Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.103
Filtrar
1.
PeerJ ; 12: e17236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618572

RESUMO

Purpose: Juniper (Juniperus procera) is a common forest tree species in Saudi Arabia. The decline in many populations of J. procera in Saudi Arabia is mainly due to seed dormancy and loss of natural regeneration. This study assessed the effects of chemical and hormonal treatments on seed germination and seedling growth in juniper plants. Methods: The seeds were subjected to either chemical scarification with 90% sulfuric acid and 20% acetic acid for 6 min or hormonal treatment by seed soaking in two concentrations (50 and 100 ppm) of three growth regulators, namely, indole acetic acid (IAA), gibberellins (GA3), and kinetin, for 72 h. A control group without any seed treatment was also prepared. The experiments were performed in an incubator maintained at room temperature and under a light and dark period of 12 h for 6 w. The germinated seeds for each treatment were counted and removed from the dishes. The selected germinated seeds from different treatments were planted in a greenhouse and irrigated with tap water for another 6 weeks. The hormone-treated seedlings were sprayed with their corresponding hormone concentrations 1 w after planting. Results: The highest percentage of seed germination was significantly recorded after seed soaking in 50 ppm GA3, whereas treatment with IAA (100 ppm) resulted in the best seedling growth. Seedlings treated with the three phytohormones showed a significant increase in photosynthetic pigments, total soluble sugars, proteins, percentage of oil, IAA, GA3, and kinetin contents of juniper seedlings compared with the control value, whereas abscisic acid content was decreased compared with chemical treatments. Conclusion: The investigated different treatments had an effective role in breaking seed dormancy and improving seedling growth of J. procera, which is facing a notable decline in its population worldwide. Moreover, such an effect was more pronounced in the three phytohormones that succeeded in breaking dormancy and growth of the Juniperus plant than in the other treatments.


Assuntos
Porcelana Dentária , Juniperus , Ligas Metalo-Cerâmicas , Plântula , Titânio , Germinação , Reguladores de Crescimento de Plantas/farmacologia , Cinetina/farmacologia , Sementes , Hormônios
2.
BMC Plant Biol ; 24(1): 245, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575879

RESUMO

Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.


Assuntos
Brassica napus , Brassica rapa , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plântula/metabolismo , Brassica napus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Germinação/genética , Brassica rapa/metabolismo , Metaboloma , Amido/metabolismo , Sacarose/metabolismo , Sementes , Regulação da Expressão Gênica de Plantas , Transcriptoma
3.
PeerJ ; 12: e17136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590707

RESUMO

The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.


Assuntos
Fagopyrum , Melatonina , Germinação , Melatonina/farmacologia , Fagopyrum/química , Temperatura , Sementes/química
4.
Environ Geochem Health ; 46(5): 166, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592562

RESUMO

Cadmium (Cd) pollution ranks first in soils (7.0%) and microplastics usually have a significant adsorption capacity for it, which could pose potential threats to agricultural production and human health. However, the joint toxicity of Cd and microplastics on crop growth remains largely unknown. In this study, the toxic effects of Cd2+ and two kinds of microplastic leachates, polyvinyl chloride (PVC) and low-density polyethylene (LDPE), on wheat seed germination and seedlings' growth were explored under single and combined conditions. The results showed that Cd2+ solution and two kinds of microplastic leachates stimulated the wheat seed germination process but inhibited the germination rate by 0-8.6%. The combined treatments promoted wheat seed germination but inhibited the seedlings' growth to different degrees. Specifically, the combination of 2.0 mg L-1 Cd2+ and 1.0 mgC L-1 PVC promoted both seed germination and seedlings' growth, but they synergistically increased the antioxidant enzyme activity of seedlings. The toxicity of the PVC leachate to wheat seedlings was stronger than LDPE leachate. The addition of Cd2+ could alleviate the toxicity of PVC leachate on seedlings, and reduce the toxicity of LDPE leachate on seedlings under the same concentration class combinations but aggravated stress under different concentration classes, consistent with the effect on seedlings' growth. Overall, Cd2+, PVC, and LDPE leachates have toxic effects on wheat growth, whether treated under single or combined treatments. This study has important implications for the joint toxicity of Cd2+ solution and microplastic leachates in agriculture.


