Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.295
Filtrar
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365227

RESUMO

Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control.


Assuntos
Bacteriófagos , Vitis , Tumores de Planta/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa , Bacteriófagos/genética , Vitis/microbiologia
2.
PeerJ ; 12: e16898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332807

RESUMO

Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.


Assuntos
Agrobacterium tumefaciens , Quimiotaxia , Agrobacterium tumefaciens/genética , Quimiotaxia/genética , Tumores de Planta/microbiologia , Plantas , Globinas
3.
BMC Plant Biol ; 24(1): 104, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336608

RESUMO

BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.


Assuntos
Agrobacterium tumefaciens , Tumores de Planta , Agrobacterium tumefaciens/genética , Doenças das Plantas/microbiologia , Bactérias
4.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38349798

RESUMO

Peumus boldus, a tree native to Chile, is extensively used for medicinal purposes due to its richness in alkaloids and antioxidant polyphenols. A species of galling insect, Dasineura sp. induces structural and chemical changes on P. boldus stems while its galls are established and developed. Taking into account the antioxidant properties of P. boldus polyphenols, it would be expected that Dasineura sp. induces changes in the accumulation sites, chemical profile, and antioxidant activity of the P. boldus stem polyphenols, related to different reactive oxygen species (ROS) production levels during gall development. Dasineura sp. induces changes in the accumulation sites of total polyphenols, flavonols, and lignin, redirecting their accumulation toward the sites of greatest production of H2O2 and O2.-. Although changes in total polyphenol content would be expected, this did not vary significantly between non-galled and galled stems. However, the galling insect induced changes in the profile and concentration of soluble polyphenols, leading to the gall extracts' antioxidant capacity decreasing significantly during the maturation and senescence stages. Additionally, during the maturation stage, lignin deposition increases in the more peripheral gall tissues, which also contributes to ROS dissipation. The differences in the different gall developmental stages' antioxidant activity could be related to the identity and concentration of phenolic compounds in each gall extract, rather than to the total phenol content. Regardless of the mechanisms involved, the dissipation of the ROS generated by Dasineura sp. activity occurs, restoring the redox balance in galls and guaranteeing the success of the inducer.


Assuntos
Antioxidantes , Peumus , Polifenóis , Peumus/química , Lignina , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Fenóis , Tumores de Planta
5.
Braz J Biol ; 83: e279575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422277

RESUMO

The Botanical Garden of the Museu Nacional/Universidade Federal do Rio de Janeiro (Rio de Janeiro, RJ, Brazil) was investigated monthly from October, 2017 to December, 2019 in a total of 27 collections, each lasting four hours, following the methodology of random walking. Vegetative and reproductive organs of herbs, bushes and trees (up to 2 m high) were examined by two people. Voucher material was deposited in the Entomological Collection of the Museu Nacional (MNRJ)/Universidade Federal do Rio de Janeiro. We found 13 insect gall morphotypes in nine host plant species of four families. All host plants are native of Brazil, except Ficus microcarpa L.f. (Moraceae), which is naturalized. Myrtaceae and Moraceae were the plant families with the greatest richness of gall morphotypes. Eugenia L. (Myrtaceae) and Ficus L. (Moraceae) were the plant genera with the highest number of gall morphotypes. In several inventories in the Atlantic forest, Myrtaceae and Eugenia stand out for harboring a great variety of galls, while Moraceae and Ficus were never stood out for this reason. Most plant species mentioned in the present study were already known as hosts of gall-inducing insects in Brazil. However, for the first time, insect galls are reported on Ficus crocata (Miq.) Miq. (Moraceae). We found two new morphotypes on Eugenia florida DC. (Myrtaceae). Leaves, stems and buds were the galled organs. Cecidomyiidae were the most frequent inducers. Galls of Thysanoptera were also found. Inquilines were observed in leaf galls on Eugenia florida. They promoted differences in gall morphology and killed the gall-inducing larva.


