Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.613
Filtrar
1.
Sci Rep ; 14(1): 5845, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462658

RESUMO

Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias da Mama/patologia , Genes myc , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/metabolismo , Luciferases/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
2.
Front Biosci (Landmark Ed) ; 29(3): 119, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38538250

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor in urgent need of novel diagnostics, prognostic markers, and treatments. Eukaryotic translation initiation factor 2 subunits (EIF2Ss), comprising Eukaryotic translation initiation factor 2 subunit alpha (EIF2S1), Eukaryotic translation initiation factor 2 subunit beta (EIF2S2), and Eukaryotic translation initiation factor 2 subunit gamma (EIF2S3), is a family of eukaryotic initiation factors that participate in early protein synthesis and are crucial for tumor initiation and progression. However, the role of EIF2Ss in PAAD has yet to be reported. The aim of this study was therefore to analyze EIF2Ss in relation to the diagnosis, prognosis, and treatment of PAAD. METHODS: The cancer genome atlas (TCGA) database was used to investigate gene expression and patient survival. Gene alterations, immune cell infiltration, and immune checkpoints in PAAD were also evaluated. Univariate and multivariate analysis, nomograms, calibration curves, and Decision Curve Analysis (DCA) diagrams were used to develop and evaluate a prediction model for patient outcome. Single-cell RNA-seq (scRNA) analysis, functional enrichment, co-IP assay, mass spectrometry, and western blot were used to study the relationship between EIF2Ss and c-myc in PAAD. RESULTS: EIF2Ss are over-expressed in PAAD tissue and are associated with poor prognosis. The frequency of EIF2S1, EIF2S2, and EIF2S3 gene alteration in PAAD was 0.2%, 0.4%, and 0.2%, respectively. High EIF2Ss expression was associated with Th2 cell infiltration, whereas low expression was associated with pDC infiltration. Moreover, EIF2Ss expression was positively correlated with the expression of the NT5E, ULBP1, PVR, CD44, IL10RB, and CD276 checkpoints. A prediction model developed using EIF2Ss and important clinicopathologic features showed good predictive value for the overall survival of PAAD patients. ScRNA-Seq data showed that EIF2Ss was associated with enrichment for endothelial cells, fibroblasts, malignant cells, and ductal cells. EIF2Ss expression was also correlated with adipogenesis, interferon-alpha response, epithelial-mesenchymal transition, myc targets, G2M checkpoint, oxidative phosphorylation, and hypoxia. Functional enrichment analysis of EIF2Ss showed a close correlation with the myc pathway, and interactions between EIF2Ss and c-myc were confirmed by co-IP assay and mass spectrometry. Importantly, knockdown of c-myc decreased the expression of EIF2S1, EIF2S2, and EIF2S3 in PAAD cells. CONCLUSIONS: EIF2Ss were found to have significant clinical implications for the prognosis and treatment of PAAD. Inhibition of c-myc caused the downregulation of EIF2S1, EIF2S2, and EIF2S3 expression.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Células Endoteliais , Fator de Iniciação 2 em Procariotos , Neoplasias Pancreáticas/genética , Genes myc/genética , Regulação Neoplásica da Expressão Gênica , Antígenos B7
3.
Nature ; 627(8005): 880-889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480884

