Tpex cells within the TME of human colorectal cancer (CRC) tissues. We also conducted a multi-omics integrative analysis using single-cell RNA sequencing (scRNA-seq) data derived from both the murine MC38 tumor model and human CRC tissues. This analysis helped delineate the transcriptional and functional attributes of Tpex cells within the CRC TME. Furthermore, we employed spatial transcriptome sequencing data from CRC patients to investigate the interactions between Tpex cells and other immune cell subsets within the TME. In conclusion, our study not only established a method for Tpex cell detection using mIHC technology but also confirmed that assessing Tpex cells within the CRC TME could be indicative of patients' survival. We further uncovered the transcriptional and functional characteristics of Tpex cells in the TME and ascertained their pivotal role in the efficacy of immunotherapy against CRC.


Assuntos
Neoplasias Colorretais , Imunoterapia , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Diferenciação Celular , Linhagem da Célula , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Microambiente Tumoral
13.
Trends Immunol ; 45(4): 234-236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521715

RESUMO

The role of antibody affinity in plasma cell (PC) differentiation from germinal centers (GCs) remains contested. Parallel studies by Sprumont et al. and Sutton and Gao et al. show that PCs emerging from GCs produce antibodies with a diverse range of affinities and lack signatures of affinity-based selection. Therefore, commitment to the PC lineage is affinity independent.


Assuntos
Linfócitos B , Centro Germinativo , Humanos , Ativação Linfocitária , Linhagem da Célula , Diferenciação Celular , Plasmócitos
14.
Cells ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474364

RESUMO

Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate of proliferation, the ability to differentiate into several cell lineages, the immunomodulatory potential, and their easy isolation with minimal ethical issues. One of the main goals of regenerative medicine is to modulate, both in vitro and in vivo, the differentiation potential of MSCs to improve their use in the repair of damaged tissues. Over the years, much evidence has been collected about the ability of cytochalasins, a large family of 60 metabolites isolated mainly from fungi, to modulate multiple properties of stem cells (SCs), such as proliferation, migration, and differentiation, by altering the organization of the cyto- and the nucleo-skeleton. In this review, we discussed the ability of two different cytochalasins, cytochalasins D and B, to influence specific SC differentiation programs modulated by several agents (chemical or physical) or intra- and extra-cellular factors, with particular attention to human MSCs (hMSCs).


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Citocalasinas/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Linhagem da Célula
15.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452090

RESUMO

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Assuntos
Células-Tronco Adultas , Plasticidade Celular , Epiderme , Folículo Piloso , Tretinoína , Cicatrização , Animais , Camundongos , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/fisiologia , Epiderme/efeitos dos fármacos , Epiderme/fisiologia , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/fisiologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Rejuvenescimento/fisiologia , Técnicas de Cultura de Células , Neoplasias/patologia , Camundongos Endogâmicos C57BL
16.
Sci Adv ; 10(11): eadk7160, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489358

RESUMO

During development, cells make switch-like decisions to activate new gene programs specifying cell lineage. The mechanisms underlying these decisive choices remain unclear. Here, we show that the cardiovascular transcriptional coactivator myocardin (MYOCD) activates cell identity genes by concentration-dependent and switch-like formation of transcriptional condensates. MYOCD forms such condensates and activates cell identity genes at critical concentration thresholds achieved during smooth muscle cell and cardiomyocyte differentiation. The carboxyl-terminal disordered region of MYOCD is necessary and sufficient for condensate formation. Disrupting this region's ability to form condensates disrupts gene activation and smooth muscle cell reprogramming. Rescuing condensate formation by replacing this region with disordered regions from functionally unrelated proteins rescues gene activation and smooth muscle cell reprogramming. Our findings demonstrate that MYOCD condensate formation is required for gene activation during cardiovascular differentiation. We propose that the formation of transcriptional condensates at critical concentrations of cell type-specific regulators provides a molecular switch underlying the activation of key cell identity genes during development.


