Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.203
Filtrar
1.
BMC Cancer ; 24(1): 445, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600469

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS: The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS: Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS: Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.


Assuntos
Neoplasias , Pró-Proteína Convertase 9 , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Receptores de LDL/genética , Lipoproteínas LDL , Antígenos de Histocompatibilidade , Complexo Principal de Histocompatibilidade , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral
2.
Front Immunol ; 15: 1335975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605963

RESUMO

Lactic acid bacteria (LAB) possess the ability to argument T cell activity through functional modification of antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Nevertheless, the precise mechanism underlying LAB-induced enhancement of antigen presentation in APCs remains incompletely understood. To address this question, we investigated the detailed mechanism underlying the enhancement of major histocompatibility complex (MHC) class I-restricted antigen presentation in DCs using a probiotic strain known as Lactococcus lactis subsp. Cremoris C60. We found that Heat-killed-C60 (HK-C60) facilitated the processing and presentation of ovalbumin (OVA) peptide antigen OVA257-264 (SIINFEKL) via H-2Kb in bone marrow-derived dendritic cells (BMDCs), leading to increased generation of effector CD8+ T cells both in vitro and in vivo. We also revealed that HK-C60 stimulation augmented the activity of 20S immunoproteasome (20SI) in BMDCs, thereby enhancing the MHC class I-restricted antigen presentation machinery. Furthermore, we assessed the impact of HK-C60 on CD8+ T cell activation in an OVA-expressing B16-F10 murine melanoma model. Oral administration of HK-C60 significantly attenuated tumor growth compared to control treatment. Enhanced Ag processing and presentation machineries in DCs from both Peyer's Patches (PPs) and lymph nodes (LNs) resulted in an increased tumor antigen specific CD8+ T cells. These findings shed new light on the role of LAB in MHC class-I restricted antigen presentation and activation of CD8+ T cells through functional modification of DCs.


Assuntos
Apresentação de Antígeno , Células Dendríticas , Animais , Camundongos , Antígenos de Histocompatibilidade Classe I , Linfócitos T CD8-Positivos , Antígenos , Ovalbumina , Complexo Principal de Histocompatibilidade
3.
Cell Mol Life Sci ; 81(1): 163, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570362

RESUMO

Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor α (TNFα). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding.


Assuntos
Proteínas de Transporte , Infecções por Vírus Epstein-Barr , Animais , Humanos , Camundongos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas de Transporte/metabolismo , Herpesvirus Humano 4 , Complexo Principal de Histocompatibilidade , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout
4.
Sci Rep ; 14(1): 7966, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575727

RESUMO

The Major Histocompatibility Complex class I (MHC-I) system plays a vital role in immune responses by presenting antigens to T cells. Allele specific technologies, including recombinant MHC-I technologies, have been extensively used in T cell analyses for COVID-19 patients and are currently used in the development of immunotherapies for cancer. However, the immense diversity of MHC-I alleles presents challenges. The genetic diversity serves as the foundation of personalized medicine, yet it also poses a potential risk of exacerbating healthcare disparities based on MHC-I alleles. To assess potential biases, we analysed (pre)clinical publications focusing on COVID-19 studies and T cell receptor (TCR)-based clinical trials. Our findings reveal an underrepresentation of MHC-I alleles associated with Asian, Australian, and African descent. Ensuring diverse representation is vital for advancing personalized medicine and global healthcare equity, transcending genetic diversity. Addressing this disparity is essential to unlock the full potential of T cells for enhancing diagnosis and treatment across all individuals.