Assuntos
Plântula , Triticum , Humanos , Germinação , Cádmio/toxicidade , Microplásticos , Plásticos , Polietileno , Sementes , Antioxidantes
5.
Sci Rep ; 14(1): 8235, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589665

RESUMO

This study investigated the germination capacity (endogenous factor) of Petagnaea gussonei (Spreng.) Rauschert, an endemic monospecific plant considered as a relict species of the ancient Mediterranean Tertiary flora. This investigation focused also on the temporal trends of soil-use, climate and desertification (exogenous factors) across the natural range of P. gussonei. The final germination percentage showed low values between 14 and 32%, the latter obtained with GA3 and agar at 10 °C. The rising temperatures in the study area will further increase the dormancy of P. gussonei, whose germination capacity was lower and slower at temperatures higher than 10 °C. A further limiting factor of P. gussonei is its dormancy, which seems to be morpho-physiological. Regarding climate trends, in the period 1931-2020, the average temperature increased by 0.5 °C, from 15.4 to 15.9 °C, in line with the projected climate changes throughout the twenty-first century across the Mediterranean region. The average annual rainfall showed a relatively constant value of c. 900 mm, but extreme events grew considerably in the period 1991-2020. Similarly, the land affected by desertification expanded in an alarming way, by increasing from 21.2% in 2000 to 47.3% in 2020. Soil-use changes created also a complex impacting mosaic where c. 40% are agricultural areas. The effective conservation of P. gussonei should be multilateral by relying on germplasm banks, improving landscape connectivity and vegetation cover, and promoting climate policies.


Assuntos
Apiaceae , Dormência de Plantas , Dormência de Plantas/fisiologia , Solo , Conservação dos Recursos Naturais , Mudança Climática , Sementes/fisiologia , Germinação/fisiologia , Plantas , Temperatura
6.
Physiol Plant ; 176(2): e14271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566130

RESUMO

Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.


Assuntos
Giberelinas , Pyrus , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Pyrus/metabolismo , Ácido Ascórbico/metabolismo , Dormência de Plantas/genética , Sementes , Água/metabolismo , Regulação da Expressão Gênica de Plantas
7.
New Phytol ; 242(3): 1156-1171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513692

RESUMO

In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Monoterpenos/metabolismo , Catharanthus/metabolismo , Germinação , Sementes/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Diferenciação Celular , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Sci Rep ; 14(1): 6726, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509209

RESUMO

Poor germination and seedlings growth can lead to significant economic losses for farmers, therefore, sustainable agricultural strategies to improve germination and early growth of crops are urgently needed. The objective of this work was to evaluate selenium nanoparticles (Se NPs) as nanopriming agents for tomato (Solanum lycopersicum) seeds germinated without stress conditions in both trays and Petri dishes. Germination quality, seedlings growth, synergism-antagonism of Se with other elements, and fate of Se NPs, were determined as function of different Se NPs concentrations (1, 10 and 50 ppm). Results indicated that the germination rate in Petri dishes improved with 10 ppm, while germination trays presented the best results at 1 ppm, increasing by 10 and 32.5%, respectively. Therefore, seedlings growth was measured only in germination trays. Proline content decreased up to 22.19% with 10 ppm, while for same treatment, the total antioxidant capacity (TAC) and total chlorophyll content increased up to 38.97% and 21.28%, respectively. Antagonisms between Se with Mg, K, Mn, Zn, Fe, Cu and Mo in the seed were confirmed. In the case of seedlings, the N content decreased as the Se content increased. Transmission Electron Microscopy (TEM) imaging confirmed that Se NPs surrounded the plastids of the seed cells. By this finding, it can be inferred that Se NPs can reach the embryo, which is supported by the antagonism of Se with important nutrients involved in embryogenesis, such as K, Mg and Fe, and resulted in a better germination quality. Moreover, the positive effect of Se NPs on total chlorophyll and TAC, and the negative correlation with proline content with Se content in the seed, can be explained by Se NPs interactions with proplastids and other organelles within the cells, resulting with the highest length and fresh weight when seeds were exposed to 1 ppm.