RESUMO

The evolutionary processes that underlie the marked sensitivity of small cell lung cancer (SCLC) to chemotherapy and rapid relapse are unknown1-3. Here we determined tumour phylogenies at diagnosis and throughout chemotherapy and immunotherapy by multiregion sequencing of 160 tumours from 65 patients. Treatment-naive SCLC exhibited clonal homogeneity at distinct tumour sites, whereas first-line platinum-based chemotherapy led to a burst in genomic intratumour heterogeneity and spatial clonal diversity. We observed branched evolution and a shift to ancestral clones underlying tumour relapse. Effective radio- or immunotherapy induced a re-expansion of founder clones with acquired genomic damage from first-line chemotherapy. Whereas TP53 and RB1 alterations were exclusively part of the common ancestor, MYC family amplifications were frequently not constituents of the founder clone. At relapse, emerging subclonal mutations affected key genes associated with SCLC biology, and tumours harbouring clonal CREBBP/EP300 alterations underwent genome duplications. Gene-damaging TP53 alterations and co-alterations of TP53 missense mutations with TP73, CREBBP/EP300 or FMN2 were significantly associated with shorter disease relapse following chemotherapy. In summary, we uncover key processes of the genomic evolution of SCLC under therapy, identify the common ancestor as the source of clonal diversity at relapse and show central genomic patterns associated with sensitivity and resistance to chemotherapy.


Assuntos
Evolução Molecular , Imunoterapia , Neoplasias Pulmonares , Platina , Carcinoma de Pequenas Células do Pulmão , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genes myc/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Platina/farmacologia , Platina/uso terapêutico , Recidiva , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia
4.
Nat Commun ; 15(1): 963, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302473

RESUMO

The MYC oncogene is often dysregulated in human cancer, including hepatocellular carcinoma (HCC). MYC is considered undruggable to date. Here, we comprehensively identify genes essential for survival of MYChigh but not MYClow cells by a CRISPR/Cas9 genome-wide screen in a MYC-conditional HCC model. Our screen uncovers novel MYC synthetic lethal (MYC-SL) interactions and identifies most MYC-SL genes described previously. In particular, the screen reveals nucleocytoplasmic transport to be a MYC-SL interaction. We show that the majority of MYC-SL nucleocytoplasmic transport genes are upregulated in MYChigh murine HCC and are associated with poor survival in HCC patients. Inhibiting Exportin-1 (XPO1) in vivo induces marked tumor regression in an autochthonous MYC-transgenic HCC model and inhibits tumor growth in HCC patient-derived xenografts. XPO1 expression is associated with poor prognosis only in HCC patients with high MYC activity. We infer that MYC may generally regulate and require altered expression of nucleocytoplasmic transport genes for tumorigenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Genes myc , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
5.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339195

RESUMO

The consensus molecular subtypes (CMSs) classification of colorectal cancer (CRC) is a system for patient stratification that can be potentially applied to therapeutic decisions. Hakai (CBLL1) is an E3 ubiquitin-ligase that induces the ubiquitination and degradation of E-cadherin, inducing epithelial-to-mesenchymal transition (EMT), tumour progression and metastasis. Using bioinformatic methods, we have analysed CBLL1 expression on a large integrated cohort of primary tumour samples from CRC patients. The cohort included survival data and was divided into consensus molecular subtypes. Colon cancer tumourspheres were used to analyse the expression of stem cancer cells markers via RT-PCR and Western blotting. We show that CBLL1 gene expression is specifically associated with canonical subtype CMS2. WNT target genes LGR5 and c-MYC show a similar association with CMS2 as CBLL1. These mRNA levels are highly upregulated in cancer tumourspheres, while CBLL1 silencing shows a clear reduction in tumoursphere size and in stem cell biomarkers. Importantly, CMS2 patients with high CBLL1 expression displayed worse overall survival (OS), which is similar to that associated with CMS4 tumours. Our findings reveal CBLL1 as a specific biomarker for CMS2 and the potential of using CMS2 with high CBLL1 expression to stratify patients with poor OS.


Assuntos
Neoplasias Colorretais , Humanos , Biomarcadores , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Genes myc , Análise de Sobrevida , Ubiquitina-Proteína Ligases/metabolismo
6.
Chemistry ; 30(14): e202303531, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38214885

RESUMO

A versatile method for the automated synthesis of composites containing DNA-oligonucleotides and boron cluster scaffolds and their assembly into functional nanoparticles is described. The obtained, torus-like nanoparticles carry antisense oligonucleotides that target two different oncogenes simultaneously. The nanoparticles exhibited notable silencing efficiency in vitro in a pancreatic carcinoma cell line PANC-1 toward EGFR and c-Myc genes at the mRNA level, and a significant efficiency at the protein level. The proposed approach may be an attractive alternative to methods currently used, including one therapeutic nucleic acid, one genetic target, or the use of cocktails of therapeutic nucleic acids.


