Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.256
Filtrar
1.
Sci Data ; 11(1): 351, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589366

RESUMO

Acanthacorydalis orientalis (McLachlan, 1899) (Megaloptera: Corydalidae) is an important freshwater-benthic invertebrate species that serves as an indicator for water-quality biomonitoring and is valuable for conservation from East Asia. Here, a high-quality reference genome for A. orientalis was constructed using Oxford Nanopore sequencing and High throughput Chromosome Conformation Capture (Hi-C) technology. The final genome size is 547.98 Mb, with the N50 values of contig and scaffold being 7.77 Mb and 50.53 Mb, respectively. The longest contig and scaffold are 20.57 Mb and 62.26 Mb in length, respectively. There are 99.75% contigs anchored onto 13 pseudo-chromosomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that the completeness of the genome assembly is 99.01%. There are 10,977 protein-coding genes identified, of which 84.00% are functionally annotated. The genome contains 44.86% repeat sequences. This high-quality genome provides substantial data for future studies on population genetics, aquatic adaptation, and evolution of Megaloptera and other related insect groups.


Assuntos
Genoma de Inseto , Neópteros , Sequências Repetitivas de Ácido Nucleico , Cromossomos/genética , Anotação de Sequência Molecular , Filogenia , Neópteros/genética
2.
Sci Data ; 11(1): 338, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580759

RESUMO

Athetis lepigone is an emerging highly polyphagous insect pest reported to cause crop damage in several European and Asian countries. However, our understanding of its genetic adaptation mechanisms has been limited due to lack of high-quality genetic resources. In this study, we present a chromosomal-level genome of A. lepigone, representing the first species in the genus of Athetis. We employed PacBio long-read sequencing and Hi-C technologies to generate 612.49 Mb genome assembly which contains 42.43% repeat sequences with a scaffold N50 of 20.9 Mb. The contigs were successfully clustered into 31 chromosomal-size scaffolds with 37% GC content. BUSCO assessment revealed a genome completeness of 97.4% with 96.3 identified as core Arthropoda single copy orthologs. Among the 17,322 genes that were predicted, 15,965 genes were functionally annotated, representing a coverage of 92.17%. Furthermore, we revealed 106 P450, 37 GST, 27 UGT, and 74 COE gene families in the genome of A. lepigone. This genome provides a significant and invaluable genomic resource for further research across the entire genus of Athetis.


Assuntos
Genoma de Inseto , Mariposas , Animais , Sequência de Bases , Genômica , Mariposas/genética , Filogenia , Cromossomos de Insetos
3.
J Mol Evol ; 92(2): 138-152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491221

RESUMO

The proportions of A:T and G:C nucleotide pairs are often unequal and can vary greatly between animal species and along chromosomes. The causes and consequences of this variation are incompletely understood. The recent release of high-quality genome sequences from the Darwin Tree of Life and other large-scale genome projects provides an opportunity for GC heterogeneity to be compared across a large number of insect species. Here we analyse GC content along chromosomes, and within protein-coding genes and codons, of 150 insect species from four holometabolous orders: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We find that protein-coding sequences have higher GC content than the genome average, and that Lepidoptera generally have higher GC content than the other three insect orders examined. GC content is higher in small chromosomes in most Lepidoptera species, but this pattern is less consistent in other orders. GC content also increases towards subtelomeric regions within protein-coding genes in Diptera, Coleoptera and Lepidoptera. Two species of Diptera, Bombylius major and B. discolor, have very atypical genomes with ubiquitous increase in AT content, especially at third codon positions. Despite dramatic AT-biased codon usage, we find no evidence that this has driven divergent protein evolution. We argue that the GC landscape of Lepidoptera, Diptera and Coleoptera genomes is influenced by GC-biased gene conversion, strongest in Lepidoptera, with some outlier taxa affected drastically by counteracting processes.