Assuntos
Nanopartículas , Selênio , Solanum lycopersicum , Plântula , Germinação , Selênio/farmacologia , Antioxidantes/farmacologia , Sementes , Clorofila/farmacologia , Prolina/farmacologia
9.
Sci Rep ; 14(1): 6929, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519514

RESUMO

Soil and water salinity is an important limiting factor affecting yield and production levels in arid and semi-arid areas. Salt tolerance during germination is an important parameter that also affects the other plant development stages. In this respect, this study was designed to determine the responses of pumpkin seed varieties (Develi, Ürgüp, Hybrid) to different NaCl salinities. The study was carried out in 2022 in the laboratory of Biosystems Engineering Department of Erciyes University in randomized plots design with 3 replications. Experiments were conducted with 5 different water salinity. Germination percentage (GP), germination index (GI), mean germination time (MGT), seedling vigor index (SVI), ion leakage (Il), radicula length (RL) and plumule length (PL), root and shoot fresh and dry weights and some mineral composition (Na, K, Ca) were examined. Proline, antioxidant capacity, total phenolic and DPPH content were significantly affected by salinity. In scatter plot correlation analysis SVI a positive correlation was observed between GP (r2 = 0.774), GI (r2 = 0.745), RL (r2 = 0.929), FRW (r2 = 0.837), FSW (r2 = 0.836), DRW (r2 = 0.894), AC (r2 = 0.747), TP (r2 = 0.640) and DPPH (r2 = 0.635). It was determined that there were negative correlations between SVI and MGT (r2 = - 0.902), II (r2 = - 0.588), DSW (r2 = - 0.682) and PR (r2 = - 0.344). Present findings revealed that investigated parameters were significantly affected by increasing salinity levels. While Hybrid cultivar was the most affected by salinity, Develi cultivar was found to be resistant to saline conditions.


Assuntos
Cucurbita , Germinação , Humanos , Salinidade , Plântula , Sementes , Água/química
10.
BMC Plant Biol ; 24(1): 167, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438916

RESUMO

BACKGROUND: Generating elite rice varieties with high yield and superior quality is the main goal of rice breeding programs. Key agronomic traits, including grain size and seed germination characteristics, affect the final yield and quality of rice. The RGA1 gene, which encodes the α-subunit of rice G-protein, plays an important role in regulating rice architecture, seed size and abiotic stress responses. However, whether RGA1 is involved in the regulation of rice quality and seed germination traits is still unclear. RESULTS: In this study, a rice mutant small and round grain 5 (srg5), was identified in an EMS-induced rice mutant library. Systematic analysis of its major agronomic traits revealed that the srg5 mutant exhibited a semi-dwarf plant height with small and round grain and reduced panicle length. Analysis of the physicochemical properties of rice showed that the difference in rice eating and cooking quality (ECQ) between the srg5 mutant and its wild-type control was small, but the appearance quality was significantly improved. Interestingly, a significant suppression of rice seed germination and shoot growth was observed in the srg5 mutant, which was mainly related to the regulation of ABA metabolism. RGA1 was identified as the candidate gene for the srg5 mutant by BSA analysis. A SNP at the splice site of the first intron disrupted the normal splicing of the RGA1 transcript precursor, resulting in a premature stop codon. Additional linkage analysis confirmed that the target gene causing the srg5 mutant phenotype was RGA1. Finally, the introduction of the RGA1 mutant allele into two indica rice varieties also resulted in small and round rice grains with less chalkiness. CONCLUSIONS: These results indicate that RGA1 is not only involved in the control of rice architecture and grain size, but also in the regulation of rice quality and seed germination. This study sheds new light on the biological functions of RGA1, thereby providing valuable information for future systematic analysis of the G-protein pathway and its potential application in rice breeding programs.