Assuntos
Genes myc , Nanopartículas , Boro , DNA , Anticorpos , RNA Mensageiro
7.
PeerJ ; 12: e16728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38259669

RESUMO

Background: As hybridization can reduce biodiversity or cause extinction, it is important to identify both purebred parental species and their hybrids prior to conserving them. The Suwon tree frog, Dryophytes suweonensis, is an endangered wildlife species in Korea that shares its habitat and often hybridizes with the Japanese tree frog, D. japonicus. In particular, D. suweonensis, D. japonicus, and their hybrids often have abnormal ovaries and gonads, which are known causes that could threaten their existence. Methods: We collected 57 individuals from six localities where D. suweonensis is known to be present. High-resolution melting curve (HRM) analysis of the mitochondrial 12S ribosomal RNA gene was performed to determine the maternal species. Thereafter, the DNA sequences of five nuclear genes (SIAH, TYR, POMC, RAG1, and C-MYC) were analyzed to determine their parental species and hybrid status. Results: The HRM analysis showed that the melting temperature of D. suweonensis was in the range of 79.0-79.3 °C, and that of D. japonicus was 77.7-78.0 °C, which clearly distinguished the two tree frog species. DNA sequencing of the five nuclear genes revealed 37 single-nucleotide polymorphism (SNP) sites, and STRUCTURE analysis showed a two-group structure as the most likely grouping solution. No heterozygous position in the purebred parental sequences with Q values ≥ 0.995 were found, which clearly distinguished the two treefrog species from their hybrids; 11 individuals were found to be D. suweonensis, eight were found to be D. japonicus, and the remaining 38 individuals were found to be hybrids. Conclusion: Thus, it was possible to unambiguously identify the parental species and their hybrids using HRM analysis and DNA sequencing methods. This study provided fundamental information for D. suweonensis conservation and restoration research.


Assuntos
Anuros , Genes myc , Humanos , Animais , Anuros/genética , Animais Selvagens , Biodiversidade , Espécies em Perigo de Extinção
8.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203794

RESUMO

Stabilization of a G-quadruplex (G4) in the promotor of the c-MYC proto-oncogene leads to inhibition of gene expression, and it thus represents a potentially attractive new strategy for cancer treatment. However, most G4 stabilizers show little selectivity among the many G4s present in the cellular complement of DNA and RNA. Intriguingly, a crescent-shaped cell-penetrating thiazole peptide, TH3, preferentially stabilizes the c-MYC G4 over other promotor G4s, but the mechanisms leading to this selective binding remain obscure. To investigate these mechanisms at the atomic level, we performed an in silico comparative investigation of the binding of TH3 and its analogue TH1 to the G4s from the promotors of c-MYC, c-KIT1, c-KIT2, and BCL2. Molecular docking and molecular dynamics simulations, combined with in-depth analyses of non-covalent interactions and bulk and per-nucleotide binding free energies, revealed that both TH3 and TH1 can induce the formation of a sandwich-like framework through stacking with both the top and bottom G-tetrads of the c-MYC G4 and the adjacent terminal capping nucleotides. This framework produces enhanced binding affinities for c-MYC G4 relative to other promotor G4s, with TH3 exhibiting an outstanding binding priority. Van der Waals interactions were identified to be the key factor in complex formation in all cases. Collectively, our findings fully agree with available experimental data. Therefore, the identified mechanisms leading to specific binding of TH3 towards c-MYC G4 provide valuable information to guide the development of new selective G4 stabilizers.