Assuntos
Myrtaceae , Tumores de Planta , Humanos , Animais , Brasil , Interações Hospedeiro-Parasita , Insetos , Árvores , Plantas
6.
Protoplasma ; 261(3): 593-606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38195894

RESUMO

Gall formation impacts the development of plant species by altering the structure and mobilization of reserves, and the functional and physiological patterns of the host organ. The current study aimed to evaluate the impact generated by the Neolithus fasciatus galling insect (Hemiptera: Triozidae) in Sapium glandulosum leaves (Euphorbiaceae) at the cytological, histological, histochemical, and biochemical levels. Non-galled leaves and galls in the young, mature, and senescent stages were evaluated. The non-galled leaf has a uniseriate epidermis, stomata only on the abaxial side, a dorsiventral mesophyll, and parenchyma cells with thin primary walls containing chloroplasts with plastoglobules. The gall has a parenchymatous compartmentalized cortex. The young and mature galls already have a dense cytoplasm, especially in the inner cells of the cortex, with chloroplasts, mitochondria, Golgi complex, and large and evident nuclei. In senescent galls, there are signs of organelle degradation and cell digestion. Carbohydrates occur in greater amounts in the mature gall, mainly in the starch grain form, while proteins and lipids predominate in non-galled leaves. Secondary metabolites occur mainly in the young gall and may be related to its protection and to the signaling of its development. Sapium glandulosum galls have histological and cytological compartmentalization of the cortex with a large amount of carbohydrates, which supply energy to maintain the development of the structure.


Assuntos
Hemípteros , Sapium , Animais , Cloroplastos , Carboidratos , Tumores de Planta , Folhas de Planta/metabolismo
7.
Plant Dis ; 108(1): 50-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37368442

RESUMO

Pathogenic Agrobacterium tumefaciens and Rhodococcus fascians are phytobacteria that induce crown gall and leafy gall disease, respectively, resulting in undesirable growth abnormalities. When present in nurseries, plants infected by either bacterium are destroyed, resulting in substantial losses for growers, especially those producing plants valued for their ornamental attributes. There are many unanswered questions regarding pathogen transmission on tools used to take cuttings for propagation and whether products used for bacterial disease control are effective. We investigated the ability to transmit pathogenic A. tumefaciens and R. fascians on secateurs and the efficacy of registered control products against both bacteria in vitro and in vivo. Experimental plants used were Rosa × hybrida, Leucanthemum × superbum, and Chrysanthemum × grandiflorum for A. tumefaciens and Petunia × hybrida and Oenothera 'Siskiyou' with R. fascians. In separate experiments, we found secateurs could convey both bacteria in numbers sufficient to initiate disease in a host-dependent manner and that bacteria could be recovered from secateurs after a single cut through an infected stem. In in vivo assays, none of six products tested against A. tumefaciens prevented crown gall disease, although several products appeared promising in in vitro trials. Likewise, four compounds trialed against R. fascians failed to prevent disease. Sanitation and clean planting material remain the primary means of disease management.


Assuntos
Agrobacterium tumefaciens , Rhodococcus , Agrobacterium tumefaciens/genética , Tumores de Planta/microbiologia , Rhodococcus/genética , Plantas/microbiologia
8.
Microbiol Res ; 280: 127569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103466

RESUMO

Crown gall disease caused by Agrobacterium tumefaciens is considered to be the main bacterial threat of stone fruit plants in Mediterranean countries. In a previous study, Bacillus velezensis strain 32a was isolated from Tunisian rhizosphere soil and revealed high antagonistic potential against A. tumefaciens strains. In order to better characterize the antagonistic activity of this strain against this important plant pathogen, the production of secondary metabolites was analyzed using liquid chromatography coupled with mass spectrometry. The results revealed the production of different compounds identified as surfactins, fengycins, iturins and bacillibactin belonging to the lipopeptide group, three polyketides (macrolactins, oxydifficidin and bacillaenes), bacilysin and its chlorinated derivative; chlorotetaine. The involvement of lipopeptides in this antagonistic activity was ruled out by performing agar and broth dilution tests with pure molecules. Thus, the construction of B. velezensis 32a mutants defective in polyketides and bacilysin biosynthesis and their antagonistic activity was performed and compared to a set of derivative mutants of a comparable strain, B. velezensis GA1. The defective difficidin mutants (△dfnA and △dfnD) were unable to inhibit the growth of A. tumefaciens, indicating the high-level contribution of difficidin in the antagonism process. While the macrolactin deficient mutant (∆mlnA) slightly decreased the activity, suggesting a synergetic effect with difficidin. Remarkably, the mutant △dhbC only deficient in bacillibactin production showed significant reduction in its capacity to inhibit the growth of Agrobacterium.Taken collectively, our results showed the strong synergetic effect of difficidin and macrolactins and the significant implication of siderophore to manage crown gall disease.


