Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81.835
Filtrar
1.
Sci Data ; 11(1): 381, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615136

RESUMO

Alternative splicing (AS) is a widely observed phenomenon in eukaryotes that plays a critical role in development and stress responses. In plants, the large number of RNA-seq datasets in response to different environmental stressors can provide clues for identification of condition-specific and/or common AS variants for preferred agronomic traits. We report RNA-seq datasets (350.7 Gb) from Capsicum annuum inoculated with one of three bacteria, one virus, or one oomycete and obtained additional existing transcriptome datasets. In this study, we investigated the landscape of AS in response to environmental stressors, signaling molecules, and tissues from 425 total samples comprising 841.49 Gb. In addition, we identified genes that undergo AS under specific and shared stress conditions to obtain potential genes that may be involved in enhancing tolerance to stressors. We uncovered 1,642,007 AS events and identified 4,354 differential alternative splicing genes related to environmental stressors, tissues, and signaling molecules. This information and approach provide useful data for basic-research focused on enhancing tolerance to environmental stressors in hot pepper or establishing breeding programs.


Assuntos
Processamento Alternativo , Capsicum , Estresse Fisiológico , Agricultura , Capsicum/genética , Melhoramento Vegetal , RNA-Seq
2.
Sci Rep ; 14(1): 8642, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622172

RESUMO

Cation exchanger (CAX) genes play an important role in plant growth/development and response to biotic and abiotic stresses. Here, we tried to obtain important information on the functionalities and phenotypic effects of CAX gene family by systematic analyses of their expression patterns, genetic diversity (gene CDS haplotypes, structural variations, gene presence/absence variations) in 3010 rice genomes and nine parents of 496 Huanghuazhan introgression lines, the frequency shifts of the predominant gcHaps at these loci to artificial selection during modern breeding, and their association with tolerances to several abiotic stresses. Significant amounts of variation also exist in the cis-regulatory elements (CREs) of the OsCAX gene promoters in 50 high-quality rice genomes. The functional differentiation of OsCAX gene family were reflected primarily by their tissue and development specific expression patterns and in varied responses to different treatments, by unique sets of CREs in their promoters and their associations with specific agronomic traits/abiotic stress tolerances. Our results indicated that OsCAX1a and OsCAX2 as general signal transporters were in many processes of rice growth/development and responses to diverse environments, but they might be of less value in rice improvement. OsCAX1b, OsCAX1c, OsCAX3 and OsCAX4 was expected to be of potential value in rice improvement because of their associations with specific traits, responsiveness to specific abiotic stresses or phytohormones, and relatively high gcHap and CRE diversity. Our strategy was demonstrated to be highly efficient to obtain important genetic information on genes/alleles of specific gene family and can be used to systematically characterize the other rice gene families.


Assuntos
Oryza , Melhoramento Vegetal , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética , Cátions/metabolismo , Variação Genética
3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612669

RESUMO

The multidrug and toxin efflux (MATE) family participates in numerous biological processes and plays important roles in abiotic stress responses. However, information about the MATE family genes in Torreya grandis remains unclear. In this study, our genome-wide investigation identified ninety MATE genes in Torreya grandis, which were divided into five evolutionary clades. TgMATE family members are located on eleven chromosomes, and a total of thirty TgMATEs exist in tandem duplication. The promoter analysis showed that most TgMATEs contain the cis-regulatory elements associated with stress and hormonal responses. In addition, we discovered that most TgMATE genes responded to abiotic stresses (aluminum, drought, high temperatures, and low temperatures). Weighted correlation network analysis showed that 147 candidate transcription factor genes regulated the expression of 14 TgMATE genes, and it was verified through a double-luciferase assay. Overall, our findings offer valuable information for the characterization of the TgMATE gene mechanism in responding to abiotic stress and exhibit promising prospects for the stress tolerance breeding of Torreya grandis.


Assuntos
Taxaceae , Toxinas Biológicas , Melhoramento Vegetal , Alumínio , Bioensaio , Estresse Fisiológico/genética
4.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612923

RESUMO

Small peptides in plants are typically characterized as being shorter than 120 amino acids, with their biologically active variants comprising fewer than 20 amino acids. These peptides are instrumental in regulating plant growth, development, and physiological processes, even at minimal concentrations. They play a critical role in long-distance signal transduction within plants and act as primary responders to a range of stress conditions, including salinity, alkalinity, drought, high temperatures, and cold. This review highlights the crucial roles of various small peptides in plant growth and development, plant resistance to abiotic stress, and their involvement in long-distance transport. Furthermore, it elaborates their roles in the regulation of plant hormone biosynthesis. Special emphasis is given to the functions and mechanisms of small peptides in plants responding to abiotic stress conditions, aiming to provide valuable insights for researchers working on the comprehensive study and practical application of small peptides.