Assuntos
Genoma de Inseto , Insetos , Animais , Composição de Bases , Filogenia , Genoma de Inseto/genética , Códon/genética , Insetos/genética , Evolução Molecular
4.
Sci Data ; 11(1): 312, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531927

RESUMO

The Japanese sawyer beetle, Monochamus alternatus, is not only one of the most important wood boring pest itself, but also a major vector of the invasive pinewood nematode (PWN), which is the causal agent of the devastative pine wilt disease (PWD) and threats the global pine forest. Here, we present a near-complete genome of M. alternatus at the chromosome level. The assembled genome was 792.05 Mb with contig N50 length of 55.99 Mb, which is the largest N50 size among the sequenced Coleoptera insects currently. 99.57% of sequence was anchored onto ten pseudochromosomes (one X-chromosome and nine autosomes), and the final genome harbored only 13 gaps. BUSCO evaluation revealed the presence of 99.0% of complete core genes. Thus, our genome assembly represented the highest-contiguity genome assembly as well as high completeness in insects so far. We identified 20,471 protein-coding genes, of which 20,070 (98.04%) were functionally annotated. The genome assembly of M. alternatus provides a valuable resource for exploring the evolution of the symbiosis between PWN and the vector insects.


Assuntos
Besouros , Genoma de Inseto , Nematoides , Pinus , Animais , Besouros/genética , Besouros/parasitologia , Pinus/parasitologia , Madeira , Insetos Vetores/genética , Insetos Vetores/parasitologia
5.
Sci Data ; 11(1): 267, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443432

RESUMO

Trichoptera is one of the most evolutionarily successful aquatic insect lineages and is highly valued value in adaptive evolution research. This study presents the chromosome-level genome assemblies of Himalopsyche anomala and Eubasilissa splendida achieved using PacBio, Illumina, and Hi-C sequencing. For H. anomala and E. splendida, assembly sizes were 663.43 and 859.28 Mb, with scaffold N50 lengths of 28.44 and 31.17 Mb, respectively. In H. anomala and E. splendida, we anchored 24 and 29 pseudochromosomes, and identified 11,469 and 10,554 protein-coding genes, respectively. The high-quality genomes of H. anomala and E. splendida provide critical genomic resources for understanding the evolution and ecology of Trichoptera and performing comparative genomics analyses.


Assuntos
Bases de Dados Genéticas , Genoma de Inseto , Insetos , Animais , Hibridização Genômica Comparativa , Ecologia , Insetos/genética
6.
Sci Data ; 11(1): 280, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459039

RESUMO

The flower thrips Frankliniella intonsa (Thysanoptera: Thripidae) is a common insect found in flowers of many plants. Sometimes, F. intonsa causes damage to crops through direct feeding and transmission of plant viruses. Here, we assembled a chromosomal level genome of F. intonsa using the Illumina, Oxford Nanopore (ONT), and Hi-C technologies. The assembled genome had a size of 209.09 Mb, with a contig N50 of 997 bp, scaffold N50 of 13.415 Mb, and BUSCO completeness of 92.5%. The assembled contigs were anchored on 15 chromosomes. A set of 14,109 protein-coding genes were annotated in the genome with a BUSCO completeness of 95.0%. The genome contained 491 non-coding RNA and 0.57% of interspersed repeats. This high-quality genome provides a valuable resource for understanding the ecology, genetics, and evolution of F. intonsa, as well as for controlling thrips pests.


Assuntos
Genoma de Inseto , Tisanópteros , Animais , Cromossomos , Flores , Tisanópteros/genética
7.
Sci Data ; 11(1): 279, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459048

RESUMO

The yellow stem borer Scirpophaga incertulas is the dominant pest of rice in tropical Asia. However, the lack of genomic resources makes it difficult to understand their invasiveness and ecological adaptation. A high-quality chromosome-level genome of S. incertulas, a monophagous rice pest, was assembled by combining Illumina short reads, PacBio HiFi long sequencing, and Hi-C scaffolding technology. The final genome size was 695.65 Mb, with a scaffold N50 of 28.02 Mb, and 93.50% of the assembled sequences were anchored to 22 chromosomes. BUSCO analysis demonstrated that this genome assembly had a high level of completeness, with 97.65% gene coverage. A total of 14,850 protein-coding genes and 366.98 Mb of transposable elements were identified. In addition, comparative genomic analyses indicated that chemosensory processes and detoxification capacity may play critical roles in the specialized host preference of S. incertulas. In summary, the chromosome-level genome assembly of S. incertulas provides a valuable genetic resource for understanding the biological characteristics of its invasiveness and developing an efficient management strategy.


