Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
2.
Front Immunol ; 15: 1351427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318169

RESUMO

One of the leading causes of infectious diarrhea in newborn calves is the apicomplexan protozoan Cryptosporidium parvum (C. parvum). However, little is known about its immunopathogenesis. Using next generation sequencing, this study investigated the immune transcriptional response to C. parvum infection in neonatal calves. Neonatal male Holstein-Friesian calves were either orally infected (N = 5) or not (CTRL group, N = 5) with C. parvum oocysts (gp60 subtype IIaA15G2R1) at day 1 of life and slaughtered on day 7 after infection. Total RNA was extracted from the jejunal mucosa for short read. Differentially expressed genes (DEGs) between infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05. Infection did not affect plasma immunohematological parameters, including neutrophil, lymphocyte, monocyte, leucocyte, thrombocyte, and erythrocyte counts as well as hematocrit and hemoglobin concentration on day 7 post infection. The immune-related DEGs were selected according to the UniProt immune system process database and were used for gene ontology (GO) and pathway enrichment analysis using Cytoscape (v3.9.1). Based on GO analysis, DEGs annotated to mucosal immunity, recognizing and presenting antigens, chemotaxis of neutrophils, eosinophils, natural killer cells, B and T cells mediated by signaling pathways including toll like receptors, interleukins, tumor necrosis factor, T cell receptor, and NF-KB were upregulated, while markers of macrophages chemotaxis and cytosolic pattern recognition were downregulated. This study provides a holistic snapshot of immune-related pathways induced by C. parvum in calves, including novel and detailed feedback and feedforward regulatory mechanisms establishing the crosstalk between innate and adaptive immune response in neonate calves, which could be utilized further to develop new therapeutic strategies.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Fenômenos do Sistema Imunitário , Animais , Bovinos , Masculino , Humanos , Cryptosporidium parvum/genética , Cryptosporidium/genética , Transcriptoma , Doenças dos Bovinos/genética , Mucosa Intestinal , Fator de Necrose Tumoral alfa/genética , Imunidade Adaptativa
3.
J Reprod Immunol ; 160: 104164, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37924675

RESUMO

Ovarian follicular development is a critical determinant of reproductive performance in litter bearing species like pigs, wherein economic gains depend on litter size. The study aimed to gain insight into the differentially expressed genes (DEGs) and signalling pathways regulating follicular growth and maturation in Ghoongroo pigs. Transcriptome profiling of porcine small follicles (SF) and large follicles (LF) was conducted using NovaSeq600 sequencing platform and DEGs were identified using DESeq2 with threshold of Padj. < 0.05 and log2 fold change cut off 0.58 (LF vs. SF). Functional annotations and bioinformatics analysis of DEGs were performed to find out biological functions, signalling pathways and hub genes regulating follicular dynamics. Transcriptome analysis revealed 709 and 479 genes unique to SF and LF stages, respectively, and 11,993 co-expressed genes in both the groups. In total, 507 DEGs (284 upregulated and 223 downregulated) were identified, which encoded for diverse proteins including transcription factors (TFs). These DEGs were functionally linked to response to stimulus, lipid metabolic process, developmental process, extracellular matrix organisation along with the immune system process, indicating wide-ranging mechanisms associated with follicular transition. The enriched KEGG pathways in LF stage consisted of ovarian steroidogenesis, cholesterol and retinol metabolism, cell adhesion molecules, cytokine receptor interaction and immune signalling pathways, depicting intra-follicular control of varied ovarian function. The hub gene analysis revealed APOE, SCARB1, MMP9, CYP17A1, TYROBP as key regulators of follicular development. This study identified candidate genes and TFs providing steroidogenic advantage to LFs which makes them fit for selection into the ovulatory pool of follicles.


Assuntos
Fenômenos do Sistema Imunitário , Transcriptoma , Feminino , Animais , Suínos , Células da Granulosa/metabolismo , Folículo Ovariano , Perfilação da Expressão Gênica
5.
Cereb Cortex ; 33(5): 2273-2286, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36857721