Assuntos
Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas , Aminoácidos , Peptídeos , Estresse Fisiológico
5.
Plant Mol Biol ; 114(3): 38, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605193

RESUMO

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.


Assuntos
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Perfilação da Expressão Gênica , Parede Celular/metabolismo , Estresse Fisiológico
6.
BMC Plant Biol ; 24(1): 273, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605371

RESUMO

BACKGROUND: Environmental stresses negatively impact reproductive development and yield. Drought stress, in particular, has been examined during Arabidopsis reproductive development at morphological and transcriptomic levels. However, drought-responsive transcriptomic changes at different points in reproductive development remain unclear. Additionally, an investigation of the entire transcriptome at various stages during flower development is of great interest. RESULTS: Here, we treat Arabidopsis plants with well-watered and moderately and severely limiting water amounts when the first flowers reach maturity and generate RNA-seq datasets for early, middle, and late phases during flower development at 5, 6, and 7 days following treatment. Under different drought conditions, flowers in different developmental phases display differential sets of drought-responsive genes (DTGs), including those that are enriched in different GO functional categories, such as transcriptional regulation and response to stresses (early phase), lipid storage (middle phase), and pollen and seed development and metabolic processes (late phase). Some gene families have different members induced at different floral phases, suggesting that similar biochemical functions are carried out by distinct members. Developmentally-regulated genes (DVGs) with differential expression among the three floral phases belong to GO terms that are similar between water conditions, such as development and reproduction, metabolism and transport, and signaling and stress response. However, for different water conditions, such similar GO terms correspond to either distinct gene families or different members of a gene family, suggesting that drought affects the expression of distinct families or family members during reproductive development. A further comparison among transcriptomes of tissues collected on different days after treatment identifies differential gene expression, suggesting age-related genes (ARGs) might reflect the changes in the overall plant physiology in addition to drought response and development. CONCLUSION: Together, our study provides new insights into global transcriptome reprogramming and candidate genes for drought response, flower development, aging and coordination among these complex biological processes.


Assuntos
Arabidopsis , Transcriptoma , Arabidopsis/genética , Água , Reprodução/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Secas , Estresse Fisiológico/genética
7.
Zhongguo Zhong Yao Za Zhi ; 49(3): 691-701, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621873

RESUMO

Mentha canadensis, as a plant with medicinal and culinary uses, holds significant economic value. Jasmonic acid signaling repressor JAZ protein has a crucial role in regulating plant response to adversity stresses. The M. canadensis McJAZ8 gene is cloned and analyzed for protein characterization, protein interactions, and expression patterns, so as to provide genetic resources for molecular breeding of M. canadensis for stress tolerance. This experiment will analyze the protein structural characteristics, subcellular localization, protein interactions, and gene expression of McJAZ8 using bioinformatics, yeast two-hybrid(Y2H), transient expression in tobacco leaves, qRT-PCR, and other technologies. The results show that:(1)The full length of the McJAZ8 gene is 543 bp, encoding 180 amino acids. The McJAZ8 protein contains conserved TIFY and Jas domains and exhibits high homology with Arabidopsis thaliana AtJAZ1 and AtJAZ2.(2)The McJAZ8 protein is localized in the nucleus and cytoplasm.(3)The Y2H results show that McJAZ8 interacts with itself or McJAZ1/3/4/5 proteins to form homologous or heterologous dimers.(4)McJAZ8 is expressed in different tissue, with the highest expression level in young leaves. In terms of leaf sequence, McJAZ8 shows the highest expression level in the fourth leaf and the lowest expression level in the second leaf.(5) In leaves and roots, the expression of McJAZ8 is upregulated to varying degrees under methyl jasmonate(MeJA), drought, and NaCl treatments. The expression of McJAZ8 shows an initial upregulation followed by a downregulation pattern under CdCl_2 treatment. In leaves, the expression of McJAZ8 tends to gradually decrease under CuCl_2 treatment, while in roots, it initially decreases and then increases before decreasing again. In both leaves and roots, the expression of McJAZ8 is downregulated to varying degrees under AlCl_(3 )treatment. This study has enriched the research on jasmonic acid signaling repressor JAZ genes in M. canadensis and provided genetic resources for the molecular breeding of M. canadensis.


