Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Vaccine ; 42(5): 1013-1021, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242737

RESUMO

Immune memory was for a long time thought to be an exclusive feature of the adaptive immune system. Emerging evidence has shown that the innate immune system may exhibit memory which has been termed as trained immunity or innate immune memory. Trained immunity following vaccination may produce non-specific effects leading to reduction in morbidity and mortality from heterologous pathogens. This review looked at trained immunity as a mechanism for vaccine induced non-specific effects, mechanisms underlying trained immunity and known vaccine non-specific effects. A discussion is also made on the implications these vaccine non-specific effects may have on overall risk-benefit ratio evaluation by National Medicines Regulatory Authorities (NMRAs) during licensure of new vaccines. Epigenetic remodeling and "rewiring" of cellular metabolism in the innate immune cells especially monocytes, macrophages, and Natural Killer (NK) cells have been suggested to be the mechanisms underlying trained immunity. Trained immunity in other innate cells has largely remained elusive up to date. Non-specific effects have been extensively documented with Bacille Calmette-Guerin (BCG), measles vaccine and oral polio vaccine but it remains unclear if other vaccines may exhibit similar effects. All known vaccine non-specific effects have come from observations in epidemiological studies conducted post-vaccine licensure and roll out in target populations. It remains to be seen if early identification of non-specific effects especially those with protective benefits during the clinical development of new vaccines may contribute to the overall risk-benefit ratio evaluation during licensure by NMRAs.


Assuntos
Vacina BCG , Imunidade Inata , Imunidade Heteróloga , Memória Imunológica , Vacinação
2.
Curr Top Microbiol Immunol ; 441: 225-251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37695431

RESUMO

Biological sex and age have profound effects on immune responses throughout the lifespan and impact vaccine acceptance, responses, and outcomes. Mounting evidence from epidemiological, clinical, and animal model studies show that males and females respond differentially to vaccination throughout the lifespan. Within age groups, females tend to produce greater vaccine-induced immune responses than males, with sex differences apparent across all age groups, but are most pronounced among reproductive aged individuals. Females report more adverse effects following vaccination than males. Females, especially among children under 5 years of age, also experience more non-specific effects of vaccination. Despite these known sex- and age-specific differences in vaccine-induced immune responses and outcomes, sex and age are often ignored in vaccine research. Herein, we review the known sex differences in the immunogenicity, effectiveness, reactogenicity, and non-specific effects of vaccination over the lifespan. Ways in which these data can be leveraged to improve vaccine research are described.


Assuntos
Pesquisa Biomédica , Vacinas , Feminino , Masculino , Animais , Imunidade Heteróloga , Vacinas/efeitos adversos , Vacinação , Modelos Animais
3.
Microbes Infect ; 25(7): 105144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120009

RESUMO

Exploiting the heterologous effects of vaccines is a feasible strategy to combat different pathogens. These effects have been explained by enhanced immune responses of innate immune cells. Mycobacterium paragordonae is a rare nontuberculosis mycobacterium that has temperature-sensitive properties. Although natural killer (NK) cells exhibit heterologous immunity features, the cellular crosstalk between NK cells and dendritic cells (DCs) during live mycobacterial infection has remained elusive. We show that live but not dead M. paragordonae enhances heterologous immunity against unrelated pathogens in NK cells by IFN-ß of DCs in both mouse models and primary human immune cells. C-di-GMP from live M. paragordonae acted as a viability-associated pathogen-associated molecular pattern (Vita-PAMP), leading to STING-dependent type I IFN production in DCs via the IRE1α/XBP1s pathway. Also, increased cytosolic 2'3'-cGAMP by cGAS can induce type I IFN response in DCs by live M. paragordonae infection. We found that DC-derived IFN-ß plays a pivotal role in NK cell activation by live M. paragordonae infection, showing NK cell-mediated nonspecific protective effects against Candida albicans infection in a mouse model. Our findings indicate that the heterologous effect of live M. paragordonae vaccination is mediated by NK cells based on the crosstalk between DCs and NK cells.