Assuntos
Genoma de Inseto , Mariposas , Animais , Ásia , Cromossomos , Genômica , Mariposas/genética , Oryza , Filogenia
8.
PeerJ ; 12: e17025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464746

RESUMO

Insects are a highly diverse phylogeny and possess a wide variety of traits, including the presence or absence of wings and metamorphosis. These diverse traits are of great interest for studying genome evolution, and numerous comparative genomic studies have examined a wide phylogenetic range of insects. Here, we analyzed 22 insects belonging to a wide phylogenetic range (Endopterygota, Paraneoptera, Polyneoptera, Palaeoptera, and other insects) by using a batch-learning self-organizing map (BLSOM) for oligonucleotide compositions in their genomic fragments (100-kb or 1-Mb sequences), which is an unsupervised machine learning algorithm that can extract species-specific characteristics of the oligonucleotide compositions (genome signatures). The genome signature is of particular interest in terms of the mechanisms and biological significance that have caused the species-specific difference, and can be used as a powerful search needle to explore the various roles of genome sequences other than protein coding, and can be used to unveil mysteries hidden in the genome sequence. Since BLSOM is an unsupervised clustering method, the clustering of sequences was performed based on the oligonucleotide composition alone, without providing information about the species from which each fragment sequence was derived. Therefore, not only the interspecies separation, but also the intraspecies separation can be achieved. Here, we have revealed the specific genomic regions with oligonucleotide compositions distinct from the usual sequences of each insect genome, e.g., Mb-level structures found for a grasshopper Schistocerca americana. One aim of this study was to compare the genome characteristics of insects with those of vertebrates, especially humans, which are phylogenetically distant from insects. Recently, humans seem to be the "model organism" for which a large amount of information has been accumulated using a variety of cutting-edge and high-throughput technologies. Therefore, it is reasonable to use the abundant information from humans to study insect lineages. The specific regions of Mb length with distinct oligonucleotide compositions have also been previously observed in the human genome. These regions were enriched by transcription factor binding motifs (TFBSs) and hypothesized to be involved in the three-dimensional arrangement of chromosomal DNA in interphase nuclei. The present study characterized the species-specific oligonucleotide compositions (i.e., genome signatures) in insect genomes and identified specific genomic regions with distinct oligonucleotide compositions.


Assuntos
Genoma Humano , Genoma de Inseto , Animais , Humanos , Filogenia , Genoma de Inseto/genética , Oligonucleotídeos/genética , Inteligência Artificial
9.
Sci Data ; 11(1): 194, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351256

RESUMO

Waterlily aphid, Rhopalosiphum nymphaeae (Linnaeus), is a host-alternating aphid known to feed on both terrestrial and aquatic hosts. It causes damage through direct herbivory and acting as a vector for plant viruses, impacting worldwide Prunus spp. fruits and aquatic plants. Interestingly, R. nymphaeae's ability to thrive in both aquatic and terrestrial conditions sets it apart from other aphids, offering a unique perspective on adaptation. We present the first high-quality R. nymphaeae genome assembly with a size of 324.4 Mb using PacBio long-read sequencing. The resulting assembly is highly contiguous with a contig N50 reached 12.7 Mb. The BUSCO evaluation suggested a 97.5% completeness. The R. nymphaeae genome consists of 16.9% repetitive elements and 16,834 predicted protein-coding genes. Phylogenetic analysis positioned R. nymphaeae within the Aphidini tribe, showing close relations to R. maidis and R. padi. The high-quality reference genome R. nymphaeae provides a unique resource for understanding genome evolution in aphids and paves the foundation for understanding host plant adaptation mechanisms and developing pest control strategies.