RESUMO

Prenatal exposure to infectious or noninfectious immune activation is an environmental risk factor for neurodevelopmental disorders and mental illnesses. Recent research using animal models suggests that maternal immune activation (MIA) during early to middle stages of pregnancy can induce transgenerational effects on brain and behavior, likely via inducing stable epigenetic modifications across generations. Using a mouse model of viral-like MIA, which is based on gestational treatment with poly(I:C), the present study explored whether transgenerational effects can also emerge when MIA occurs in late pregnancy. Our findings demonstrate that the direct descendants born to poly(I:C)-treated mothers display deficits in temporal order memory, which are similarly present in second- and third-generation offspring. These transgenerational effects were mediated via both the maternal and paternal lineages and were accompanied by transient changes in maternal care. In addition to the cognitive effects, late prenatal immune activation induced generation-spanning effects on the prefrontal expression of gamma-aminobutyric acid (GABA)ergic genes, including parvalbumin and distinct alpha-subunits of the GABAA receptor. Together, our results suggest that MIA in late pregnancy has the potential to affect cognitive functions and prefrontal gene expression patterns in multiple generations, highlighting its role in shaping disease risk across generations.


Assuntos
Encéfalo , Cognição , Fenômenos do Sistema Imunitário , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Modelos Animais de Doenças , Epigênese Genética , Poli I-C , Camundongos
8.
Adipocyte ; 11(1): 190-201, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35412419

RESUMO

Bariatric surgery (BS) is an effective treatment for obesity. Adipose tissue, liver tissue and skeletal muscle are important metabolic tissues. This study investigated hub genes and their association with immune infiltration in these metabolic tissues of obese patients after BS by bioinformatic analysis with Gene Expression Omnibus datasets. Differentially expressed genes (DEGs) were identified, and a protein-protein interaction network was constructed to identify hub genes. As a result, 121 common DEGs were identified and mainly enriched in cytokine-cytokine receptor interactions, chemokine signaling pathway, neutrophil activation and immune responses. Immune cell infiltration analysis showed that the abundance of M1 macrophages was significantly lower in adipose and liver tissue after BS (p<0.05). Ten hub genes (TYROBP, TLR8, FGR, NCF2, HCK, CCL2, LAPTM5, MNDA and S100A9) that were all downregulated after BS were also associated with immune cells. Consistently, results in the validated dataset showed that the expression levels of these hub genes were increased in obese patients and mice, and decreased after BS. In conclusion, this study analysed the potential immune and inflammatory mechanisms of BS in three key metabolic tissues of obese patients, and revealed hub genes associated with immune cell infiltration, thus providing potential targets for obesity treatment.


Assuntos
Cirurgia Bariátrica , Fenômenos do Sistema Imunitário , Obesidade , Tecido Adiposo/imunologia , Animais , Quimiocinas , Citocinas , Perfilação da Expressão Gênica , Humanos , Fenômenos do Sistema Imunitário/genética , Fígado/imunologia , Camundongos , Músculo Esquelético/imunologia , Neutrófilos , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Receptores de Citocinas
9.
Front Immunol ; 13: 807097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197979

RESUMO

Translationally controlled tumor protein (TCTP) is a highly conserved protein possessing numerous biological functions and molecular interactions, ranging from cell growth to immune responses. However, the molecular mechanism by which TCTP regulates immune function is largely unknown. Here, we found that knockdown of Bombyx mori translationally controlled tumor protein (BmTCTP) led to the increased susceptibility of silkworm cells to virus infection, whereas overexpression of BmTCTP significantly decreased the virus replication. We further demonstrated that BmTCTP could be modified by SUMOylation molecular BmSMT3 at the lysine 164 via the conjugating enzyme BmUBC9, and the stable SUMOylation of BmTCTP by expressing BmTCTP-BmSMT3 fusion protein exhibited strong antiviral activity, which confirmed that the SUMOylation of BmTCTP would contribute to its immune responses. Further work indicated that BmTCTP is able to physically interact with interleukin enhancer binding factor (ILF), one immune molecular, involved in antivirus, and also induce the expression of BmILF in response to virus infection, which in turn enhanced antiviral activity of BmTCTP. Altogether, our present study has provided a novel insight into defending against virus via BmTCTP SUMOylation signaling pathway and interacting with key immune molecular in silkworm.


Assuntos
Bombyx/virologia , Animais , Fenômenos do Sistema Imunitário , Proteínas de Insetos/genética , Larva/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias , Nucleopoliedrovírus/fisiologia , Fagocitose , Processamento de Proteína Pós-Traducional , Proteômica , Transdução de Sinais , Sumoilação , Viroses , Replicação Viral
10.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076027

RESUMO

Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA affects the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.