Assuntos
Interferon Tipo I , Mycobacterium , Camundongos , Animais , Humanos , Interferon Tipo I/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Imunidade Heteróloga , Endorribonucleases/metabolismo , Mycobacterium/metabolismo , Células Matadoras Naturais , Células Dendríticas
4.
Eur J Immunol ; 53(5): e2250247, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36681765

RESUMO

Tissue-resident memory CD4 T (TRM ) cells induced by infection with Bordetella pertussis persist in respiratory tissues and confer long-term protective immunity against reinfection. However, it is not clear how they are maintained in respiratory tissues. Here, we demonstrate that B. pertussis-specific CD4 TRM cells produce IL-17A in response to in vitro stimulation with LPS or heat-killed Klebsiella pneumoniae (HKKP) in the presence of dendritic cells. Furthermore, IL-17A-secreting CD4 TRM cells expand in the lung and nasal tissue of B. pertussis convalescent mice following in vivo administration of LPS or HKKP. Bystander activation of CD4 TRM cells was suppressed by anti-IL-12p40 but not by anti-MHCII antibodies. Furthermore, purified respiratory tissue-resident, but not circulating, CD4 T cells from convalescent mice produced IL-17A following direct stimulation with IL-23 and IL-1ß or IL-18. Intranasal immunization of mice with a whole-cell pertussis vaccine induced respiratory CD4 TRM cells that were reactivated following stimulation with K. pneumoniae. Furthermore, the nasal pertussis vaccine conferred protective immunity against B. pertussis but also attenuated infection with K. pneumoniae. Our findings demonstrate that CD4 TRM cells induced by respiratory infection or vaccination can undergo bystander activation and confer heterologous immunity to an unrelated respiratory pathogen.


Assuntos
Bordetella pertussis , Coqueluche , Animais , Camundongos , Bordetella pertussis/fisiologia , Coqueluche/prevenção & controle , Linfócitos T CD4-Positivos , Interleucina-17 , Klebsiella pneumoniae , Imunidade Heteróloga , Lipopolissacarídeos , Memória Imunológica , Vacina contra Coqueluche
5.
Pediatr Transplant ; 27(4): e14424, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36324262

RESUMO

BACKGROUND: Delayed graft function is a manifestation of acute kidney injury unique to transplantation usually related to donor ischemia or recipient immunological causes. Ischemia also considered the most important trigger for innate immunity activation and production of non-HLA antibodies. While ischemia is inevitable after deceased donor transplantation, this complication is rare after living transplantation. Heterologous Immunity commonly used to describe the activation of T cells recognizing specific pathogen-related antigens as well unrelated antigens is common post-viral infection. In transplant-setting induction of heterologous immunity that cross-react with HLA-antigens and subsequent reactivation of memory T cells can lead to allograft rejection. METHODS: Here we describe a non-sensitized child with ESRD secondary to lupus nephritis and recent history of COVID-19 infection who experienced 17 days of anuria after first kidney living transplantation from her young HLA-haploidentical uncle donor. Graft histology showed acute cellular rejection, evidence of mild antibody-mediated rejection and vascular wall necrosis in some arterioles suggesting possibility of intraoperative graft ischemia. Both pre- and post-transplant sera showed very high level of several non-HLA antibodies. RESULTS: The patient was treated for cellular and antibody-mediated rejection while maintained on hemodialysis before her graft function started to improve on day seventeen post transplantation. CONCLUSION: The cellular rejection likely trigged by ischemia that activated T-cells-mediated immunity. The high level of non- HLA-antibodies further aggravated the damage and the rapid onset of rejection may be partly related to memory T-cell activation induced by heterologous immunity.


Assuntos
COVID-19 , Transplante de Rim , Feminino , Criança , Humanos , Função Retardada do Enxerto , Autoimunidade , Imunidade Heteróloga , Anticorpos , Rejeição de Enxerto , Antígenos HLA , Sobrevivência de Enxerto
6.
Front Immunol ; 13: 952229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045689