Assuntos
Ciclopentanos , Perfilação da Expressão Gênica , Mentha , Oxilipinas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Estresse Fisiológico/genética
8.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621933

RESUMO

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Assuntos
Ácido Abscísico , Mentha , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas
9.
PeerJ ; 12: e17190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560461

RESUMO

Maize production and productivity are affected by drought stress in tropical and subtropical ecologies, as the majority of the area under maize cultivation in these ecologies is rain-fed. The present investigation was conducted to study the physiological and biochemical effects of 24-Epibrassinolide (EBR) as a plant hormone on drought tolerance in maize. Two maize hybrids, Vivek hybrid 9 and Bio 9637, were grown under three different conditions: (i) irrigated, (ii) drought, and (iii) drought+EBR. A total of 2 weeks before the anthesis, irrigation was discontinued to produce a drought-like condition. In the drought+EBR treatment group, irrigation was also stopped, and in addition, EBR was applied as a foliar spray on the same day in the drought plots. It was observed that drought had a major influence on the photosynthesis rate, membrane stability index, leaf area index, relative water content, and leaf water potential; this effect was more pronounced in Bio 9637. Conversely, the activities of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased in both hybrids under drought conditions. Specifically, Vivek hybrid 9 showed 74% higher CAT activity under drought conditions as compared to the control. Additionally, EBR application further enhanced the activity of this enzyme by 23% compared to plants under drought conditions. Both hybrids experienced a significant reduction in plant girth due to drought stress. However, it was found that exogenously applying EBR reduced the detrimental effects of drought stress on the plant, and this effect was more pronounced in Bio 9637. In fact, Bio 9637 treated with EBR showed an 86% increase in proline content and a 70% increase in glycine betaine content compared to untreated plants under drought conditions. Taken together, our results suggested EBR enhanced tolerance to drought in maize hybrids. Hence, pre-anthesis foliar application of EBR might partly overcome the adverse effects of flowering stage drought in maize.


Assuntos
Brassinosteroides , Esteroides Heterocíclicos , Estresse Fisiológico , Zea mays , Secas , Antioxidantes/farmacologia , Água/farmacologia
10.
PeerJ ; 12: e17016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560473

RESUMO

WRKY transcription factors constitute one of the largest plant-specific gene families, regulating various aspects of plant growth, development, physiological processes, and responses to abiotic stresses. This study aimed to comprehensively analyze the WRKY gene family of yam (Dioscorea opposita Thunb.), to understand their expression patterns during the growth and development process and their response to different treatments of yam and analyze the function of DoWRKY71 in detail. A total of 25 DoWRKY genes were identified from the transcriptome of yam, which were divided into six clades (I, IIa, IIc, IId, IIe, III) based on phylogenetic analysis. The analysis of conserved motifs revealed 10 motifs, varying in length from 16 to 50 amino acids. Based on real-time quantitative PCR (qRT-PCR) analysis, DoWRKY genes were expressed at different stages of growth and development and responded differentially to various abiotic stresses. The expression level of DoWRKY71 genes was up-regulated in the early stage and then down-regulated in tuber enlargement. This gene showed responsiveness to cold and abiotic stresses, such as abscisic acid (ABA) and methyl jasmonate (MeJA). Therefore, further study was conducted on this gene. Subcellular localization analysis revealed that the DoWRKY71 protein was localized in the nucleus. Moreover, the overexpression of DoWRKY71 enhanced the cold tolerance of transgenic tobacco and promoted ABA mediated stomatal closure. This study presents the first systematic analysis of the WRKY gene family in yam, offering new insights for studying WRKY transcription factors in yam. The functional study of DoWRKY71 lays theoretical foundation for further exploring the regulatory function of the DoWRKY71 gene in the growth and development related signaling pathway of yam.