Assuntos
Artrite , Fenômenos Fisiológicos Bacterianos/imunologia , Microbioma Gastrointestinal/fisiologia , Fosfolipases A2 do Grupo II/metabolismo , Metabolismo dos Lipídeos/imunologia , Animais , Animais Geneticamente Modificados , Artrite/imunologia , Artrite/microbiologia , Humanos , Fenômenos do Sistema Imunitário , Lipidômica/métodos , Camundongos , Modelos Animais , Patologia Molecular/métodos , Transgenes
11.
J Immunol ; 208(2): 227-234, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35017212

RESUMO

Our body's most outward facing epithelial barrier, the skin, serves as the frontline defense against myriad environmental assailants. To combat these motley threats, the skin has evolved a sophisticated immunological arsenal. In this article, I provide an overview of the skin's complex architecture and the distinct microniches in which immune cells reside and function. I review burgeoning literature on the synchronized immune, stromal, epithelial, and neuronal cell responses in healthy and inflamed skin. Next, I delve into the distinct requirement and mechanisms of long-term immune surveillance and tissue adaptation at the cutaneous frontier. Finally, by discussing the contributions of immune cells in maintaining and restoring tissue integrity, I underscore the constellation of noncanonical functions undertaken by the skin immune system. Just as our skin's immune system benefits from embracing diverse defense strategies, so, too, must we in the immunology research community support disparate perspectives and people from all walks of life.


Assuntos
Fenômenos do Sistema Imunitário/fisiologia , Vigilância Imunológica/imunologia , Pele/imunologia , Humanos , Sistema Imunitário/imunologia , Pele/anatomia & histologia , Junções Íntimas/imunologia
12.
Front Immunol ; 12: 802839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970274

RESUMO

Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis to host defense and cancer. Eosinophils have been studied mostly in the context of Type 2 inflammatory responses such as those found in allergy. Nonetheless, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Recent data suggest that the pleotropic roles of eosinophils are due to heterogeneous responses to environmental cues. Despite this, the activation profile of eosinophils, in response to various stimuli is yet to be defined. To better understand the transcriptional spectrum of eosinophil activation, we exposed eosinophils to Type 1 (e.g. IFN-γ, E. coli) vs. Type 2 (e.g. IL-4) conditions and subjected them to global RNA sequencing. Our analyses show that IL-4, IFN-γ, E. coli and IFN-γ in the presence of E. coli (IFN-γ/E. coli)-stimulated eosinophils acquire distinct transcriptional profiles, which polarize them towards what we termed Type 1 and Type 2 eosinophils. Bioinformatics analyses using Gene Ontology based on biological processes revealed that different stimuli induced distinct pathways in eosinophils. These pathways were confirmed using functional assays by assessing cytokine/chemokine release (i.e. CXCL9, CCL24, TNF-α and IL-6) from eosinophils following activation. In addition, analysis of cell surface markers highlighted CD101 and CD274 as potential cell surface markers that distinguish between Type 1 and Type 2 eosinophils, respectively. Finally, the transcriptome signature of Type 1 eosinophils resembled that of eosinophils that were obtained from mice with experimental colitis whereas the transcriptome signature of Type 2 eosinophils resembled that of eosinophils from experimental asthma. Our data demonstrate that eosinophils are polarized to distinct "Type 1" and "Type 2" phenotypes following distinct stimulations. These findings provide fundamental knowledge regarding the heterogeneity of eosinophils and support the presence of transcriptional differences between Type 1 and Type 2 cells that are likely reflected by their pleotropic activities in diverse disease settings.


Assuntos
Eosinófilos/imunologia , Eosinófilos/metabolismo , Regulação da Expressão Gênica , Transcriptoma , Animais , Biomarcadores , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Biologia Computacional/métodos , Citocinas/genética , Citocinas/metabolismo , Escherichia coli/imunologia , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Fenômenos do Sistema Imunitário , Imunidade , Mediadores da Inflamação , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos
13.
J Immunol Res ; 2021: 7507459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950737