RESUMO

Severe acute respiratory syndrome virus-2 (SARS-CoV-2), the causative infectious agent of the COVID-19 pandemic, has led to multiple (4-6) waves of infections worldwide during the past two years. The development of vaccines against SARS-CoV-2 has led to successful mass immunizations worldwide, mitigating the worldwide mortality due the pandemic to a great extent. Yet the evolution of new variants highlights a need to develop a universal vaccine which can prevent infections from all virulent SARS-CoV-2. Most of the current first generation COVID-19 vaccines are based on the Spike protein from the original Wuhan-hu-1 virus strain. It is encouraging that they still protect from serious illnesses, hospitalizations and mortality against a number of mutated viral strains, to varying degrees. Understanding the mechanisms by which these vaccines provide heterologous protection against multiple highly mutated variants can reveal strategies to develop a universal vaccine. In addition, many unexposed individuals have been found to harbor T cells that are cross-reactive against SARS-CoV-2 antigens, with a possible protective role. In this review, we will discuss various aspects of natural or vaccine-induced heterologous (cross-reactive) adaptive immunity against SARS-CoV-2 and other coronaviruses, and their role in achieving the concept of a pan-coronavirus vaccine.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade Heteróloga , Pandemias/prevenção & controle , SARS-CoV-2
7.
Front Immunol ; 13: 877845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651619

RESUMO

Live vaccines use attenuated microbes to acquire immunity against pathogens in a safe way. As live attenuated vaccines (LAVs) still maintain infectivity, the vaccination stimulates diverse immune responses by mimicking natural infection. Induction of pathogen-specific antibodies or cell-mediated cytotoxicity provides means of specific protection, but LAV can also elicit unintended off-target effects, termed non-specific effects. Such mechanisms as short-lived genetic interference and non-specific innate immune response or long-lasting trained immunity and heterologous immunity allow LAVs to develop resistance to subsequent microbial infections. Based on their safety and potential for interference, LAVs may be considered as an alternative for immediate mitigation and control of unexpected pandemic outbreaks before pathogen-specific therapeutic and prophylactic measures are deployed.


Assuntos
Imunidade Heteróloga , Vacinação , Imunidade , Vacinas Atenuadas
8.
Front Immunol ; 13: 790334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222375

RESUMO

The capacity of pre-existing immunity to human common coronaviruses (HCoV) to cross-protect against de novo COVID-19is yet unknown. In this work, we studied the sera of 175 COVID-19 patients, 76 healthy donors and 3 intravenous immunoglobulins (IVIG) batches. We found that most COVID-19 patients developed anti-SARS-CoV-2 IgG antibodies before IgM. Moreover, the capacity of their IgGs to react to beta-HCoV, was present in the early sera of most patients before the appearance of anti-SARS-CoV-2 IgG. This implied that a recall-type antibody response was generated. In comparison, the patients that mounted an anti-SARS-COV2 IgM response, prior to IgG responses had lower titres of anti-beta-HCoV IgG antibodies. This indicated that pre-existing immunity to beta-HCoV was conducive to the generation of memory type responses to SARS-COV-2. Finally, we also found that pre-COVID-19-era sera and IVIG cross-reacted with SARS-CoV-2 antigens without neutralising SARS-CoV-2 infectivity in vitro. Put together, these results indicate that whilst pre-existing immunity to HCoV is responsible for recall-type IgG responses to SARS-CoV-2, it does not lead to cross-protection against COVID-19.


Assuntos
Betacoronavirus/fisiologia , COVID-19/imunologia , Resfriado Comum/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , SARS-CoV-2/fisiologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Antígenos Virais/imunologia , COVID-19/mortalidade , COVID-19/terapia , Reações Cruzadas , Feminino , Humanos , Imunidade Heteróloga , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida
9.
Front Immunol ; 13: 821595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154139

RESUMO

Heterologous immunity, when the memory T cell response elicited by one pathogen recognizes another pathogen, has been offered as a contributing factor for the high variability in coronavirus disease 2019 (COVID-19) severity outcomes. Here we demonstrate that sensitization with bacterial peptides can induce heterologous immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) derived peptides and that vaccination with the SARS-CoV-2 spike protein can induce heterologous immunity to bacterial peptides. Using in silico prediction methods, we identified 6 bacterial peptides with sequence homology to either the spike protein or non-structural protein 3 (NSP3) of SARS-CoV-2. Notwithstanding the effects of bystander activation, in vitro co-cultures showed that all individuals tested (n=18) developed heterologous immunity to SARS-CoV-2 peptides when sensitized with the identified bacterial peptides. T cell recall responses measured included cytokine production (IFN-γ, TNF, IL-2), activation (CD69) and proliferation (CellTrace). As an extension of the principle of heterologous immunity between bacterial pathogens and COVID-19, we tracked donor responses before and after SARS-CoV-2 vaccination and measured the cross-reactive T cell responses to bacterial peptides with similar sequence homology to the spike protein. We found that SARS-CoV-2 vaccination could induce heterologous immunity to bacterial peptides. These findings provide a mechanism for heterologous T cell immunity between common bacterial pathogens and SARS-CoV-2, which may explain the high variance in COVID-19 outcomes from asymptomatic to severe. We also demonstrate proof-of-concept that SARS-CoV-2 vaccination can induce heterologous immunity to pathogenic bacteria derived peptides.