Assuntos
Bacillus , Policetídeos , Tumores de Planta , Bacillus/metabolismo , Policetídeos/farmacologia , Policetídeos/metabolismo , Lactonas
9.
Protoplasma ; 261(3): 513-525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38114665

RESUMO

The galls can offer shelter, protection, and an adequate diet for the gall-inducing organisms. Herein, we evaluated the structure of Manihot esculenta leaves and galls induced by Iatrophobia brasiliensis in order to identify metabolic and cell wall composition changes. We expected to find a complex gall with high primary metabolism in a typical nutritive tissue. Non-galled leaves and galls were subjected to anatomical, histochemical, and immunocytochemical analyses to evaluate the structural features, primary and secondary metabolites, and glycoproteins, pectins, and hemicelluloses in the cell wall. The gall is cylindric, with a uniseriate epidermis, a larval chamber, and a parenchymatic cortex divided into outer and inner compartments. The outer compartment has large cells with intercellular spaces and stocks starch and is designated as storage tissue. Reducing sugars, proteins, phenolic compounds, and alkaloids were detected in the protoplast of inner tissue cells of galls, named nutritive tissue, which presents five layers of compact small cells. Cell walls with esterified homogalacturonans (HGs) occurred in some cells of the galls indicating the continuous biosynthesis of HGs. For both non-galled leaves and galls, galactans and xyloglucans were broadly labeled on the cell walls, indicating a cell growth capacity and cell wall stiffness, respectively. The cell wall of the nutritive tissue had wide labeling for glycoproteins, HGs, heteroxylans, and xyloglucans, which can be used as source for the diet of the galling insect. Manihot esculenta galls have compartments specialized in the protection and feeding of the galling insect, structured by nutritive tissue rich in resource compounds, in the cell walls and protoplast.


Assuntos
Dípteros , Euphorbiaceae , Manihot , Transtornos Fóbicos , Animais , Protoplastos , Glicoproteínas/metabolismo , Parede Celular , Tumores de Planta , Folhas de Planta/metabolismo
10.
An Acad Bras Cienc ; 95(4): e20191091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088695

RESUMO

An inventory of insect galls of Serra da Bodoquena (MS, Midwestern Brazil) was carried out in an area of semideciduous seasonal forest situated in the Califórnia Farm. Three field works were done in August/2011, December/2011 and April/2012, when the local vegetation was examined during 40 hours per expedition. Fifty-eight gall morphotypes were found on 40 host plants, 38 of them native. The host plants are distributed in 18 families. The native plants include eight endemic species in Brazil, which together totaled 14 gall morphotypes. Zanthoxylum L. sp. (Rutaceae), an endemic genus in Brazil, hosts one gall morphotype. The non endemic native plants totaled 26 gall morphotypes. Ten new host plants are recorded for the first time in Brazil. The medium number of gall morphotypes per plant species was 1.45. Salicaceae, Bignoniaceae, and Asteraceae presented the highest number of galled species and the greatest gall richness. Leaves were the most frequent galled plant organ and there was a predominance of globoid galls. Diptera (Cecidomyiidae) were the most frequent gallers, but Hemipteran and Thysanopteran galls were also found. The associated fauna was composed of inquilines (Diptera: Muscomorpha and Cecidomyiidae - Trotteria sp., and Thysanoptera), successors (Psocoptera), and parasitoids (Hymenoptera).


Assuntos
Dípteros , Tisanópteros , Humanos , Animais , Brasil , Interações Hospedeiro-Parasita , Tumores de Planta , Insetos , Florestas , Plantas
11.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085065