Assuntos
COVID-19 , Linfócitos T , Humanos , Austrália , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Variação Genética , COVID-19/genética , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade , Alelos
5.
Mol Biol Rep ; 51(1): 470, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551799

RESUMO

BACKGROUND: The genetic improvement in growth and food habit domestication of largemouth bass (Micropterus salmoides) have made breakthroughs in past decades, while the relevant work on disease resistance were rarely carried out. Major histocompatibility complex (MHC) genes, which are well known as their numbers and high polymorphisms, have been used as candidate genes to mine disease-resistant-related molecular markers in many species. METHODS AND RESULTS: In present study, we developed and characterized 40 polymorphic and biallelic InDel markers from the major histocompatibility complex genes of largemouth bass. The minor allele frequency, observed heterozygosity, expected heterozygosity and polymorphic information content of these markers ranged from 0.0556 to 0.5000, 0.1111 to 0.6389, 0.1064 to 0.5070, and 0.0994 to 0.3750, respectively. Three loci deviated significantly from Hardy-Weinberg equilibrium, while linkage disequilibrium existed at none of these loci. CONCLUSION: These InDel markers might provide references for the further correlation analysis and molecular assisted selection of disease resistance in largemouth bass.


Assuntos
Bass , Animais , Bass/genética , Resistência à Doença/genética , Polimorfismo Genético/genética , Frequência do Gene/genética , Complexo Principal de Histocompatibilidade/genética
6.
Proc Biol Sci ; 291(2019): 20232519, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503331

RESUMO

Despite decades of research, surprisingly little is known about the mechanism(s) by which an individual's genotype is encoded in odour. Many studies have focused on the role of the major histocompatibility complex (MHC) owing to its importance for survival and mate choice. However, the salience of MHC-mediated odours compared to chemicals influenced by the rest of the genome remains unclear, especially in wild populations where it is challenging to quantify and control for the effects of the genomic background. We addressed this issue in Antarctic fur seals by analysing skin swabs together with full-length MHC DQB II exon 2 sequences and data from 41 genome-wide distributed microsatellites. We did not find any effects of MHC relatedness on chemical similarity and there was also no relationship between MHC heterozygosity and chemical diversity. However, multilocus heterozygosity showed a significant positive association with chemical diversity, even after controlling for MHC heterozygosity. Our results appear to rule out a dominant role of the MHC in the chemical encoding of genetic information in a wild vertebrate population and highlight the need for genome-wide approaches to elucidate the mechanism(s) and specific genes underlying genotype-odour associations.


Assuntos
Otárias , Animais , Otárias/genética , Genótipo , Heterozigoto , Complexo Principal de Histocompatibilidade/genética , Odorantes , Regiões Antárticas
7.
BMC Biol ; 22(1): 31, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317190

RESUMO

BACKGROUND: The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A virus (IAV), harbors almost all subtypes of IAVs and resists to many IAVs which cause extreme virulence in chicken and human. However, the response of duck's adaptive immune system to IAV infection is poorly characterized due to lack of a detailed gene map of the major histocompatibility complex (MHC). RESULTS: We herein reported a chromosome-scale Beijing duck assembly by integrating Nanopore, Bionano, and Hi-C data. This new reference genome SKLA1.0 covers 40 chromosomes, improves the contig N50 of the previous duck assembly with highest contiguity (ZJU1.0) of more than a 5.79-fold, surpasses the chicken and zebra finch references in sequence contiguity and contains a complete genomic map of the MHC. Our 3D MHC genomic map demonstrated that gene family arrangement in this region was primordial; however, families such as AnplMHCI, AnplMHCIIß, AnplDMB, NKRL (NK cell receptor-like genes) and BTN underwent gene expansion events making this area complex. These gene families are distributed in two TADs and genes sharing the same TAD may work in a co-regulated model. CONCLUSIONS: These observations supported the hypothesis that duck's adaptive immunity had been optimized with expanded and diversified key immune genes which might help duck to combat influenza virus. This work provided a high-quality Beijing duck genome for biological research and shed light on new strategies for AIV control.