RESUMO

The search for common mechanisms underlying the pathogenesis of chronic inflammatory conditions has crystalized the concept of continuous dual resetting of the immune repertoire (CDR) as a basic principle of the immune system function. Consequently, outlined was the first dynamic comprehensive picture of the immune system function. The goal of this study is to elaborate on regulation of immune responses and mechanisms of tolerance, particularly focusing on adaptive immunity. It is well established that the T/B cell repertoire is selected and maintained based on interactions with self. However, their activation also requires interaction with a self-specific major histocompatibility complex (MHC) "code," i.e., the context of MHC molecules. Therefore, not only repertoire selection and maintenance but also the T/B cell activation and function are self-centered. Thus, adaptive effectors may be primarily focused on the state of self and maintenance of integrity of the self, and only to a certain degree on elimination of the foreign. As examples of such function are used immunologically poorly understood MHC-disparate settings typical for transplantation and pregnancy. Transplantation represents an extreme setting of strong systemic compartment-level adaptive/MHC-restricted immune responses. Described are clinically identified conditions for operational tolerance of MHC-disparate tissues/living systems in allotransplantation, which are in line with the CDR-proposed self-centered regulatory role of T/B cells. In contrast, normal pregnancy is coexistence of semiallogeneic or entirely allogeneic mother and fetus, but without alloreactivity akin to transplantation settings. Presented data support the notion that maintenance of pregnancy is a process that relies predominantly on innate/MHC-independent immune mechanisms. By the inception of hemotrophic stage of pregnancy (second and third trimester), both mother and child are individual living systems, with established adaptive immune repertoires. Although mother-fetus interactions at that point become indirect systemic compartment-level communications, their interactions throughout gestation remain within the innate realm of molecular-level adaptations.


Assuntos
Imunidade Adaptativa , Tolerância Imunológica , Imunomodulação , Tolerância a Antígenos Próprios/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Feminino , Humanos , Fenômenos do Sistema Imunitário , Imunidade Inata , Masculino , Troca Materno-Fetal/imunologia , Gravidez , Linfócitos T/imunologia , Linfócitos T/metabolismo , Glândula Tireoide/imunologia , Glândula Tireoide/metabolismo , Imunologia de Transplantes
14.
J Dermatol Sci ; 104(2): 83-94, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34690024

RESUMO

BACKGROUND: Urban pollution is correlated with an increased prevalence of skin pigmentation disorders, however the physiological processes underlying this association are unclear. OBJECTIVES: To delineate the relationship between polycyclic aromatic hydrocarbons (PAHs), a key constituent of atmospheric pollution, and immunity/skin pigmentation pathways. METHODS: We exposed peripheral blood mononuclear cells (PBMC) to PAHs and performed cytokines/chemokine profiling. We then examined the effect of immune activation on pigmentation by co-culturing PBMC and Benzo(a)pyrene (BaP) with reconstructed human pigmented epidermis (RHPE). To study the mechanism, we treated keratinocytes with conditioned medium from BaP-exposed PBMC and studied DNA damage responses, aryl hydrocarbon receptor (AhR) activation and pro-pigmentation factor, proopiomelanocortin (POMC) secretion. RESULTS: PAHs induced up-regulation of inflammatory cytokines/chemokine in PBMC. Co-culturing of RHPE with PBMC+BaP resulted in increased melanin content and localization. BaP-conditioned medium significantly increased DNA damage, p53 stabilization, AhR activation and POMC secretion in keratinocytes. We found that IFNγ induced DNA damage, while TNFα and IL-8 potentiated POMC secretion in keratinocytes. Importantly, BaP-conditioned medium-induced DNA damage and POMC secretion is prevented by antioxidants vitamin E, vitamin C and sulforaphane, as well as the prototypical corticosteroid dexamethasone. Finally, vitamin C and sulforaphane enhanced the genome protective and depigmentation effects of dexamethasone, providing proof-of-concept for a combinatorial approach for the prevention and/or correction of PAH-induced pigment spots formation. CONCLUSION: Our study reveals the importance of systemic immunity in regulating PAH-induced skin pigmentation, and provide a new keratinocyte DNA damage response mechanistic target for the prevention or reversal of pollution-associated skin pigmentation.


Assuntos
Antioxidantes/farmacologia , Citocinas/metabolismo , Reparo do DNA , Hidrocarbonetos Policíclicos Aromáticos/imunologia , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/imunologia , Anti-Inflamatórios/farmacologia , Ácido Ascórbico/farmacologia , Benzo(a)pireno/farmacologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Dano ao DNA/efeitos dos fármacos , Dexametasona/farmacologia , Epiderme , Humanos , Fenômenos do Sistema Imunitário , Interferon gama/metabolismo , Interleucina-8/metabolismo , Isotiocianatos/farmacologia , Queratinócitos , Leucócitos Mononucleares , Melaninas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Pró-Opiomelanocortina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sulfóxidos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Vitamina E/farmacologia
15.
Front Immunol ; 12: 714090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497610