RESUMO

Young grapevines (Vitis vinifera) suffer and eventually can die from the crown gall disease caused by the plant pathogen Allorhizobium vitis (Rhizobiaceae). Virulent members of A. vitis harbor a tumor-inducing plasmid and induce formation of crown galls due to the oncogenes encoded on the transfer DNA. The expression of oncogenes in transformed host cells induces unregulated cell proliferation and metabolic and physiological changes. The crown gall produces opines uncommon to plants, which provide an important nutrient source for A. vitis harboring opine catabolism enzymes. Crown galls host a distinct bacterial community, and the mechanisms establishing a crown gall-specific bacterial community are currently unknown. Thus, we were interested in whether genes homologous to those of the tumor-inducing plasmid coexist in the genomes of the microbial species coexisting in crown galls. We isolated 8 bacterial strains from grapevine crown galls, sequenced their genomes, and tested their virulence and opine utilization ability in bioassays. In addition, the 8 genome sequences were compared with 34 published bacterial genomes, including closely related plant-associated bacteria not from crown galls. Homologous genes for virulence and opine anabolism were only present in the virulent Rhizobiaceae. In contrast, homologs of the opine catabolism genes were present in all strains including the nonvirulent members of the Rhizobiaceae and non-Rhizobiaceae. Gene neighborhood and sequence identity of the opine degradation cluster of virulent and nonvirulent strains together with the results of the opine utilization assay support the important role of opine utilization for cocolonization in crown galls, thereby shaping the crown gall community.


Assuntos
Neoplasias , Tumores de Planta , Tumores de Planta/microbiologia , Bactérias/genética , Plasmídeos , Plantas/genética , Genômica
12.
An Acad Bras Cienc ; 95(4): e20190869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37991097

RESUMO

This study aimed at survey insect galls of an Amazon rainforest area in Rondônia, Brazil. We found 152 gall morphotypes in 103 plant species. Fabaceae were the host with the greatest gall richness. Leaves were the most galled organ. Globose and glabrous galls were the most frequent. Cecidomyiidae were responsible for most of the galls. This is the first record of 110 galls morphotypes and 23 host plants species in this biome. Ten gallers are endemic in Brazil. Five genera of Cecidomyiidae were first recorded in Rondônia as well as Schismatodiplosis lantanae Rübsaamen, 1908.


Assuntos
Interações Hospedeiro-Parasita , Floresta Úmida , Animais , Brasil , Tumores de Planta , Insetos , Plantas , Folhas de Planta
13.
Sci Rep ; 13(1): 18149, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903850

RESUMO

Insect galls, which often have complex external and internal structures, are believed to have adaptive significance for the survival of insects inside galls. A unique internal structure was discovered in the gall of a new cynipid species, Belizinella volutum Ide & Koyama, sp. nov., where the larval chamber could roll freely in the internal air space of the gall. Observations of the live galls using micro-computed tomography (micro-CT) revealed its formation process. The larval chamber becomes isolated from the internal parenchyma soon after the gall reaches the maximum diameter and is able to roll as the internal air space is expanding from the surrounding parenchyma to the outer gall wall. The enemy hypothesis could partly explain the adaptive significance of the unique structure of the gall of B. volutum.


Assuntos
Vespas , Animais , Larva , Microtomografia por Raio-X , Tumores de Planta , Insetos
14.
Nat Commun ; 14(1): 6722, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872143

RESUMO

Ustilago maydis causes common smut in maize, which is characterized by tumor formation in aerial parts of maize. Tumors result from the de novo cell division of highly developed bundle sheath and subsequent cell enlargement. However, the molecular mechanisms underlying tumorigenesis are still largely unknown. Here, we characterize the U. maydis effector Sts2 (Small tumor on seedlings 2), which promotes the division of hyperplasia tumor cells. Upon infection, Sts2 is translocated into the maize cell nucleus, where it acts as a transcriptional activator, and the transactivation activity is crucial for its virulence function. Sts2 interacts with ZmNECAP1, a yet undescribed plant transcriptional activator, and it activates the expression of several leaf developmental regulators to potentiate tumor formation. On the contrary, fusion of a suppressive SRDX-motif to Sts2 causes dominant negative inhibition of tumor formation, underpinning the central role of Sts2 for tumorigenesis. Our results not only disclose the virulence mechanism of a tumorigenic effector, but also reveal the essential role of leaf developmental regulators in pathogen-induced tumor formation.