Assuntos
Patos , Genoma , Animais , Humanos , Patos/genética , Complexo Principal de Histocompatibilidade/genética , Cromossomos/genética , Família Multigênica
8.
Proc Biol Sci ; 291(2017): 20232857, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378156

RESUMO

The exceptional polymorphism observed within genes of the major histocompatibility complex (MHC), a core component of the vertebrate immune system, has long fascinated biologists. The highly polymorphic classical MHC class-I (MHC-I) genes are maintained by pathogen-mediated balancing selection (PMBS), as shown by many sites subject to positive selection, while the more monomorphic non-classical MHC-I genes show signatures of purifying selection. In line with PMBS, at any point in time, rare classical MHC alleles are more likely than common classical MHC alleles to confer a selective advantage in host-pathogen interactions. Combining genomic and expression data from the blood of wild house sparrows Passer domesticus, we found that only rare classical MHC-I alleles were highly expressed, while common classical MHC-I alleles were lowly expressed or not expressed. Moreover, highly expressed rare classical MHC-I alleles had more positively selected sites, indicating exposure to stronger PMBS, compared with lowly expressed classical alleles. As predicted, the level of expression was unrelated to allele frequency in the monomorphic non-classical MHC-I alleles. Going beyond previous studies, we offer a fine-scale view of selection on classical MHC-I genes in a wild population by revealing differences in the strength of PMBS according to allele frequency and expression level.


Assuntos
Complexo Principal de Histocompatibilidade , Pardais , Animais , Alelos , Complexo Principal de Histocompatibilidade/genética , Pardais/genética , Frequência do Gene , Seleção Genética , Variação Genética
9.
Sci Rep ; 14(1): 3392, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337023

RESUMO

The Human leukocyte antigen (HLA) molecules are central to immune response and have associations with the phenotypes of various diseases and induced drug toxicity. Further, the role of HLA molecules in presenting antigens significantly affects the transplantation outcome. The objective of this study was to examine the extent of the diversity of HLA alleles in the population of the United Arab Emirates (UAE) using Next-Generation Sequencing methodologies and encompassing a larger cohort of individuals. A cohort of 570 unrelated healthy citizens of the UAE volunteered to provide samples for Whole Genome Sequencing and Whole Exome Sequencing. The definition of the HLA alleles was achieved through the application of the bioinformatics tools, HLA-LA and xHLA. Subsequently, the findings from this study were compared with other local and international datasets. A broad range of HLA alleles in the UAE population, of which some were previously unreported, was identified. A comparison with other populations confirmed the current population's unique intertwined genetic heritage while highlighting similarities with populations from the Middle East region. Some disease-associated HLA alleles were detected at a frequency of > 5%, such as HLA-B*51:01, HLA-DRB1*03:01, HLA-DRB1*15:01, and HLA-DQB1*02:01. The increase in allele homozygosity, especially for HLA class I genes, was identified in samples with a higher level of genome-wide homozygosity. This highlights a possible effect of consanguinity on the HLA homozygosity. The HLA allele distribution in the UAE population showcases a unique profile, underscoring the need for tailored databases for traditional activities such as unrelated transplant matching and for newer initiatives in precision medicine based on specific populations. This research is part of a concerted effort to improve the knowledge base, particularly in the fields of transplant medicine and investigating disease associations as well as in understanding human migration patterns within the Arabian Peninsula and surrounding regions.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Humanos , Emirados Árabes Unidos , Frequência do Gene , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade/genética , Sequenciamento de Nucleotídeos em Larga Escala , Haplótipos , Alelos , Cadeias HLA-DRB1/genética
10.
Vet Immunol Immunopathol ; 270: 110730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422854

RESUMO

Details on the origin and function of the immune system are beginning to emerge from genomic studies tracing the origin of B and T cells and the major histocompatibility complex. This is being accomplished through identification of DNA sequences of ancestral genes present in the genomes of lineages of vertebrates that have evolved from a common primordial ancestor. Information on the evolution of the composition and function of the immune system is being obtained through development of monoclonal antibodies (mAbs) specific for the MHC class I and II molecules and differentially expressed on leukocytes differentiation molecules (LDM). The mAbs have provided the tools needed to compare the similarities and differences in the phenotype and function of immune systems that have evolved during speciation. The majority of information currently available on evolution of the composition and function of the immune system is derived from study of the immune systems in humans and mice. As described in the present review, further information is beginning to emerge from comparative studies of the immune systems in the extant lineages of species present in the two orders of ungulates, Perissodactyla and Artiodactyla. Methods have been developed to facilitate comparative research across species on pathogens affecting animal and human health.