Assuntos
Afídeos , Genoma de Inseto , Animais , Afídeos/genética , Nymphaea , Filogenia
10.
Sci Data ; 11(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351308

RESUMO

The Japanese sawyer beetle Monochamus alternatus (Coleoptera: Cerambycidae) is a pest in pine forests and acts as a vector for the pine wood nematode Bursaphelenchus xylophilus, which causes the pine wilt disease. We assembled a high-quality genome of M. alternatus at the chromosomal level using Illumina, Nanopore, and Hi-C sequencing technologies. The assembled genome is 767.12 Mb, with a scaffold N50 of 82.0 Mb. All contigs were assembled into ten pseudo-chromosomes. The genome contains 63.95% repeat sequences. We identify 16, 284 protein-coding genes in the genome, of which 11,244 were functionally annotated. The high-quality genome of M. alternatus provides an invaluable resource for the biological, ecological, and genetic study of this beetle and opens new avenues for understanding the transmission of pine wood nematode by insect vectors.


Assuntos
Besouros , Genoma de Inseto , Pinus , Animais , Besouros/genética , Florestas , Insetos Vetores , Japão
11.
Sci Data ; 11(1): 218, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368451

RESUMO

As an important forestry pest, Coronaproctus castanopsis (Monophlebidae) has caused serious damage to the globally valuable Gutianshan ecosystem, China. In this study, we assembled the first chromosome-level genome of the female specimen of C. castanopsis by merging BGI reads, HiFi long reads and Hi-C data. The assembled genome size is 700.81 Mb, with a scaffold N50 size of 273.84 Mb and a contig N50 size of 12.37 Mb. Hi-C scaffolding assigned 98.32% (689.03 Mb) of C. Castanopsis genome to three chromosomes. The BUSCO analysis (n = 1,367) showed a completeness of 91.2%, comprising 89.2% of single-copy BUSCOs and 2.0% of multicopy BUSCOs. The mapping ratio of BGI, second-generation RNA, third-generation RNA and HiFi reads are 97.84%, 96.15%, 97.96%, and 99.33%, respectively. We also identified 64.97% (455.3 Mb) repetitive elements, 1,373 non-coding RNAs and 10,542 protein-coding genes. This study assembled a high-quality genome of C. castanopsis, which accumulated valuable molecular data for scale insects.


Assuntos
Agricultura Florestal , Genoma de Inseto , Hemípteros , Feminino , Cromossomos , Ecossistema , Filogenia , RNA , Hemípteros/genética
12.
Sci Data ; 11(1): 165, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310146

RESUMO

Chironomids are one of the most abundant aquatic insects and are widely distributed in various biological communities. However, the lack of high-quality genomes has hindered our ability to study the evolution and ecology of this group. Here, we used Nanopore long reads and Hi-C data to produce two chromosome-level genomes from mixed genomic data. The genomes of Smittia aterrima (SateA) and Smittia pratorum (SateB) were assembled into three chromosomes, with sizes of 78.45 Mb and 71.56 Mb, scaffold N50 lengths of 25.73 and 23.53 Mb, and BUSCO completeness of 98.5% and 97.8% (n = 1,367), 5.68 Mb (7.24%) and 1.94 Mb (2.72%) of repetitive elements, and predicted 12,330 (97.70% BUSCO completeness) and 11,250 (97.40%) protein-coding genes, respectively. These high-quality genomes will serve as valuable resources for comprehending the evolution and environmental adaptation of chironomids.


Assuntos
Chironomidae , Genoma de Inseto , Animais , Chironomidae/genética , Genômica , Anotação de Sequência Molecular , Filogenia , Sequências Repetitivas de Ácido Nucleico , Cromossomos de Insetos
13.
Sci Data ; 11(1): 117, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267446

RESUMO

The giant ladybug Megalocaria dilatata (Fabricius) is a potential biocontrol agent and a valuable model for coccinellid genomics and evolutionary biology. However, the lack of a reference genome for M. dilatata has impeded further explorations into its evolution and constrained its use in pest management. Here, we assembled and annotated a high-quality, chromosome-level genome of M. dilatata. The resulting assembly spans 772.3 Mb, with a scaffold N50 of 72.48 Mb and a GC content of 34.23%. The Hi-C data aided in anchoring the assembly onto 10 chromosomes ranging from 43.35 to 108.16 Mb. We identified 493.33 Mb of repeat sequences, accounting for 63.88% of the assembled genome. Our gene prediction identified 25,346 genes, with 81.89% annotated in public protein databases. The genome data will provide a valuable resource for studying the biology and evolution of Coccinellidae, aiding in pest control strategies and advancing research in the field.