Assuntos
Infecções Bacterianas/imunologia , COVID-19/imunologia , Imunidade Heteróloga/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Adulto , Vacinas contra COVID-19/imunologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Imunidade Celular/imunologia , Masculino , Glicoproteína da Espícula de Coronavírus/imunologia
10.
Vet Immunol Immunopathol ; 244: 110380, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34998109

RESUMO

The present study aimed to evaluate the cell-mediated and the humoral immune response to Romanian sheep pox vaccine in pregnant cows (n = 12) vaccinated at different times of gestation period and the duration of maternal immunity in calves born to these cows. Evaluation of cellular immunity revealed an increase in lymphocytic proliferation that peaked at 10th day post vaccination (dpv) then gradually decreased. Capripoxvirus-specific antibodies were detected by SNT and ELISA in sera collected from vaccinated dams and also in calves born to these cows. In cows, the antibody titers persisted above the protective level till the seventh month post-vaccination. Passively transferred antibody titers in newly born calves started from the first week after parturition and persisted in a protective level until 2, 3 or 4 months of ages in calves born to cows vaccinated at ≤4th, 4.5:6th, or >6:8th months of pregnancy respectively. Results proved that the average neutralizing antibody titers did not differ between pregnant cows vaccinated at different times of gestation period however, the longevity of maternally derived antibodies depends on the pregnancy stage at which the dam receive vaccine.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vacinas Virais , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Feminino , Imunidade Heteróloga , Doença Nodular Cutânea/imunologia , Doença Nodular Cutânea/prevenção & controle , Gravidez , Vacinação/veterinária , Vacinas Virais/imunologia
11.
Viruses ; 14(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062300

RESUMO

The recent emergence and circulation of the A/ASIA/G-VII (A/G-VII) lineage of foot-and-mouth disease virus (FMDV) in the Middle East has resulted in the development of homologous vaccines to ensure susceptible animals are sufficiently protected against clinical disease. However, a second serotype A lineage called A/ASIA/Iran-05 (A/IRN/05) continues to circulate in the region and it is therefore imperative to ensure vaccine strains used will protect against both lineages. In addition, for FMDV vaccine banks that usually hold a limited number of strains, it is necessary to include strains with a broad antigenic coverage. To assess the cross protective ability of an A/G-VII emergency vaccine (formulated at 43 (95% CI 8-230) PD50/dose as determined during homologous challenge), we performed a heterologous potency test according to the European Pharmacopoeia design using a field isolate from the A/IRN/05 lineage as the challenge virus. The estimated heterologous potency in this study was 2.0 (95% CI 0.4-6.0) PD50/dose, which is below the minimum potency recommended by the World Organisation for Animal Health (OIE). Furthermore, the cross-reactive antibody titres against the heterologous challenge virus were poor (≤log10 0.9), even in those cattle that had received the full dose of vaccine. The geometric mean r1-value was 0.2 (95% CI 0.03-0.8), similar to the potency ratio of 0.04 (95% CI 0.004-0.3). Vaccination decreased viraemia and virus excretion compared to the unvaccinated controls. Our results indicate that this A/G-VII vaccine does not provide sufficient protection against viruses belonging to the A/IRN/05 lineage and therefore the A/G-VII vaccine strain cannot replace the A/IRN/05 vaccine strain but could be considered an additional strain for use in vaccines and antigen banks.