Assuntos
Miócitos de Músculo Liso , Fatores de Transcrição , Linhagem da Célula/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Miócitos de Músculo Liso/metabolismo , Ativação Transcricional
17.
Nature ; 627(8002): 196-203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355805

RESUMO

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.


Assuntos
Movimento Celular , Forma do Núcleo Celular , Neutrófilos , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Conformação de Ácido Nucleico , Diferenciação Celular/genética , Inflamação/genética , Elementos Facilitadores Genéticos , Linhagem da Célula/genética
18.
FASEB J ; 38(4): e23492, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38363564

RESUMO

Lineage specification and X chromosome dosage compensation are two crucial biological processes that occur during preimplantation embryonic development. Although extensively studied in mice, the timing and regulation of these processes remain elusive in other species, including humans. Previous studies have suggested conserved principles of human and bovine early development. This study aims to provide fundamental insights into these programs and the regulation using a bovine embryo model by employing single-cell transcriptomics and genome editing approaches. The study analyzes the transcriptomes of 286 individual cells and reveals that bovine trophectoderm/inner cell mass transcriptomes diverge at the early blastocyst stage, after cavitation but before blastocyst expansion. The study also identifies transcriptomic markers and provides the timing of lineage specification events in the bovine embryo. Importantly, we find that SOX2 is required for the first cell decision program in bovine embryos. Moreover, the study shows the occurrence of X chromosome dosage compensation from morula to late blastocyst and reveals that this compensation results from downregulation of X-linked genes in female embryonic cells. The transcriptional atlas generated by this study is expected to be widely useful in improving our understanding of mammalian early embryo development.


Assuntos
Blastocisto , Análise da Expressão Gênica de Célula Única , Gravidez , Bovinos , Animais , Feminino , Humanos , Camundongos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Cromossomo X/genética , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula/genética , Mamíferos
19.
Neurosci Lett ; 824: 137674, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38355005

RESUMO

Adult neural stem cells (NSCs) located in the two canonical neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ), express the glial fibrillary acidic protein (GFAP). Recently, proliferative activity has been described in the hypothalamus although the characterization of hypothalamic neural stem/progenitor cells (NSPCs) is still uncertain. We therefore investigated whether hypothalamic GFAP-positive cells, as in the SVZ and SGZ, also have neurogenic potential. We used a transgenic mouse line expressing green fluorescent protein (GFP) under the control of the GFAP promoter. GFAP-GFP expressing cells are localized in the ependymal layer as well as in the parenchyma of the mediobasal hypothalamus (MBH) and express Sox2, a marker for NSCs. Interestingly, no sexual dimorphism was observed in the numbers of GFP + and GFP-Sox2 + cells. After cells sorting, these cells were able to generate neurospheres in vitro and give rise to neurons, astrocytes and oligodendrocytes. Taken together, these results show that hypothalamic GFAP-expressing cells form a population of NSPCs.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Linhagem da Célula , Proteína Glial Fibrilar Ácida/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Camundongos Transgênicos , Hipotálamo/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
20.
Circ Res ; 134(4): 445-458, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359092

RESUMO

Cardiovascular disease has been the leading cause of mortality and morbidity worldwide in the past 3 decades. Multiple cell lineages undergo dynamic alternations in gene expression, cell state determination, and cell fate conversion to contribute, adapt, and even modulate the pathophysiological processes during disease progression. There is an urgent need to understand the intricate cellular and molecular underpinnings of cardiovascular cell development in homeostasis and pathogenesis. Recent strides in lineage tracing methodologies have revolutionized our understanding of cardiovascular biology with the identification of new cellular origins, fates, plasticity, and heterogeneity within the cardiomyocyte, endothelial, and mesenchymal cell populations. In this review, we introduce the new technologies for lineage tracing of cardiovascular cells and summarize their applications in studying cardiovascular development, diseases, repair, and regeneration.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Diferenciação Celular , Linhagem da Célula , Doenças Cardiovasculares/genética , Miócitos Cardíacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...