Assuntos
Anticorpos Monoclonais , Mamíferos , Humanos , Animais , Camundongos , Anticorpos Monoclonais/genética , Complexo Principal de Histocompatibilidade , Genes MHC Classe I , Linfócitos T
11.
J Clin Immunol ; 44(3): 73, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424321

RESUMO

PURPOSE: Major histocompatibility complex (MHC) class II deficiency is one of the combined immune deficiency disorders caused by defects in the MHC class II regulatory genes leading to abnormal T cells development and function. Therefore, patients mainly present with increased susceptibility to infections, diarrhea, and failure to thrive. In this report, we present one MHC class II deficient patient with a novel presentation with Hemophagocytic Lymphohistiocytosis (HLH). METHODS: Immunophenotyping of lymphocyte subpopulations and HLA-DR expression was assess by flow cytometry. Gene mutational analysis was performed by whole exome and Sanger sequencing. RESULTS: We reported a 7-year-old girl, who was diagnosed at age of 2 years with MHC class II deficiency by genetic testing and flow cytometry. Two years later, she developed disseminated BCGitis which was treated with proper antimicrobial agents. At the age of 7 years, she presented with clinical features fulfilling 6 diagnostic criteria of HLH including evidence of hemophagocytic activity in bone marrow aspiration. Accordingly, the diagnosis of HLH was established and the patient was started on IV Dexamethasone, Anakinra and IVIG. Eventually, patient started to improve and was discharged in good condition. Few months later, the patient was readmitted with severe pneumonia and sepsis leading to death. CONCLUSION: Patients with MHC class II deficiency might present with disseminated BCGitis especially if the patient has severe T cell lymphopenia. Additionally, this immune defect might be added to the list of inborn errors of immunity that can be complicated with HLH.


Assuntos
Linfo-Histiocitose Hemofagocítica , Imunodeficiência Combinada Severa , Criança , Feminino , Humanos , Testes Genéticos , Antígenos de Histocompatibilidade Classe II/genética , Linfo-Histiocitose Hemofagocítica/etiologia , Linfo-Histiocitose Hemofagocítica/genética , Complexo Principal de Histocompatibilidade , Imunodeficiência Combinada Severa/genética
12.
Adv Sci (Weinh) ; 11(13): e2305750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342599

RESUMO

Deciphering cellular interactions is essential to both understand the mechanisms underlying a broad range of human diseases, but also to manipulate therapies targeting these diseases. Here, the formation of cell doublets resulting from specific membrane ligand-receptor interactions is discovered. Based on this phenomenon, the study developed DoubletSeeker, a novel high-throughput method for the reliable identification of ligand-receptor interactions. The study shows that DoubletSeeker can accurately identify T cell receptor (TCR)-antigen interactions with high sensitivity and specificity. Notably, DoubletSeeker effectively captured paired TCR-peptide major histocompatibility complex (pMHC) information during a highly complex library-on-library screening and successfully identified three mutant TCRs that specifically recognize the MART-1 epitope. In turn, DoubletSeeker can act as an antigen discovery platform that allows for the development of novel immunotherapy targets, making it valuable for investigating fundamental tumor immunology.