Assuntos
Doenças dos Bovinos/prevenção & controle , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Imunidade Heteróloga , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Proteção Cruzada , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/isolamento & purificação , RNA Viral/análise , Sorogrupo , Potência de Vacina , Viremia/prevenção & controle , Viremia/veterinária , Eliminação de Partículas Virais
12.
Pediatr Infect Dis J ; 41(2): e36-e45, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34966142

RESUMO

Although there are many hypotheses for the age-related difference in the severity of COVID-19, differences in innate, adaptive and heterologous immunity, together with differences in endothelial and clotting function, are the most likely mechanisms underlying the marked age gradient. Children have a faster and stronger innate immune response to SARS-CoV-2, especially in the nasal mucosa, which rapidly controls the virus. In contrast, adults can have an overactive, dysregulated and less effective innate response that leads to uncontrolled pro-inflammatory cytokine production and tissue injury. More recent exposure to other viruses and routine vaccines in children might be associated with protective cross-reactive antibodies and T cells against SARS-CoV-2. There is less evidence to support other mechanisms that have been proposed to explain the age-related difference in outcome following SARS-CoV-2 infection, including pre-existing immunity from exposure to common circulating coronaviruses, differences in the distribution and expression of the entry receptors ACE2 and TMPRSS2, and difference in viral load.


Assuntos
Imunidade Adaptativa , Fatores Etários , COVID-19/imunologia , Imunidade Heteróloga , Imunidade Inata , SARS-CoV-2/imunologia , Adulto , Enzima de Conversão de Angiotensina 2/metabolismo , Coagulação Sanguínea/imunologia , Criança , Proteção Cruzada , Reações Cruzadas , Endotélio/imunologia , Humanos , Gravidade do Paciente , Serina Endopeptidases/metabolismo , Carga Viral/imunologia
13.
Mucosal Immunol ; 15(1): 176-187, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34462572

RESUMO

Although murine γδ T cells are largely considered innate immune cells, they have recently been reported to form long-lived memory populations. Much remains unknown about the biology and specificity of memory γδ T cells. Here, we interrogated intestinal memory Vγ4 Vδ1 T cells generated after foodborne Listeria monocytogenes (Lm) infection to uncover an unanticipated complexity in the specificity of these cells. Deep TCR sequencing revealed that a subset of non-canonical Vδ1 clones are selected by Lm infection, consistent with antigen-specific clonal expansion. Ex vivo stimulations and in vivo heterologous challenge infections with diverse pathogenic bacteria revealed that Lm-elicited memory Vγ4 Vδ1 T cells are broadly reactive. The Vγ4 Vδ1 T cell recall response to Lm, Salmonella enterica serovar Typhimurium (STm) and Citrobacter rodentium was largely mediated by the γδTCR as internalizing the γδTCR prevented T cell expansion. Both broadly-reactive canonical and pathogen-selected non-canonical Vδ1 clones contributed to memory responses to Lm and STm. Interestingly, some non-canonical γδ T cell clones selected by Lm infection also responded after STm infection, suggesting some level of cross-reactivity. These findings underscore the promiscuous nature of memory γδ T cells and suggest that pathogen-elicited memory γδ T cells are potential targets for broad-spectrum anti-infective vaccines.


Assuntos
Infecções Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Citrobacter rodentium/fisiologia , Listeria monocytogenes/fisiologia , Células T de Memória/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Salmonella typhi/fisiologia , Animais , Antígenos de Bactérias/imunologia , Células Cultivadas , Reações Cruzadas , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade Heteróloga , Células T de Memória/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T gama-delta/genética , Especificidade do Receptor de Antígeno de Linfócitos T
14.
Front Immunol ; 12: 748103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867974

RESUMO

COVID-19-specific vaccines are efficient prophylactic weapons against SARS-CoV-2 virus. However, boosting innate responses may represent an innovative way to immediately fight future emerging viral infections or boost vaccines. MV130 is a mucosal immunotherapy, based on a mixture of whole heat-inactivated bacteria, that has shown clinical efficacy against recurrent viral respiratory infections. Herein, we show that the prophylactic intranasal administration of this immunotherapy confers heterologous protection against SARS-CoV-2 infection in susceptible K18-hACE2 mice. Furthermore, in C57BL/6 mice, prophylactic administration of MV130 improves the immunogenicity of two different COVID-19 vaccine formulations targeting the SARS-CoV-2 spike (S) protein, inoculated either intramuscularly or intranasally. Independently of the vaccine candidate and vaccination route used, intranasal prophylaxis with MV130 boosted S-specific responses, including CD8+-T cell activation and the production of S-specific mucosal IgA antibodies. Therefore, the bacterial mucosal immunotherapy MV130 protects against SARS-CoV-2 infection and improves COVID-19 vaccines immunogenicity.