RESUMO

Although most causes of death and morbidity in premature infants are related to immune maladaptation, the premature immune system remains poorly understood. We provide a comprehensive single-cell depiction of the neonatal immune system at birth across the spectrum of viable gestational age (GA), ranging from 25 weeks to term. A mass cytometry immunoassay interrogated all major immune cell subsets, including signaling activity and responsiveness to stimulation. An elastic net model described the relationship between GA and immunome (R=0.85, p=8.75e-14), and unsupervised clustering highlighted previously unrecognized GA-dependent immune dynamics, including decreasing basal MAP-kinase/NFκB signaling in antigen presenting cells; increasing responsiveness of cytotoxic lymphocytes to interferon-α; and decreasing frequency of regulatory and invariant T cells, including NKT-like cells and CD8+CD161+ T cells. Knowledge gained from the analysis of the neonatal immune landscape across GA provides a mechanistic framework to understand the unique susceptibility of preterm infants to both hyper-inflammatory diseases and infections.


Assuntos
Biomarcadores , Desenvolvimento Embrionário/imunologia , Fenômenos do Sistema Imunitário , Análise de Célula Única , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Comunicação Celular , Suscetibilidade a Doenças/imunologia , Regulação da Expressão Gênica , Idade Gestacional , Humanos , Imunomodulação , Recém-Nascido , Nascimento Prematuro , Transdução de Sinais , Análise de Célula Única/métodos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
PLoS Pathog ; 17(9): e1009892, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555119

RESUMO

In this essay, we show that 3 distinct approaches to immunological exhaustion coexist and that they only partially overlap, generating potential misunderstandings. Exploring cases ranging from viral infections to cancer, we propose that it is crucial, for experimental and therapeutic purposes, to clarify these approaches and their interconnections so as to make the concept of exhaustion genuinely operational.


Assuntos
Fenômenos do Sistema Imunitário , Linfócitos T/imunologia , Animais , Humanos
17.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299312

RESUMO

It is well known that lifestyle changes can alter several physiological functions in the human body. For exercise and diet, these effects are used sensibly in basic therapies, as in cardiovascular diseases. However, the physiological changes induced by exercise and a modified diet also have the capacity to influence the efficacy and toxicity of several drugs, mainly by affecting different pharmacokinetic mechanisms. This pharmacological plasticity is not clinically relevant in all cases but might play an important role in altering the effects of very common drugs, particularly drugs with a narrow therapeutic window. Therefore, with this review, we provide insights into possible food-drug and exercise-drug interactions to sharpen awareness of the potential occurrence of such effects.


Assuntos
Dieta , Exercício Físico/fisiologia , Farmacocinética , Peso Corporal , Dieta Saudável , Interações Medicamentosas , Interações Alimento-Droga , Humanos , Fenômenos do Sistema Imunitário , Estilo de Vida , Microbiota , Modelos Biológicos , Fenômenos Fisiológicos da Nutrição
18.
Nutr Hosp ; 38(Spec No2): 17-22, 2021 Sep 30.
Artigo em Espanhol | MEDLINE | ID: mdl-34323083

RESUMO

INTRODUCTION: The immune system is a complex and integrated system whose main function is to protect the body from external aggression by microorganisms, allergens, or toxic agents. Different studies show that maintaining optimal amounts of different nutrients in the body is essential to ensure the synthesis of different factors related to the immune system. Most interesting nutrients and bioactive compounds include: vitamins A, B6, B12, C, D, E, folic acid (B9) and biotin (B7); minerals such as zinc, iron, selenium, magnesium and copper; proteins (lactoferrin) and bioactive peptides; omega-3 fatty acids; and other nutrients and bioactive compounds such as fiber, polyphenols, carotenoids, probiotics, etc. Following a varied and balanced diet, including the servings recommended by food guides for each food group, is essential to achieve nutrient requirements. Food groups to which special attention should be paid are: fruits and vegetables (because of their high content in micronutrients and antioxidant compounds), fatty fish (because it contains omega-3 fatty acids), and dairy products (because this group contains a large number of nutrients). In particular, milk-especially enriched milk-contains many of the nutrients mentioned above. Moreover, their daily consumption, within a balanced diet, can help significantly cover their nutrient reference values. Finally, it is important to consider kind of milks as a good dietary alternative to increase the intake of some important nutrients for the proper functioning of the immune system, most especially some of them such as vitamin D, since a large percentage of the population have nutritional deficiencies.