Assuntos
Besouros , Genoma de Inseto , Animais , Cromossomos , Bases de Dados de Proteínas , Genômica
14.
Sci Data ; 11(1): 45, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184710

RESUMO

The red palm weevil (RPW) is a highly destructive pest that mainly affects palms, particularly date palms (Phoenix dactylifera), in the Arabian Gulf region. In this study, we present a near-chromosomal-level genome assembly of the RPW using a combination of PacBio HiFi and Dovetail Omini-C reads. The final genome assembly is around 779 Mb in size, with an N50 of ~43 Mb, consistent with our previous flow cytometry estimates. The completeness of the genome was confirmed through BUSCO analysis, which indicates the presence of 99.5% of BUSCO single copy orthologous genes. The genome annotation identified a total of 29,666 protein-coding, 1,091 tRNA and 543 rRNA genes. Overall, the proposed genome assembly is significantly superior to existing assemblies in terms of contiguity, integrity, and genome completeness.


Assuntos
Genoma de Inseto , Gorgulhos , Animais , Citometria de Fluxo , Gorgulhos/genética
15.
Sci Data ; 11(1): 121, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267470

RESUMO

Spiders are representative arthropods of adaptive radiation. The high-quality genomes have only been reported in several web weaver spider species, leaving the wandering spiders' genomic information scarce. The pond wolf spider, Pardosa pseudoannulata, is a representative species in the retrolateral titial apophysis (RTA) clade. We present a chromosome-level P. pseusoannulata genome assembly of 2.42 Gb in size with a scaffold N50 of 169.99 Mb. Hi-C scaffolding assigns 94.83% of the bases to 15 pseudo-chromosomes. The repeats account for 52.79% of the assembly. The assembly includes 96.2% of the complete arthropod universal single-copy orthologs. Gene annotation predicted 24,530 protein-coding genes with a BUSCO score of 95.8% complete. We identified duplicate clusters of Hox genes and an expanded cuticle protein gene family with 243 genes. The expression patterns of CPR genes change in response to environmental stresses such as coldness and insecticide exposure. The high-quality P. pseudoannulata genome provides valuable information for functional and comparative studies in spiders.


Assuntos
Animais Venenosos , Artrópodes , Genoma de Inseto , Aranhas , Animais , Cromossomos/genética , Aranhas/genética
16.
Sci Data ; 11(1): 134, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272921

RESUMO

The pink stem borer, Sesamia inferens (Walker), is a significant polyphagous pest historically restricted to regions south of N34° latitude. However, with changes in global climate and farming practices, the distribution of this moth has progressively exceeded its traditional limit of 34° N and encompassed most regions in North China. The genetic adaptations of S. inferens remain incompletely understood due to the lack of high-quality genome resources. Here, we sequenced the genome of S. inferens using PacBio and Hi-C technology, yielding a genome assembly of 865.04 Mb with contig N50 of 1.23 Mb. BUSCO analysis demonstrated this genome assembly has a high-level completeness of 96.1% gene coverage. In total, 459.72 Mb repeat sequences (53.14% of the assembled genome) and 20858 protein-coding genes were identified. We used the Hi-C technique to anchor 1135 contigs to 31 chromosomes, yielding a chromosome-level genome assembly with a scaffold N50 of 29.99 Mb. In conclusion, our high-quality genome assembly provided valuable resource that exploring the genetic characteristics of local adaptation and developing an efficient control strategy.


Assuntos
Cromossomos , Genoma de Inseto , Mariposas , Animais , Sequência de Bases , Mariposas/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico
17.
Insect Biochem Mol Biol ; 165: 104071, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184175

RESUMO

Chitin is one of the most prevalent biomaterials in the natural world. The chitin matrix formation and turnover involve several enzymes for chitin synthesis, maturation, and degradation. Sequencing of the Drosophila genome more than twenty years ago revealed that insect genomes contain a number of chitinases, but why insects need so many different chitinases was unclear. Here, we focus on insect GH18 family chitinases and discuss their participation in chitin matrix formation and degradation. We describe their variations in terms of temporal and spatial expression patterns, molecular function, and physiological consequences at chitinous cuticles. We further provide insight into the catalytic mechanisms by discussing chitinase protein domain structures, substrate binding, and enzymatic activities with respect to structural analysis of the enzymatic GH18 domain, substrate-binding cleft, and characteristic TIM-barrel structure.