Assuntos
Genes myc , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Tiazóis/farmacologia
9.
J Am Chem Soc ; 146(6): 3689-3699, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38296825

RESUMO

G-quadruplex (G4) selective stabilizing ligands can regulate c-MYC gene expression, but the kinetic basis remains unclear. Determining the effects of ligands on c-MYC promoter G4s' folding/unfolding kinetics is challenging due to the polymorphic nature of G4s and the high energy barrier to unfold c-MYC promoter G4s. Here, we used single-molecule magnetic tweezers to manipulate a duplex hairpin containing a c-MYC promoter sequence to mimic the transiently denatured duplex during transcription. We measured the effects of six commonly used G4s binding ligands on the competition between quadruplex and duplex structures, as well as the folding/unfolding kinetics of G4s. Our results revealed two distinct roles for G4s selective stabilization: CX-5461 is mainly acting as c-MYC G4s stabilizer, reducing the unfolding rate (ku) of c-MYC G4s, whereas PDS and 360A also act as G4s chaperone, accelerating the folding rates (kf) of c-MYC G4s. qRT-PCR results obtained from CA46 and Raji cell lines demonstrated that G4s stabilizing ligands can downregulate c-MYC expression, while G4s stabilizer CX-5461 exhibited the strongest c-MYC gene suppression. These results shed light on the potential of manipulating G4s' folding/unfolding kinetics by ligands for precise regulation of promoter G4-associated biological activities.


Assuntos
Quadruplex G , Genes myc , Regiões Promotoras Genéticas , Ligantes
10.
Mol Metab ; 79: 101848, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042369

RESUMO

OBJECTIVE: All forms of diabetes result from insufficient functional ß-cell mass. Thus, achieving the therapeutic goal of expanding ß-cell mass requires a better mechanistic understanding of how ß-cells proliferate. Glucose is a natural ß-cell mitogen that mediates its effects in part through the glucose-responsive transcription factor, carbohydrate response element binding protein (ChREBP) and the anabolic transcription factor, MYC. However, mechanistic details by which glucose activates Myc at the transcriptional level are poorly understood. METHODS: Here, siRNA was used to test the role of ChREBP in the glucose response of MYC, ChIP and ChIPseq to identify potential regulatory binding sites, chromatin conformation capture to identify DNA/DNA interactions, and an adenovirus was constructed to expresses x-dCas9 and an sgRNA that specifically disrupts the recruitment of ChREBP to a specific targeted ChoRE. RESULTS: We found that ChREBP is essential for glucose-mediated transcriptional induction of Myc, and for increases in Myc mRNA and protein abundance. Further, ChIPseq revealed that the carbohydrate response element (ChoRE) nearest to the Myc transcriptional start site (TSS) is immediately upstream of the gene encoding the lncRNA, Pvt1, 60,000 bp downstream of the Myc gene. Chromatin Conformation Capture (3C) confirmed a glucose-dependent interaction between these two sites. Transduction with an adenovirus expressing x-dCas9 and an sgRNA specifically targeting the highly conserved Pvt1 ChoRE, attenuates ChREBP recruitment, decreases Myc-Pvt1 DNA/DNA interaction, and decreases expression of the Pvt1 and Myc genes in response to glucose. Importantly, isolated and dispersed rat islet cells transduced with the ChoRE-disrupting adenovirus also display specific decreases in ChREBP-dependent, glucose-mediated expression of Pvt1 and Myc, as well as decreased glucose-stimulated ß-cell proliferation. CONCLUSIONS: The mitogenic glucose response of Myc is mediated via glucose-dependent recruitment of ChREBP to the promoter of the Pvt1 gene and subsequent DNA looping with the Myc promoter.


Assuntos
Genes myc , Glucose , Animais , Ratos , Cromatina/genética , DNA , Glucose/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Proteínas Proto-Oncogênicas c-myc
11.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38069407

RESUMO

Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms, encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs), bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB. Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients.