Assuntos
Bactérias/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Administração através da Mucosa , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Imunidade Heteróloga , Imunidade Inata , Imunogenicidade da Vacina , Imunoglobulina A/imunologia , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/imunologia , Camundongos , Vacinação
15.
Viruses ; 13(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34960628

RESUMO

Exposure of the adaptive immune system to a pathogen can result in the activation and expansion of T cells capable of recognizing not only the specific antigen but also different unrelated antigens, a process which is commonly referred to as heterologous immunity. While such cross-reactivity is favourable in amplifying protective immune responses to pathogens, induction of T cell-mediated heterologous immune responses to allo-antigens in the setting of solid organ transplantation can potentially lead to allograft rejection. In this review, we provide an overview of murine and human studies investigating the incidence and functional properties of virus-specific memory T cells cross-reacting with allo-antigens and discuss their potential relevance in the context of solid organ transplantation.


Assuntos
Antígenos HLA/imunologia , Imunidade Celular/imunologia , Imunidade Heteróloga/imunologia , Isoantígenos/imunologia , Animais , Reações Cruzadas/imunologia , Humanos , Células T de Memória/imunologia , Células T de Memória/virologia , Camundongos , Transplante de Órgãos , Linfócitos T/imunologia
16.
J Microbiol Biotechnol ; 31(12): 1601-1614, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949742

RESUMO

To overcome the ongoing COVID-19 pandemic, vaccination campaigns are the highest priority of majority of countries. Limited supply and worldwide disproportionate availability issues for the approved vaccines, together with concerns about rare side-effects have recently initiated the switch to heterologous vaccination, commonly known as mixing of vaccines. The COVID-19 vaccines are highly effective in the general population. However, none of the vaccines is 100% efficacious or effective, with variants posing more challenges, resulting in breakthrough cases. This review summarizes the current knowledge of immune responses to variants of concern (VOC) and breakthrough infections. Furthermore, we discuss the scope of heterologous vaccination and future strategies to tackle the COVID-19 pandemic, including fractionation of vaccine doses and alternative route of vaccination.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Heteróloga , SARS-CoV-2/imunologia , Vacinação/métodos , Vacinação/tendências , Animais , COVID-19/imunologia , Vacinas contra COVID-19/classificação , Ensaios Clínicos como Assunto , Humanos , Camundongos
19.
Med ; 2(9): 999-1001, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34522907

RESUMO

Innate and adaptive heterologous immunity confers resistance to pathogens. However, its impact on resistance and the course of human infection have remained largely elusive, hampering the use of this phenomenon to enhance vaccine efficacy. In this issue of Med, Mysore et al. show that T cell responses elicited by SARS-CoV-2 infection or vaccination correlate with those induced by MMR and Tdap immunization, revealing the transcriptomic basis of these correlations and find that heterologous adaptive immunity contributes to a better prognosis of COVID-19 disease.1.


Assuntos
COVID-19 , Vacinas contra COVID-19/uso terapêutico , Humanos , Imunidade Heteróloga , SARS-CoV-2 , Linfócitos T/imunologia
20.
Virology ; 562: 197-208, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375782

RESUMO

Neuraminidase (NA) is the second most abundant glycoprotein on the surface of influenza A viruses (IAV). Neuraminidase type 1 (NA1) based virus-like particles (VLPs) have previously been shown to protect against challenge with H1N1 and H3N2 IAV. In this study, we produced neuraminidase type 2 (NA2) VLPs derived from the sequence of the seasonal IAV A/Perth/16/2009. Intramuscular vaccination of mice with NA2 VLPs induced high anti-NA serum IgG levels capable of inhibiting NA activity. NA2 VLP vaccination protected against mortality in a lethal A/Hong Kong/1/1968 (H3N2) virus challenge model, but not against lethal challenge with A/California/04/2009 (H1N1) virus. However, bivalent vaccination with NA1 and NA2 VLPs demonstrated no antigenic competition in anti-NA IgG responses and protected against lethal challenge with H1N1 and H3N2 viruses. Here we demonstrate that vaccination with NA VLPs is protective against influenza challenge and supports focusing on anti-NA responses in the development of future vaccination strategies.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos , Proteínas Virais/imunologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Imunidade Heteróloga , Imunoglobulina G/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Injeções Intramusculares , Camundongos , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...