Assuntos
Oryza , Oryza/genética , Sementes/genética , Germinação/genética , Melhoramento Vegetal , Grão Comestível/genética , Proteínas de Ligação ao GTP
11.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493663

RESUMO

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Assuntos
Oryza , Oryza/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Germinação/genética , Pólen/metabolismo , Tubo Polínico/genética , Calmodulina/genética , Calmodulina/metabolismo , Fosfotransferases , Nucleotídeos Cíclicos/metabolismo
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1900): 20230048, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38432313

RESUMO

When future conditions are unpredictable, bet-hedging strategies can be advantageous. This can involve isogenic individuals producing different phenotypes, under the same environmental conditions. Ecological studies provide evidence that variability in seed germination time has been selected for as a bet-hedging strategy. We demonstrate how variability in germination time found in Arabidopsis could function as a bet-hedging strategy in the face of unpredictable lethal stresses. Despite a body of knowledge on how the degree of seed dormancy versus germination is controlled, relatively little is known about how differences between isogenic seeds in a batch are generated. We review proposed mechanisms for generating variability in germination time and the current limitations and new possibilities for testing the model predictions. We then look beyond germination to the role of variability in seedling and adult plant growth and review new technologies for quantification of noisy gene expression dynamics. We discuss evidence for phenotypic variability in plant traits beyond germination being under genetic control and propose that variability in stress response gene expression could function as a bet-hedging strategy. We discuss open questions about how noisy gene expression could lead to between-plant heterogeneity in gene expression and phenotypes. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.


Assuntos
Arabidopsis , Germinação , Humanos , Adulto , Sementes , Plântula , Arabidopsis/genética , Conhecimento
13.
PLoS One ; 19(3): e0293377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451997

RESUMO

Myrmecochory-seed dispersal by ants-is a mutualistic interaction in which ants attracted by seed appendices take them away from the parental plant location, where seeds usually have better development odds. Not all ant species benefit plants, and the mechanisms of those divergent outcomes are still unclear, especially from the perspective of microbial third parties. Here, we explore the effects of seed manipulation on fungi communities promoted by two ant species with contrasting effects on seed germination and antimicrobial cleaning strategies. We hypothesize that: i) fungi richness is higher in seeds manipulated by Acromyrmex subterraneus (species that negatively affect seed germination), followed by unmanipulated seeds and seeds manipulated by Atta sexdens (ant species that increase seed germination) and ii) seeds manipulated by A. sexdens, Ac. subterraneus and unmanipulated seeds present dissimilar fungi compositions. We identified fungal morphotypes in three groups of seeds: i) manipulated by A. sexdens; ii) manipulated by Ac. subterraneus; iii) unmanipulated. Seeds manipulated by Ac. subterraneus exhibited higher fungal richness than those manipulated by A. sexdens and unmanipulated seeds, indicating that the ant species known to impair germination increases the fungal load on seeds. Additionally, we found that A. sexdens ants were unable to reduce fungal richness compared to unmanipulated seeds. Furthermore, fungal composition differed among all three treatments. Our results underscore the significance of ant species identity in shaping the fungal communities associated with myrmecochorous seeds. Given the potential influence of microbial infection on seed fate, we suggest considering manipulation strategies when evaluating the overall quality of an ant as a seed disperser.


Assuntos
Formigas , Dispersão de Sementes , Animais , Sementes , Plantas , Germinação , Fungos
14.
PLoS One ; 19(3): e0299669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452127

RESUMO

To investigate the role of sugar metabolism in desiccation-sensitive seeds, we performed a natural desiccation treatment on Phoebe chekiangensis seeds in a room and systematically analyzed the changes in seed germination, sugar compounds, malondialdehyde, and relative electrical conductivity during the seed desiccation. The results revealed that the initial moisture content of P. chekiangensis seed was very high (37.06%) and the seed was sensitive to desiccation, the germination percentage of the seed decreased to 5.33% when the seed was desiccated to 22.04% of moisture content, therefore, the seeds were considered recalcitrant. Based on the logistic model, we know that the moisture content of the seeds is 29.05% when the germination percentage drops to 50% and that it is desirable to keep the seed moisture content above 31.74% during ambient transportation. During seed desiccation, sucrose and trehalose contents exhibited increasing trends, and raffinose also increased during the late stage of desiccation, however, low levels of the non-reducing sugar accumulations may not prevent the loss of seed viability caused by desiccation. Glucose and fructose predominated among sugar compounds, and they showed a slight increase followed by a significant decrease. Their depletion may have contributed to the accumulation of sucrose and raffinose family oligosaccharides. Correlation analysis revealed a significant relationship between the accumulation of sucrose, trehalose, and soluble sugars, and the reduction in seed viability. Sucrose showed a significant negative correlation with glucose and fructose. Trehalose also exhibited the same pattern of correlation. These results provided additional data and theoretical support for understanding the mechanism of sugar metabolism in seed desiccation sensitivity.