Assuntos
Epigênese Genética , Neuroblastoma , Humanos , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Genes myc , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética
12.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003498

RESUMO

Ovarian cancer (OC) is one of the biggest problems in gynecological oncology and is one of the most lethal cancers in women worldwide. Most patients with OC are diagnosed at an advanced stage; therefore, there is an urgent need to find new biomarkers for this disease. Gene expression profiling is proving to be a very effective tool for exploring new molecular markers for OC patients, although the relationship between such markers and patient survival and clinical outcomes is still elusive. Moreover, polymorphisms in genes encoding both apoptosis-associated proteins and oncoproteins may serve as key markers of cancer susceptibility. The aim of our study was to analyze the polymorphisms and expressions of the BCL2, BAX and c-MYC genes in a group of 198 women, including 98 with OC. The polymorphisms and mRNA expressions of the BCL2, BAX and c-MYC genes were analyzed using real-time PCR. The analysis of the BAX (rs4645878; G>A) and c-MYC (rs4645943; C>T) polymorphisms showed no association with ovarian cancer risk. The BCL2 polymorphism (rs2279115; C>A) showed a significant difference in the frequency of genotypes between the studied groups (CC: 23.47% vs. 16.00%, AA: 25.51% vs. 37.00%; p = 0.046; OR = 1.61). Furthermore, the expression levels of the BCL2 and c-MYC genes showed a decrease at the transcript level for OC patients compared to the control group (BCL2: 17.46% ± 3.26 vs. 100% ± 8.32; p < 0.05; c-MYC: 37.56% ± 8.16 vs. 100% ± 9.12; p < 0.05). No significant changes in the mRNA level were observed for the BAX gene (104.36% ± 9.26 vs. 100% ± 9.44; p > 0.05). A similar relationship was demonstrated in the case of the protein expressions of the studied genes. These findings suggest that the CC genotype and C allele of the BCL2 polymorphism could be genetic risk factors for OC development. A gene expression analysis indicated that BCL2 and c-MYC are associated with OC risk.


Assuntos
Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Feminino , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Genes myc , Polimorfismo de Nucleotídeo Único , Genótipo , Proteínas Reguladoras de Apoptose/genética , Neoplasias Ovarianas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Front Immunol ; 14: 1309138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035110

RESUMO

Introduction: Neuroblastoma (NB) is a common extracranial tumor in children and is highly heterogeneous. The factors influencing the prognosis of NB are not simple. Methods: To investigate the effect of cell senescence on the prognosis of NB and tumor immune microenvironment, 498 samples of NB patients and 307 cellular senescence-related genes were used to construct a prediction signature. Results: A signature based on six optimal candidate genes (TP53, IL-7, PDGFRA, S100B, DLL3, and TP63) was successfully constructed and proved to have good prognostic ability. Through verification, the signature had more advantages than the gene expression level alone in evaluating prognosis was found. Further T cell phenotype analysis displayed that exhausted phenotype PD-1 and senescence-related phenotype CD244 were highly expressed in CD8+ T cell in MYCN-amplified group with higher risk-score. Conclusion: A signature constructed the six MYCN-amplified differential genes and aging-related genes can be used to predict the prognosis of NB better than using each high-risk gene individually and to evaluate immunosuppressed and aging tumor microenvironment.


Assuntos
Amplificação de Genes , Neuroblastoma , Criança , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Genes myc , Senescência Celular/genética , Neuroblastoma/patologia , Microambiente Tumoral/genética , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
J Biol Chem ; 299(12): 105431, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926284

RESUMO

t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.


Assuntos
Linfoma de Burkitt , Quadruplex G , Humanos , Linfoma de Burkitt/genética , Linfoma de Burkitt/patologia , DNA , Genes myc , Estruturas R-Loop , Translocação Genética
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1340-1344, 2023 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-37906138

RESUMO

OBJECTIVE: To carry out combined genetic analysis on two patients suspected for Burkitt lymphoma to facilitate their diagnosis and treatment. METHODS: G banded karyotyping and interphase and metaphase fluorescence in situ hybridization (FISH) were used to detect the specific sites of chromosomes by using separate and fusion probes. RESULTS: The separate probe showed no presence of MYC gene abnormality, while fusion probe confirmed the IGH::MYC translocation in the samples. Combined with the clinical features and pathological characteristics, the two patients were finally diagnosed with Burkitt lymphoma, which was confirmed by targeted capture next generation sequencing. CONCLUSION: The separate probe for the MYC gene has some shortcomings and should be used together with dual fusion probe to improve the accuracy of diagnosis.