Assuntos
Ácido Abscísico , Dioscorea , Ácido Abscísico/farmacologia , Dioscorea/genética , Filogenia , Estresse Fisiológico/genética , Fatores de Transcrição/genética
11.
Physiol Plant ; 176(2): e14240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561015

RESUMO

Under stress conditions, plants modulate their internal states and initiate various defence mechanisms to survive. The ubiquitin-proteasome system is one of the critical modules in these mechanisms, and Plant U-Box proteins play an important role in this process as E3 ubiquitin ligases. Here, we isolated the Plant U-box 24 gene CaPUB24 (Capsicum annuum Plant U-Box 24) from pepper and characterized its functions in response to drought stress. We found that, compared to the other CaPUBs in the same group, the expression of CaPUB24 was significantly induced by drought stress. We also found that CaPUB24 was localized to the nucleus and cytoplasm and had E3 ubiquitin ligase activity. To investigate the biological role of CaPUB24 in response to drought stress further, we generated CaPUB24-silenced pepper plants and CaPUB24-overexpressing Arabidopsis transgenic plants. CaPUB24-silenced pepper plants exhibited enhanced drought tolerance compared to the control plants due to reduced transpirational water loss and increased abscisic acid (ABA) sensitivity. In contrast, CaPUB24-overexpressing Arabidopsis transgenic plants exhibited reduced drought tolerance and ABA-insensitive phenotypes. Our findings suggest that CaPUB24 negatively modulates drought stress response in an ABA-dependent manner.


Assuntos
Arabidopsis , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Secas , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
12.
Sci Rep ; 14(1): 5463, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561340

RESUMO

Abiotic stresses limit the quantity and quality of rice grain production, which is considered a strategic crop in many countries. In this study, a meta-analysis of different microarray data at seedling stage was performed to investigate the effects of multiple abiotic stresses (drought, salinity, cold situation, high temperature, alkali condition, iron, aluminum, and heavy metal toxicity, nitrogen, phosphorus, and potassium deficiency) on rice. Comparative analysis between multiple abiotic stress groups and their control groups indicated 561 differentially expressed genes (DEGs), among which 422 and 139 genes were up-regulated and down-regulated, respectively. Gene Ontology analysis showed that the process of responding to stresses and stimuli was significantly enriched. In addition, pathways such as metabolic process and biosynthesis of secondary metabolites were identified by KEGG pathway analysis. Weighted correlation network analysis (WGCNA) uncovered 17 distinct co-expression modules. Six modules were significantly associated with genes involved in response to abiotic stresses. Finally, to validate the results of the meta-analysis, five genes, including TIFY9 (JAZ5), RAB16B, ADF3, Os01g0124650, and Os05g0142900 selected for qRT-PCR analysis. Expression patterns of selected genes confirmed the results of the meta-analysis. The outcome of this study could help introduce candidate genes that may be beneficial for use in genetic engineering programs to produce more tolerant crops or as markers for selection.


Assuntos
Oryza , Oryza/genética , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Salinidade , Regulação da Expressão Gênica de Plantas
13.
BMC Plant Biol ; 24(1): 236, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561660

RESUMO

BACKGROUND: Acyl-CoA-Binding proteins (ACBPs) function as coenzyme A transporters and play important roles in regulating plant growth and development in response to abiotic stress and phytohormones, as well as in membrane repair. To date, the ACBP family has not been a comprehensively characterized in barley (Hordeum vulgare L.). RESULTS: Eight ACBP genes were identified in the barley genome and named as HvACBP1-8. The analysis of the proteins structure and promoter elements of HvACBP suggested its potential functions in plant growth, development, and stress response. These HvACBPs are expressed in specific tissues and organs following induction by abiotic stressors such as drought, salinity, UV-B exposure, temperature extremes, and exposure to exogenous phytohormones. The HvACBP7 and HvACBP8 amino acid sequences were conserved during the domestication of Tibetan Qingke barley. CONCLUSIONS: Acyl-CoA-binding proteins may play important roles in barley growth and environmental adaptation. This study provides foundation for further analyses of the biological functions of HvACBPs in the barley stress response.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Reguladores de Crescimento de Plantas , Hormônios , Estresse Fisiológico/genética
14.
BMC Plant Biol ; 24(1): 232, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561659