Assuntos
Antígenos , Receptores de Antígenos de Linfócitos T , Humanos , Ligantes , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos , Complexo Principal de Histocompatibilidade
13.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398632

RESUMO

The major histocompatibility complex (MHC) can recognize and bind to external peptides to generate effective immune responses by presenting the peptides to T cells. Therefore, understanding the binding modes of peptide-MHC complexes (pMHC) and predicting the binding affinity of pMHCs play a crucial role in the rational design of peptide vaccines. In this study, we employed molecular dynamics (MD) simulations and free energy calculations with an Alanine Scanning with Generalized Born and Interaction Entropy (ASGBIE) method to investigate the protein-peptide interaction between HLA-A*02:01 and the G9209 peptide derived from the melanoma antigen gp100. The energy contribution of individual residue was calculated using alanine scanning, and hotspots on both the MHC and the peptides were identified. Our study shows that the pMHC binding is dominated by the van der Waals interactions. Furthermore, we optimized the ASGBIE method, achieving a Pearson correlation coefficient of 0.91 between predicted and experimental binding affinity for mutated antigens. This represents a significant improvement over the conventional MM/GBSA method, which yields a Pearson correlation coefficient of 0.22. The computational protocol developed in this study can be applied to the computational screening of antigens for the MHC1 as well as other protein-peptide binding systems.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Proteínas/metabolismo , Ligação Proteica , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade/metabolismo , Alanina/metabolismo
14.
HLA ; 103(2): e15387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358031

RESUMO

The immunogenome is the part of the genome that underlies immune mechanisms and evolves under various selective pressures. Two complex regions of the immunogenome, major histocompatibility complex (MHC) and natural killer cell receptor (NKR) genes, play an important role in the response to selective pressures of pathogens. Their importance is expressed by their genetic polymorphism at the molecular level, and their diversity associated with different types of diseases at the population level. Findings of associations between specific combinations of MHC/NKR haplotypes with different diseases in model species suggest that these gene complexes did not evolve independently. No such associations have been described in horses so far. The aim of the study was to detect associations between MHC and NKR gene/microsatellite haplotypes in three horse breed groups (Camargue, African, and Romanian) by statistical methods; chi-square test, Fisher's exact test, Pearson's goodness-of-fit test and logistic regression. Associations were detected for both MHC/NKR genes and microsatellites; the most significant associations were found between the most variable KLRA3 gene and the EQCA-1 or EQCA-2 genes. This finding supports the assumption that the KLRA3 is an important receptor for MHC I and that interactions of these molecules play important roles in the horse immunity and reproduction. Despite some limitations of the study such as low numbers of horses or lack of knowledge of the selected genes functions, the results were consistent across different statistical methods and remained significant even after overconservative Bonferroni corrections. We therefore consider them biologically plausible.


Assuntos
Complexo Principal de Histocompatibilidade , Polimorfismo Genético , Animais , Cavalos/genética , Humanos , Receptores de Células Matadoras Naturais/genética , Alelos , Complexo Principal de Histocompatibilidade/genética , Cruzamento
15.
J Chem Inf Model ; 64(5): 1730-1750, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38415656

RESUMO

The recognition of peptides bound to class I major histocompatibility complex (MHC-I) receptors by T-cell receptors (TCRs) is a determinant of triggering the adaptive immune response. While the exact molecular features that drive the TCR recognition are still unknown, studies have suggested that the geometry of the joint peptide-MHC (pMHC) structure plays an important role. As such, there is a definite need for methods and tools that accurately predict the structure of the peptide bound to the MHC-I receptor. In the past few years, many pMHC structural modeling tools have emerged that provide high-quality modeled structures in the general case. However, there are numerous instances of non-canonical cases in the immunopeptidome that the majority of pMHC modeling tools do not attend to, most notably, peptides that exhibit non-standard amino acids and post-translational modifications (PTMs) or peptides that assume non-canonical geometries in the MHC binding cleft. Such chemical and structural properties have been shown to be present in neoantigens; therefore, accurate structural modeling of these instances can be vital for cancer immunotherapy. To this end, we have developed APE-Gen2.0, a tool that improves upon its predecessor and other pMHC modeling tools, both in terms of modeling accuracy and the available modeling range of non-canonical peptide cases. Some of the improvements include (i) the ability to model peptides that have different types of PTMs such as phosphorylation, nitration, and citrullination; (ii) a new and improved anchor identification routine in order to identify and model peptides that exhibit a non-canonical anchor conformation; and (iii) a web server that provides a platform for easy and accessible pMHC modeling. We further show that structures predicted by APE-Gen2.0 can be used to assess the effects that PTMs have in binding affinity in a more accurate manner than just using solely the sequence of the peptide. APE-Gen2.0 is freely available at https://apegen.kavrakilab.org.