Assuntos
Doenças das Plantas , Ustilago , Tumores de Planta , Zea mays/metabolismo , Hiperplasia , Ustilago/metabolismo , Carcinogênese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
15.
J Virol ; 97(9): e0046323, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37668368

RESUMO

Plant viruses induce various disease symptoms that substantially impact agriculture, but the underlying mechanisms of viral disease in plants are poorly understood. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Here, we show that a gene fragment of gentian Kobu-sho-associated virus, which is designated as Kobu-sho-inducing factor (KOBU), induces gall formation accompanied by ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. Transgenic gentian expressing KOBU exhibited tumorous symptoms, confirming the gall-forming activity of KOBU. Surprisingly, KOBU expression can also induce differentiation of an additional leaf-like tissue on the abaxial side of veins in normal N. benthamiana and gentian leaves. Transcriptome analysis with Arabidopsis thaliana expressing KOBU revealed that KOBU activates signaling pathways that regulate xylem development. KOBU protein forms granules and plate-like structures and co-localizes with mRNA splicing factors within the nucleus. Our findings suggest that KOBU is a novel pleiotropic virulence factor that stimulates vascular and leaf development. IMPORTANCE While various mechanisms determine disease symptoms in plants depending on virus-host combinations, the details of how plant viruses induce symptoms remain largely unknown in most plant species. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Our findings demonstrate that a gene fragment of gentian Kobu-sho-associated virus (GKaV), which is designated as Kobu-sho-inducing factor, induces the gall formation accompanied by the ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. The molecular mechanism by which gentian Kobu-sho-associated virus induces the Kobu-sho symptoms will provide new insight into not only plant-virus interactions but also the regulatory mechanisms underlying vascular and leaf development.


Assuntos
Gentiana , Tumores de Planta , Vírus de Plantas , Fatores de Virulência , Xilema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gentiana/virologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , /virologia , Xilema/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Folhas de Planta , Tumores de Planta/virologia , Transdução de Sinais , Fatores de Processamento de RNA
16.
An Acad Bras Cienc ; 95(2): e20200684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585890

RESUMO

Myrtaceae have a wide geographical distribution in Brazil and host a great richness of Cecidomyiidae galls. However, the number of cecidomyiid species on them has not yet been established and the knowledge of their geographic distribution is deficient. We provide the first list of cecidomyiid species on Myrtaceae and analyze their distribution in Brazilian biomes. A literature review was performed and new data were obtained from herbarium specimens of the Jardim Botânico do Rio de Janeiro. In Brazil, 13 species of Myrtaceae of five genera shelter described species of gall midges. Eugenia hosts the greatest richness of gall-inducers. All plant species have human uses and are native to Brazil, being seven endemic. Myrtaceae shelter 25 cecidomyiid species of 13 genera in 25 gall morphotypes. Sixteen species occur on endemic hosts, highlighting the peculiarity of the Brazilian fauna. These Cecidomyiidae occur collectively in five biomes, but most species (92%) are known from the Atlantic Forest, where 72% appear exclusively. Sixty per cent are restricted to a single Brazilian state, indicating their still poorly known distribution.


Assuntos
Dípteros , Myrtaceae , Animais , Humanos , Insetos , Brasil , Tumores de Planta , Interações Hospedeiro-Parasita
17.
Bull Entomol Res ; 113(5): 645-657, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37578039

RESUMO

Galls function as provide shelter for gall inducers, guarding them against their natural enemies. Previous research has illuminated the interactions between galls, gall inducers, and their corresponding parasitoids within various caltrop plants. However, less is known about these relationships within Nitraria sibirica, particularly regarding the efficacy of parasitism. Therefore, this study aimed to identify the morphometric relationships among the swollen galls, gall inducers, and their parasitoids. Two species of gall inducers and three species of parasitoids were obtained from the swollen galls of N. sibirica. The correlations of the parasitization indexes, the lifespan of gall inhabitants, and temperature and the morphometric relationships between the galls and their inhabitants were analyzed. The dominant gall inducer identified was Contarinia sp. (Diptera: Cecidomyiidae). Furthermore, it was observed that three solitary parasitoids attacked Contarinia sp. in the swollen galls, with only Eupelmus gelechiphagus acting as an idiobiont ectoparasitoid. The dominant parasitoids were Platygaster sp. and Cheiloneurus elegans at sites 1 and 2, respectively, with Platygaster sp. displaying greater abundance than C. elegans in the swollen galls. The lifespan of the gall inhabitants shortened gradually as the temperature increased. Moreover, the optimal number of gall chambers ranged from two to four per swollen gall with maximized fitness, which can be considered the optimal population density for the gall inducer Contarinia sp. Morphometric analysis exhibited a strong linear correlation between gall size and chamber number or the number of gall inhabitants, as well as a weak correlation between gall size and body size of the primary inhabitants of swollen galls. Our results highlight the importance of the biological investigation of parasitoids and gall inducers living in closed galls with multiple chambers and may pave the way for potential application in biological control.