RESUMO

BACKGROUND: Chrysanthemum, one of the four major cut flowers all over the world, is very sensitive to salinity during cultivation. DNA binding with one finger (DOF) transcription factors play important roles in biological processes in plants. The response mechanism of CmDOF18 from chrysanthemum to salt stress remains unclear. RESULTS: In this study, CmDOF18 was cloned from Chrysanthemum morifolium, and its expression was induced by salinity stress. The gene encodes a 291-amino acid protein with a typical DOF domain. CmDOF18 was localized to the nucleus in onion epidermal cells and showed transcriptional activation in yeast. CmDOF18 transgenic plants were generated to identify the role of this gene in resistance to salinity treatment. Chrysanthemum plants overexpressing CmDOF18 were more resistant to salinity stress than wild-type plants. Under salinity stress, the malondialdehyde content and leaf electrolyte conductivity in CmDOF18-overexpressing transgenic plants were lower than those in wild-type plants, while the proline content, chlorophyll content, superoxide dismutase activity and peroxidase activity were higher than those in wild-type plants. The opposite findings were observed in gene-silenced plants compared with wild-type plants. The gene expression levels of oxidoreductase increased in CmDOF18-overexpressing transgenic plants but decreased in CmDOF18-SRDX gene-silenced transgenic plants. CONCLUSION: In summary, we analyzed the function of CmDOF18 from chrysanthemum, which may regulate salinity stress in plants, possibly due to its role in the regulation of oxidoreductase.


Assuntos
Chrysanthemum , Oxirredutases , Oxirredutases/metabolismo , Tolerância ao Sal/genética , Chrysanthemum/genética , Chrysanthemum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Saccharomyces cerevisiae/metabolismo , Salinidade , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
15.
BMC Plant Biol ; 24(1): 230, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561687

RESUMO

BACKGROUND: Dendrobium spp. comprise a group of tropical orchids with ornamental and medicinal value. Dendrobium spp. are sensitive to low temperature, and the underlying cold response regulatory mechanisms in this group are unclear. To understand how these plants respond to cold stress, we compared the transcriptomic responses of the cold-tolerant cultivar 'Hongxing' (HX) and the cold-sensitive cultivar 'Sonia Hiasakul' (SH) to cold stress. RESULTS: Chemometric results showed that the physiological response of SH in the later stages of cold stress is similar to that of HX throughout the cold treatment. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed that soluble protein content and peroxidase activity are key physiological parameters for assessing the cold tolerance of these two Dendrobium spp. cultivars. Additionally, weighted gene co-expression network analysis (WGCNA) results showed that many cold response genes and metabolic pathways significantly associated with the physiological indices were enriched in the 12 detected modules. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses of the 105 hub genes showed that Dendrobium spp. adapt to cold stress by regulating signal transduction, phytohormones, transcription factors, protein translation and modification, functional proteins, biosynthesis and metabolism, cell structure, light, and the circadian clock. Hub genes of the cold stress response network included the remorin gene pp34, the abscisic acid signaling pathway-related genes PROTEIN PHOSPATASE 2 C (PP2C), SNF1-RELATED PROTEIN KINASE 2 (SnRK2), ABRE-BINDING FACTOR 1 (ABF1) and SKI-INTERACTING PROTEIN 17 (SKIP17), the Ca2+ signaling-related GTP diphosphokinase gene CRSH1, the carbohydrate-related gene STARCH SYNTHASE 2 (SS2), the cell wall biosynthesis gene CINNAMYL ALCOHOL DEHYDROGENASE (CAD7), and the endocytosis-related gene VACUOLAR PROTEIN SORTING-ASSOCIATED PROTEIN 52 A (VPS52A). CONCLUSIONS: The cold-responsive genes and metabolic pathways of Dendrobium spp. revealed in this study provide important insight to enable the genetic enhancement of cold tolerance in Dendrobium spp., and to facilitate cold tolerance breeding in related plants.


Assuntos
Resposta ao Choque Frio , Dendrobium , Resposta ao Choque Frio/genética , Dendrobium/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
16.
Physiol Plant ; 176(2): e14282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591354

RESUMO

In nature, drought and salt stresses often occur simultaneously and affect plant growth at multiple levels. However, the mechanisms underlying plant responses to drought and salt stresses and their interactions are still not fully understood. We performed a meta-analysis to compare the effects of drought, salt, and combined stresses on plant physiological, biochemical, morphological and growth traits, analyze the different responses of C3 and C4 plants, as well as halophytes and non-halophytes, and identify the interactive effects on plants. There were numerous similarities in plant responses to drought, salt, and combined stresses. C4 plants had a more effective antioxidant defense system, and could better maintain above-ground growth. Halophytes could better maintain photosynthetic rate (Pn) and relative water content (RWC), and reduce growth as an adaptation strategy. The responses of most traits (Pn, RWC, chlorophyll content, soluble sugar content, H2O2 content, plant dry weight, etc.) to combined stress were less-than-additive, indicating cross-resistance rather than cross-sensitivity of plants to drought and salt stresses. These results are important to improve our understanding of drought and salt cross-resistance mechanisms and further induce resistance or screen-resistant varieties under stress combination.