Assuntos
Dessecação , Açúcares , Açúcares/metabolismo , Dessecação/métodos , Rafinose/metabolismo , Trealose/metabolismo , Sementes/metabolismo , Germinação , Sacarose/metabolismo , Glucose/metabolismo , Frutose/metabolismo
15.
Sci Rep ; 14(1): 5639, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454044

RESUMO

The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.


Assuntos
Larix , Polinização , Tubo Polínico , Pólen/metabolismo , Íons/metabolismo , Germinação
16.
Nat Commun ; 15(1): 2211, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480722

RESUMO

Low-temperature germination (LTG) is an important agronomic trait for rice (Oryza sativa). Japonica rice generally has greater capacity for germination at low temperatures than the indica subpopulation. However, the genetic basis and molecular mechanisms underlying this complex trait are poorly understood. Here, we report that OsUBC12, encoding an E2 ubiquitin-conjugating enzyme, increases low-temperature germinability in japonica, owing to a transposon insertion in its promoter enhancing its expression. Natural variation analysis reveals that transposon insertion in the OsUBC12 promoter mainly occurs in the japonica lineage. The variation detected in eight representative two-line male sterile lines suggests the existence of this allele introgression by indica-japonica hybridization breeding, and varieties carrying the japonica OsUBC12 locus (transposon insertion) have higher low-temperature germinability than varieties without the locus. Further molecular analysis shows that OsUBC12 negatively regulate ABA signaling. OsUBC12-regulated seed germination and ABA signaling mainly depend on a conserved active site required for ubiquitin-conjugating enzyme activity. Furthermore, OsUBC12 directly associates with rice SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 1.1 (OsSnRK1.1), promoting its degradation. OsSnRK1.1 inhibits LTG by enhancing ABA signaling and acts downstream of OsUBC12. These findings shed light on the underlying mechanisms of UBC12 regulating LTG and provide genetic reference points for improving LTG in indica rice.


Assuntos
Germinação , Oryza , Germinação/genética , Oryza/metabolismo , Locos de Características Quantitativas/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Melhoramento Vegetal , Temperatura Baixa
17.
J Agric Food Chem ; 72(11): 5609-5624, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467054

RESUMO

This study investigates the impact of plasma-seed interaction on germination and early plant development, focusing on Arabidopsis thaliana and Brassica napus. The investigation delves into changes in chemical composition, water absorption, and surface morphology induced by plasma filaments generated in synthetic air. These analyses were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Although plasma treatment enhanced water absorption and modified surface chemistry, its impact on germination demonstrated species- and context-dependent variations. Notably, the accelerated germination and morphogenesis of seedlings in microbiome-enriched (MB+) soil could be achieved also in microbiome-deprived (MB-) soil by short-term plasma treatment of seeds. Remarkably, the positive effects of plasma treatment on early developmental events (germination, morphogenesis) and later events (formation of inflorescences) were more pronounced in the context of MB- soil but were accompanied by a slight decrease in disease resistance, which was not detected in MB+ soil. The results underscore the intricate dynamics of plasma-plant interactions and stress the significance of accounting for the soil microbiome while designing experiments with potential field application.