Assuntos
Linfoma de Burkitt , Humanos , Linfoma de Burkitt/genética , Linfoma de Burkitt/patologia , Hibridização in Situ Fluorescente , Genes myc , Translocação Genética , Cariotipagem
16.
J Obstet Gynaecol Res ; 49(12): 2894-2904, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827180

RESUMO

BACKGROUND: This study aimed at detecting the mutations of L-MYC and C-MYC genes in ovarian cancer (OC) patients and healthy female volunteers using cell-free DNA (cfDNA). METHODS: We evaluated cfDNA of 50 OC patients with different stages (I-IV) and 50 age-matched healthy female volunteers (controls) in order to access mutations in exon-1 of L-MYC (198 bp) and exon-3 of C-MYC (165 bp) genes using Sanger sequencing. RESULTS: The total mutations reported were 43 and 7 in exon-1 of L-MYC and exon-3 of C-MYC genes, respective. The C-MYC and L-MYC gene mutational status recorded in both cases and controls were compared with the already available data on mutations in c-myc and L-myc databases viz SNP db-NCBI, ClinVar db, COSMIC, PubMed, and LitVar which suggested that the detected mutations in exon-1 of L-MYC and exon-3 of C-MYC genes are novel. CONCLUSION: Our study showed that cfDNA might be used for noninvasive detection of clinico-genomic profiles of OC patients and as a prognostic biomarker for the disease.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Ovarianas , Feminino , Humanos , Biomarcadores Tumorais , Genes myc , Mutação , Neoplasias Ovarianas/genética
17.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685841

RESUMO

C/EBP homologous protein (CHOP), also known as growth arrest and DNA damage-inducible protein 153 (GADD153), belongs to the CCAAT/enhancer-binding protein (C/EBP) family. CHOP expression is induced by unfolded protein response (UPR), and sustained CHOP activation acts as a pivotal trigger for ER stress-induced apoptosis. MicroRNA-616 is located within an intron of the CHOP gene. However, the regulation of miR-616 expression during UPR and its function in breast cancer is not clearly understood. Here we show that the expression of miR-616 and CHOP (host gene of miR-616) is downregulated in human breast cancer. Both miR-5p/-3p arms of miR-616 are expressed with levels of the 5p arm higher than the 3p arm. During conditions of ER stress, the expression of miR-616-5p and miR-616-3p arms was concordantly increased primarily through the PERK pathway. Our results show that ectopic expression of miR-616 significantly suppressed cell proliferation and colony formation, whereas knockout of miR-616 increased it. We found that miR-616 represses c-MYC expression via binding sites located in its protein coding region. Furthermore, we show that miR-616 exerted growth inhibitory effects on cells by suppressing c-MYC expression. Our results establish a new role for the CHOP locus by providing evidence that miR-616 can inhibit cell proliferation by targeting c-MYC. In summary, our results suggest a dual function for the CHOP locus, where CHOP protein and miR-616 can cooperate to inhibit cancer progression.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , Neoplasias da Mama/genética , Proliferação de Células/genética , Genes myc , MicroRNAs/genética , Resposta a Proteínas não Dobradas/genética , Proteínas Proto-Oncogênicas c-myc
18.
Oncogene ; 42(45): 3358-3370, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37773203