Assuntos
Hominidae , Peptídeos , Animais , Peptídeos/química , Complexo Principal de Histocompatibilidade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Processamento de Proteína Pós-Traducional , Hominidae/metabolismo , Ligação Proteica
16.
Nat Commun ; 15(1): 752, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272918

RESUMO

Cancer-associated immune dysfunction is a major challenge for effective therapies. The emergence of antibodies targeting tumor cell-surface antigens led to advancements in the treatment of hematopoietic malignancies, particularly blood cancers. Yet their impact is constrained against tumors of hematopoietic origin manifesting in the skin. In this study, we employ a clonality-supervised deep learning methodology to dissect key pathological features implicated in mycosis fungoides, the most common cutaneous T-cell lymphoma. Our investigations unveil the prominence of the IL-32ß-major histocompatibility complex (MHC)-I axis as a critical determinant in tumor T-cell immune evasion within the skin microenvironment. In patients' skin, we find MHC-I to detrimentally impact the functionality of natural killer (NK) cells, diminishing antibody-dependent cellular cytotoxicity and promoting resistance of tumor skin T-cells to cell-surface targeting therapies. Through murine experiments in female mice, we demonstrate that disruption of the MHC-I interaction with NK cell inhibitory Ly49 receptors restores NK cell anti-tumor activity and targeted T-cell lymphoma elimination in vivo. These findings underscore the significance of attenuating the MHC-I-dependent immunosuppressive networks within skin tumors. Overall, our study introduces a strategy to reinvigorate NK cell-mediated anti-tumor responses to overcome treatment resistance to existing cell-surface targeted therapies for skin lymphoma.


Assuntos
Linfoma Cutâneo de Células T , Micose Fungoide , Neoplasias Cutâneas , Humanos , Camundongos , Feminino , Animais , Regulação para Cima , Células Matadoras Naturais , Linfoma Cutâneo de Células T/patologia , Proteínas , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Antígenos de Histocompatibilidade , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade Classe I , Microambiente Tumoral
17.
HLA ; 103(1): e15316, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226402

RESUMO

Macaques are useful animal models for studying the pathogenesis of rheumatoid arthritis (RA) and the development of anti-rheumatic drugs. The purpose of this study was to identify the major histocompatibility complex (MHC) polymorphisms associated with the pathology of collagen-induced arthritis (CIA) and anti-collagen IgG induction in a cynomolgus macaque model, as MHC polymorphisms affect the onset of CIA in other animal models. Nine female Filipino cynomolgus macaques were immunized with bovine type II collagen (b-CII) to induce CIA, which was diagnosed clinically by scoring the symptoms of joint swelling over 9 weeks. MHC polymorphisms and anti-b-CII antibody titers were compared between symptomatic and asymptomatic macaques. Four of 9 (44%) macaques were defined as the CIA-affected group. Anti-b-CII IgG in the affected group increased in titer approximately 3 weeks earlier compared with the asymptomatic group. The mean plasma IgG1 titer in the CIA-affected group was significantly higher (p < 0.05) than that of the asymptomatic group. Furthermore, the cynomolgus macaque MHC (Mafa)-DRB1*10:05 or Mafa-DRB1*10:07 alleles, which contain the well-documented RA-susceptibility five amino acid sequence known as the shared epitope (SE) in positions 70 to 74, with valine at position 11 (Val11, V11) and phenylalanine at position 13 (Phe13, F13), were detected in the affected group. In contrast, no MHC polymorphisms specific to the asymptomatic group were identified. In conclusion, the presence of V11 and F13 along with SE in the MHC-DRB1 alleles seems essential for the production of IgG1 and the rapid induction of severe CIA in female Filipino cynomolgus macaques.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Feminino , Bovinos , Epitopos , Artrite Experimental/genética , Aminoácidos , Alelos , Complexo Principal de Histocompatibilidade , Macaca fascicularis/genética , Artrite Reumatoide/genética , Imunoglobulina G
18.
Infect Genet Evol ; 118: 105544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216106