Assuntos
Arabidopsis , Germinação , Solo , Sementes , Plântula , Água/farmacologia
18.
Plant Signal Behav ; 19(1): 2329487, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38493506

RESUMO

E. ulmoides (Eucommia ulmoides) has significant industrial and medicinal value and high market demand. E. ulmoides grows seedlings through sowing. According to previous studies, plant hormones have been shown to regulate seed germination. To understand the relationship between hormones and E. ulmoides seed germination, we focused on examining the changes in various indicators during the germination stage of E. ulmoides seeds. We measured the levels of physiological and hormone indicators in E. ulmoides seeds at different germination stages and found that the levels of abscisic acid (ABA), gibberellin (GA), and indole acetic acid (IAA) significantly varied as the seeds germinated. Furthermore, we confirmed that ABA, GA, and IAA are essential hormones in the germination of E. ulmoides seeds using Gene Ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses of the transcriptome. The discovery of hormone-related synthesis pathways in the control group of Eucommia seeds at different germination stages further confirmed this conclusion. This study provides a basis for further research into the regulatory mechanisms of E. ulmoides seeds at different germination stages and the relationship between other seed germination and plant hormones.


Assuntos
Eucommiaceae , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Germinação/genética , Eucommiaceae/genética , Eucommiaceae/metabolismo , Transcriptoma/genética , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Hormônios/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/genética
19.
Plant Signal Behav ; 19(1): 2328891, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38506438

RESUMO

Sophora davidii, a vital forage species, predominantly thrives in the subtropical karst mountains of Southwest China. Its resilience to poor soil conditions and arid environments renders it an ideal pioneer species for ecological restoration in these regions. This study investigates the influence of acidic, aluminum-rich local soil on the germination and seedling growth physiology of S. davidii. Experiments were conducted under varying degrees of acidity and aluminum stress, employing three pH levels (3.5 to 5.5) and four aluminum concentrations (0.5 to 2.0 mmol·L-1). The results showed that germination rate, germination index, and vigor index of S. davidii seeds were decreased but not significantly under slightly acidic conditions (pH 4.5-5.5), while strong acid (pH = 3.5) significantly inhibited the germination rate, germination index, and vigor index of white spurge seeds compared with the control group. Aluminum stress (≥0.5 mmol·L-1) significantly inhibited the germination rate, germination index, and vigor index of S. davidii seed. Moreover, the seedlings' root systems were sensitive to the changes of aluminum concentration, evident from significant root growth inhibition, characterized by root shortening and color deepening. Notably, under aluminum stress (pH = 4.3), the levels of malondialdehyde and proline in S. davidii escalated with increasing aluminum concentration, while antioxidant enzyme activities demonstrated an initial increase followed by a decline. The study underscores the pivotal role of cellular osmoregulatory substances and protective enzymes in combating aluminum toxicity in S. davidii, a key factor exacerbating growth inhibition in acidic environments. These findings offer preliminary theoretical insights for the practical agricultural utilization of S. davidii in challenging soil conditions.


Assuntos
Plântula , Sophora , Germinação , Alumínio/toxicidade , Sementes , Antioxidantes/farmacologia , Solo/química , Estresse Fisiológico
20.
Planta ; 259(4): 83, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441675

RESUMO

MAIN CONCLUSION: WOX family gene WOX2 is highly expressed during seed development, which functions redundantly with WOX1 and WOX4 to positively regulate seed germination. WOX (WUSCHEL-related homeobox) is a family of transcription factors in plants. They play essential roles in the regulation of plant growth and development, but their function in seed germination is not well understood. In this report, we show that WOX1, WOX2, and WOX4 are close homologues in Arabidopsis. WOX2 has a redundant function with WOX1 and WOX4, respectively, in seed germination. WOX2 is highly expressed during seed development, from the globular embryonic stage to mature dry seeds, and its expression is decreased after germination. Loss of function single mutant wox2, and double mutants wox1 wox2 and wox2 wox4-1 show decreased germination speed. WOX2 and WOX4 are essential for hypocotyl-radicle zone elongation during germination, potentially by promoting the expression of cell wall-related genes. We also found that WOX2 and WOX4 regulate germination through the gibberellin (GA) pathway. These results suggest that WOX2 and WOX4 integrate the GA pathway and downstream cell wall-related genes during germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular , Germinação/genética , Giberelinas , Proteínas de Homeodomínio/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...