Assuntos
Quitinases , Animais , Quitinases/metabolismo , Quitina/metabolismo , Filogenia , Insetos/genética , Insetos/metabolismo , Genoma de Inseto , Biologia
18.
Nucleic Acids Res ; 52(D1): D1024-D1032, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941143

RESUMO

The silkworm Bombyx mori is a domesticated insect that serves as an animal model for research and agriculture. The silkworm super-pan-genome dataset, which we published last year, is a unique resource for the study of global genomic diversity and phenotype-genotype association. Here we present SilkMeta (http://silkmeta.org.cn), a comprehensive database covering the available silkworm pan-genome and multi-omics data. The database contains 1082 short-read genomes, 546 long-read assembled genomes, 1168 transcriptomes, 294 phenotype characterizations (phenome), tens of millions of variations (variome), 7253 long non-coding RNAs (lncRNAs), 18 717 full length transcripts and a set of population statistics. We have compiled publications on functional genomics research and genetic stock deciphering (mutant map). A range of bioinformatics tools is also provided for data visualization and retrieval. The large batch of omics data and tools were integrated in twelve functional modules that provide useful strategies and data for comparative and functional genomics research. The interactive bioinformatics platform SilkMeta will benefit not only the silkworm but also the insect biology communities.


Assuntos
Bombyx , Genoma de Inseto , Animais , Bombyx/genética , Biologia Computacional , Genômica , Metadados , Multiômica
19.
Mol Ecol Resour ; 24(2): e13905, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996991

RESUMO

The Asian honeybee, Apis cerana, is an ecologically and economically important pollinator. Mapping its genetic variation is key to understanding population-level health, histories and potential capacities to respond to environmental changes. However, most efforts to date were focused on single nucleotide polymorphisms (SNPs) based on a single reference genome, thereby ignoring larger scale genomic variation. We employed long-read sequencing technologies to generate a chromosome-scale reference genome for the ancestral group of A. cerana. Integrating this with 525 resequencing data sets, we constructed the first pan-genome of A. cerana, encompassing almost the entire gene content. We found that 31.32% of genes in the pan-genome were variably present across populations, providing a broad gene pool for environmental adaptation. We identified and characterized structural variations (SVs) and found that they were not closely linked with SNP distributions; however, the formation of SVs was closely associated with transposable elements. Furthermore, phylogenetic analysis using SVs revealed a novel A. cerana ecological group not recoverable from the SNP data. Performing environmental association analysis identified a total of 44 SVs likely to be associated with environmental adaptation. Verification and analysis of one of these, a 330 bp deletion in the Atpalpha gene, indicated that this SV may promote the cold adaptation of A. cerana by altering gene expression. Taken together, our study demonstrates the feasibility and utility of applying pan-genome approaches to map and explore genetic feature variations of honeybee populations, and in particular to examine the role of SVs in the evolution and environmental adaptation of A. cerana.


Assuntos
Genoma de Inseto , Polimorfismo de Nucleotídeo Único , Abelhas/genética , Animais , Filogenia , Análise de Sequência de DNA
20.
Curr Opin Insect Sci ; 61: 101150, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061460

RESUMO

The increased accessibility of genomic and imaging methods, and the improved access to ecological, spatial, and other natural history-related data is allowing for insect systematics to grow and find answers to central evolutionary and taxonomic questions. Today, integrated studies in insect phylogenomics and systematics are combining natural history, behavior, developmental biology, morphology, fossils, geographic range data, and ecological interactions. This integration is contributing to the clarification of evolutionary relationships, and the recognition of the role played by these factors on the evolution of insects. Future work should continue to build on these advances, seeking to further increase open-access databasing and support for natural history research, as well as expand its analytical palettes.


Assuntos
Genômica , Insetos , Animais , Filogenia , Insetos/genética , Genoma de Inseto , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...