RESUMO

An amphibian emerging infectious disease (EID), chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), originated in Asia but primarily led to declines and extinctions in amphibian populations outside of Asia. Host major histocompatibility complex (MHC) molecules exhibit high polymorphism, and the evolution of MHC can be influenced by recombination and pathogens. Previous studies have indicated that host MHC class II is associated with Bd resistance. In this study, I conducted recombination and selection tests on functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) and an Australasian Bd-susceptible species (Litoria caerulea). Recombination at the same site was identified in both species, supporting the hypothesis that recombination contributes to MHC IIß1 diversity in amphibians. Positive selection was observed in MHC IIß1 alleles in both species. In L. caerulea, at least four amino acid sites were identified under significant positive selection in the MHC IIß1, whereas these sites were either negatively selected or conserved in B. gargarizans. This suggests these sites might be selected for Bd resistance. Hydrophobicity was detected in certain amino acid sites relating to Bd resistance, suggesting this physicochemical property may be a factor selected to counteract Bd infection. These findings of this study provide an evolutionary basis for understanding how amphibian MHC IIß1 may undergo selection in response to chytrid infection.


Assuntos
Quitridiomicetos , Animais , Quitridiomicetos/genética , Anuros/genética , Complexo Principal de Histocompatibilidade , Suscetibilidade a Doenças , Aminoácidos
19.
Acta Neuropathol ; 147(1): 15, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214778

RESUMO

Histopathological analysis stands as the gold standard for the identification and differentiation of inflammatory neuromuscular diseases. These disorders continue to constitute a diagnostic challenge due to their clinical heterogeneity, rarity and overlapping features. To establish standardized protocols for the diagnosis of inflammatory neuromuscular diseases, the development of cost-effective and widely applicable tools is crucial, especially in settings constrained by limited resources. The focus of this review is to emphasize the diagnostic value of major histocompatibility complex (MHC) and complement patterns in the immunohistochemical analysis of these diseases. We explore the immunological background of MHC and complement signatures that characterize inflammatory features, with a specific focus on idiopathic inflammatory myopathies. With this approach, we aim to provide a diagnostic algorithm that may improve and simplify the diagnostic workup based on a limited panel of stainings. Our approach acknowledges the current limitations in the field of inflammatory neuromuscular diseases, particularly the scarcity of large-scale, prospective studies that validate the diagnostic potential of these markers. Further efforts are needed to establish a consensus on the diagnostic protocol to effectively distinguish these diseases.


Assuntos
Miosite , Doenças Neuromusculares , Humanos , Estudos Prospectivos , Doenças Neuromusculares/diagnóstico , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade Classe I/análise
20.
Methods ; 224: 1-9, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295891

RESUMO

The Major Histocompatibility Complex (MHC) is a critical element of the vertebrate cellular immune system, responsible for presenting peptides derived from intracellular proteins. MHC-I presentation is pivotal in the immune response and holds considerable potential in the realms of vaccine development and cancer immunotherapy. This study delves into the limitations of current methods and benchmarks for MHC-I presentation. We introduce a novel benchmark designed to assess generalization properties and the reliability of models on unseen MHC molecules and peptides, with a focus on the Human Leukocyte Antigen (HLA)-a specific subset of MHC genes present in humans. Finally, we introduce HLABERT, a pretrained language model that outperforms previous methods significantly on our benchmark and establishes a new state-of-the-art on existing benchmarks.


Assuntos
Peptídeos , Proteínas , Humanos , Reprodutibilidade dos Testes , Peptídeos/química , Proteínas/metabolismo , Complexo Principal de Histocompatibilidade/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...