INTRODUCCIÓN: El sistema inmunitario es un sistema complejo e integrado cuya función principal es proteger al organismo de agresiones externas provocadas por microorganismos, alergenos o agentes tóxicos. Diferentes estudios ponen de manifiesto que el mantenimiento de las cantidades óptimas de diferentes nutrientes es esencial para garantizar la síntesis de diferentes factores y mediadores de este sistema. Entre los nutrientes y compuestos bioactivos con mayor interés destacan: las vitaminas A, B6, B12, C, D, E, ácido fólico (B9) y biotina (B7); minerales como el zinc, hierro, selenio, magnesio y cobre; proteínas (lactoferrina) y péptidos bioactivos; ácidos grasos omega-3, y otros nutrientes y compuestos bioactivos como fibra, polifenoles, carotenoides, probióticos, etc. El seguimiento de una dieta variada y equilibrada que incluya las raciones recomendadas por las guías alimentarias para cada grupo de alimentos es fundamental para alcanzar los requerimientos de estos nutrientes. Y entre los grupos de alimentos a los que se debe prestar especial atención están: las frutas y verduras (por su alto contenido en micronutrientes y compuestos antioxidantes), los pescados azules (por contener omega-3) y los lácteos (por ser alimentos con gran cantidad de nutrientes). En concreto, la leche, especialmente enriquecida, contiene muchos de los nutrientes anteriormente mencionados y su consumo diario, dentro de una dieta equilibrada, puede contribuir a cubrir cantidades importantes de sus valores de referencia. Por último, es importante considerar las leches enriquecidas como una buena alternativa dietética para aumentar la ingesta de muchos nutrientes importantes para el buen funcionamiento del sistema inmune y, en especial, de algunos de ellos, como la vitamina D, en los que un gran porcentaje de la población presenta deficiencias nutricionales.


Assuntos
Fenômenos do Sistema Imunitário/fisiologia , Leite/imunologia , Vitaminas/imunologia , Animais , Humanos
19.
Front Endocrinol (Lausanne) ; 12: 582614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122327

RESUMO

We have used the four core genotypes (FCG) mouse model, which allows a distinction between effects of gonadal secretions and chromosomal complement, to determine when sex differences in the immune system first appear and what influences their development. Using splenic T cell number as a measure that could be applied to neonates with as yet immature immune responses, we found no differences among the four genotypes at postnatal day 1, but by day 7, clear sex differences were observed. These sex differences were unexpectedly independent of chromosomal complement and similar in degree to gonadectomized FCG adults: both neonatal and gonadectomized adult females (XX and XY) showed 2-fold the number of CD4+ and 7-fold the number of CD8+ T cells versus their male (XX and XY) counterparts. Appearance of this long-lived sex difference between days 1 and 7 suggested a role for the male-specific perinatal surge of testicular testosterone. Interference with the testosterone surge significantly de-masculinized the male CD4+, but not CD8+ splenic profile. Treatment of neonates demonstrated elevated testosterone limited mature cell egress from the thymus, whereas estradiol reduced splenic T cell seeding in females. Neonatal male splenic epithelium/stroma expressed aromatase mRNA, suggesting capacity for splenic conversion of perinatal testosterone into estradiol in males, which, similar to administration of estradiol in females, would result in reduced splenic T cell seeding. These sex steroid effects affected both CD4+ and CD8+ cells and yet interference with the testosterone surge only significantly de-masculinized the splenic content of CD4+ cells. For CD8+ cells, male cells in the thymus were also found to express one third the density of sphingosine-1-phosphate thymic egress receptors per cell compared to female, a male characteristic most likely an indirect result of Sry expression. Interestingly, the data also support a previously unrecognized role for non-gonadal estradiol in the promotion of intra-thymic cell proliferation in neonates of both sexes. Microarray analysis suggested the thymic epithelium/stroma as the source of this hormone. We conclude that some immune sex differences appear long before puberty and more than one mechanism contributes to differential numbers and distribution of T cells.


Assuntos
Transtornos do Desenvolvimento Sexual/imunologia , Fenômenos do Sistema Imunitário/genética , Sistema Imunitário/fisiologia , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/patologia , Feminino , Estudos de Associação Genética , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Caracteres Sexuais , Proteína da Região Y Determinante do Sexo/genética , Maturidade Sexual/genética , Maturidade Sexual/imunologia
20.
Front Immunol ; 12: 698042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149739

RESUMO

Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.


Assuntos
Fenômenos do Sistema Imunitário/fisiologia , Oxidantes/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Humanos , Oxidantes/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...