RESUMO

MYC is an oncogenic transcription factor dysregulated in about half of total human tumors. While transcriptomic studies reveal more than 1000 genes regulated by MYC, a much smaller fraction of genes is directly transactivated by MYC. Virtually all Burkitt lymphoma (BL) carry chromosomal translocations involving MYC oncogene. Most endemic BL and a fraction of sporadic BL are associated with Epstein-Barr virus (EBV) infection. The currently accepted mechanism is that EBV is the BL-causing agent inducing MYC translocation. Herein we show that the EBV receptor, CR2 (also called CD21), is a direct MYC target gene. This is based on several pieces of evidence: MYC induces CR2 expression in both proliferating and arrested cells and in the absence of protein synthesis, binds the CR2 promoter and transactivates CR2 in an E-box-dependent manner. Moreover, using mice with conditional MYC ablation we show that MYC induces CR2 in primary B cells. Importantly, modulation of MYC levels directly correlates with EBV's ability of infection in BL cells. Altogether, in contrast to the widely accepted hypothesis for the correlation between EBV and BL, we propose an alternative hypothesis in which MYC dysregulation could be the first event leading to the subsequent EBV infection.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Linfoma de Burkitt/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Genes myc , Herpesvirus Humano 4/genética
19.
Cell Death Dis ; 14(8): 535, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598177

RESUMO

Hyperthermic intraperitoneal administration of chemotherapy (HIPEC) increases local drug concentrations and reduces systemic side effects associated with prolonged adjuvant intraperitoneal exposure in patients affected by either peritoneal malignancies or metastatic diseases originating from gastric, colon, kidney, and ovarian primary tumors. Mechanistically, the anticancer effects of HIPEC have been poorly explored. Herein we documented that HIPEC treatment promoted miR-145-5p expression paired with a significant downregulation of its oncogenic target genes c-MYC, EGFR, OCT4, and MUC1 in a pilot cohort of patients with ovarian peritoneal metastatic lesions. RNA sequencing analyses of ovarian peritoneal metastatic nodules from HIPEC treated patients unveils HSF-1 as a transcriptional regulator factor of miR-145-5p expression. Notably, either depletion of HSF-1 expression or chemical inhibition of its transcriptional activity impaired miR-145-5p tumor suppressor activity and the response to cisplatin in ovarian cancer cell lines incubated at 42 °C. In aggregate, our findings highlight a novel transcriptional network involving HSF-1, miR145-5p, MYC, EGFR, MUC1, and OCT4 whose proper activity contributes to HIPEC anticancer efficacy in the treatment of ovarian metastatic peritoneal lesions.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Quimioterapia Intraperitoneal Hipertérmica , Genes myc , Fatores de Transcrição de Choque Térmico/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fatores de Transcrição/genética , Linhagem Celular , Receptores ErbB , MicroRNAs/genética
20.
Nat Commun ; 14(1): 4729, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550295

RESUMO

Chronic wounds impose a significant healthcare burden to a broad patient population. Cell-based therapies, while having shown benefits for the treatment of chronic wounds, have not yet achieved widespread adoption into clinical practice. We developed a CRISPR/Cas9 approach to precisely edit murine dendritic cells to enhance their therapeutic potential for healing chronic wounds. Using single-cell RNA sequencing of tolerogenic dendritic cells, we identified N-myc downregulated gene 2 (Ndrg2), which marks a specific population of dendritic cell progenitors, as a promising target for CRISPR knockout. Ndrg2-knockout alters the transcriptomic profile of dendritic cells and preserves an immature cell state with a strong pro-angiogenic and regenerative capacity. We then incorporated our CRISPR-based cell engineering within a therapeutic hydrogel for in vivo cell delivery and developed an effective translational approach for dendritic cell-based immunotherapy that accelerated healing of full-thickness wounds in both non-diabetic and diabetic mouse models. These findings could open the door to future clinical trials using safe gene editing in dendritic cells for treating various types of chronic wounds.


Assuntos
Sistemas CRISPR-Cas , Traumatismos Craniocerebrais , Humanos , Camundongos , Animais , Cicatrização/genética , Genes myc , Edição de Genes , Células Dendríticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...