Assuntos
Secas , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Cloreto de Sódio/farmacologia , Plantas , Água , Estresse Salino , Estresse Fisiológico
17.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588711

RESUMO

Drought is a major obstacle to the development of naked oat industry. This work investigated mechanisms by which exogenous Streptomyces albidoflavus T4 and Streptomyces rochei D74 improved drought tolerance in naked oat (Avena nuda ) seedlings. Results showed that in the seed germination experiment, germination rate, radicle and hypocotyl length of naked oat seeds treated with the fermentation filtrate of T4 or D74 under PEG induced drought stress increased significantly. In the hydroponic experiment, the shoot and root dry weights of oat seedlings increased significantly when treated with the T4 or D74 fermentation filtrate under the 15% PEG induced drought stress (S15). Simultaneously, the T4 treatment also significantly increased the surface area, volume, the number of tips and the root activity of oat seedlings. Both T4 and D74 treatments elicited significant increases in proline and soluble sugar contents, as well as the catalase and peroxidase activities in oat seedlings. The results of comprehensive drought resistance capacity (CDRC) calculation of oat plants showed that the drought resistance of oat seedlings under the T4 treatment was better than that under the D74 treatment, and the effect was better under higher drought stress (S15). Findings of this study may provide a novel and effective approach for enhancing plant defenses against drought stress.


Assuntos
Antioxidantes , Streptomyces , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Plântula , Osmorregulação , Avena/metabolismo , Resistência à Seca , Estresse Fisiológico , Streptomyces/metabolismo
18.
Funct Integr Genomics ; 24(2): 74, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600306

RESUMO

Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.


Assuntos
Regulação da Expressão Gênica de Plantas , Histonas , Histonas/genética , Histonas/metabolismo , Plantas/genética , Metilação de DNA , Estresse Fisiológico/genética
19.
Biochem Biophys Res Commun ; 709: 149840, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564941

RESUMO

As one of the largest transcription factor (TF) families in plants, the NAC (NAM, ATAF1/2, and CUC2) family plays important roles in response pathways to various abiotic and biotic stresses, such as drought, high salinity, low temperature, and pathogen infection. Although, there are a number of reviews on the involvement of NAC TF in plant responses to biotic and abiotic stresses, most of them are focused on the model plants Arabidopsis thaliana and Oryza sativa, and there is a lack of systematic evaluation of specific species. Solanaceae, the world's third most significant cash crop, has been seriously affected by environmental disturbances in recent years in terms of yield and quality, posing a severe threat to global food security. This review focuses on the functional roles of NAC transcription factors in response to external stresses involved in five important Solanaceae crops: tomato, potato, pepper, eggplant and tobacco, and analyzes the affinities between them. It will provide resources for stress-resistant breeding of Solanaceae crops using transgenic technology.


Assuntos
Solanum tuberosum , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Produtos Agrícolas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Secas
20.
Biosens Bioelectron ; 255: 116261, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565026

RESUMO

Drought and salinity stresses present significant challenges that exert a severe impact on crop productivity worldwide. Understanding the dynamics of salicylic acid (SA), a vital phytohormone involved in stress response, can provide valuable insights into the mechanisms of plant adaptation to cope with these challenging conditions. This paper describes and tests a sensor system that enables real-time and non-invasive monitoring of SA content in avocado plants exposed to drought and salinity. By using a reverse iontophoretic system in conjunction with a laser-induced graphene electrode, we demonstrated a sensor with high sensitivity (82.3 nA/[µmol L-1⋅cm-2]), low limit of detection (LOD, 8.2 µmol L-1), and fast sampling response (20 s). Significant differences were observed between the dynamics of SA accumulation in response to drought versus those of salt stress. SA response under drought stress conditions proved to be faster and more intense than under salt stress conditions. These different patterns shed light on the specific adaptive strategies that avocado plants employ to cope with different types of environmental stressors. A notable advantage of the proposed technology is the minimal interference with other plant metabolites, which allows for precise SA detection independent of any interfering factors. In addition, the system features a short extraction time that enables an efficient and rapid analysis of SA content.


Assuntos
Técnicas Biossensoriais , Grafite , Dispositivos Eletrônicos Vestíveis , Ácido Salicílico , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...