Assuntos
Dípteros , Himenópteros , Animais , Tumores de Planta , Caenorhabditis elegans , Biologia
18.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463407

RESUMO

Agrobacteria are important plant pathogens responsible for crown/cane gall and hairy root diseases. Crown/cane gall disease is associated with strains carrying tumor-inducing (Ti) plasmids, while hairy root disease is caused by strains harboring root-inducing (Ri) plasmids. In this study, we analyzed the sequences of Ti plasmids of the novel "tumorigenes" clade of the family Rhizobiaceae ("tumorigenes" Ti plasmids), which includes two species, Rhizobium tumorigenes and Rhizobium rhododendri. The sequences of reference Ti/Ri plasmids were also included, which was followed by a comparative analysis of their backbone and accessory regions. The "tumorigenes" Ti plasmids have novel opine signatures compared with other Ti/Ri plasmids characterized so far. The first group exemplified by pTi1078 is associated with production of agrocinopine, nopaline, and ridéopine in plant tumors, while the second group comprising pTi6.2 is responsible for synthesis of leucinopine. Bioinformatic and chemical analyses, including opine utilization assays, indicated that leucinopine associated with pTi6.2 most likely has D,L stereochemistry, unlike the L,L-leucinopine produced in tumors induced by reference strains Chry5 and Bo542. Most of the "tumorigenes" Ti plasmids have conjugative transfer system genes that are unusual for Ti plasmids, composed of avhD4/avhB and traA/mobC/parA regions. Next, our results suggested that "tumorigenes" Ti plasmids have a common origin, but they diverged through large-scale recombination events, through recombination with single or multiple distinct Ti/Ri plasmids. Lastly, we showed that Ti/Ri plasmids could be differentiated based on pairwise Mash or average amino-acid identity distance clustering, and we supply a script to facilitate application of the former approach by other researchers.


Assuntos
Neoplasias , Rhizobium , Humanos , Plasmídeos Indutores de Tumores em Plantas/genética , Titânio , Plasmídeos/genética , Rhizobium/genética , Tumores de Planta/microbiologia , DNA Bacteriano/genética
19.
Plant Biol (Stuttg) ; 25(6): 965-972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37432095

RESUMO

Some chewing larvae are capable of inducing galls in the host vascular cylinder, e.g. Dasineura sp. (Cecidomyiidae) on Peumus boldus stems. Due to the medicinal and economic importance of P. boldus, the anatomical and functional implications of establishment of Dasineura sp. on P. boldus stems were investigated. We asked if establishment of Dasineura sp. in P. boldus stems induces abnormalities at the cellular and organizational level of the vascular system that increase during gall development in favour of the hydric status of the gall. Anatomical alterations induced in the stems during gall development were determined. Cytohistometric analyses in mature galls were compared to non-galled stems, and water potential and leaf area of non-galled stems were compared with galled stems. Dasineura sp. establishes in the vascular cambium, leading to delignification and rupture of xylem cells, inhibiting formation of phloem and perivascular sclerenchyma. Gall diameter increases together with larval feeding activity, producing a large larval chamber and numerous layers of nutritive tissue, vascular parenchyma, and sclerenchyma. These anatomical alterations do not affect the leaf area of galled stems but favour increased water flow towards these stems. The anatomical alterations induced by Dasineura sp. in P. boldus stems guarantee water and nutrient supply to the gall and larva. After the inducer exits stems, some host branches no longer have vascular connections with the plant body.


Assuntos
Peumus , Animais , Tumores de Planta , Larva , Folhas de Planta , Interações Hospedeiro-Parasita
20.
Plant Dis ; 107(12): 3666-3673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37436214

RESUMO

Crown gall disease of grapevines caused by Allorhizobium vitis causes significant damage to vineyards in cold-climate viticulture areas such as Canada and the northern United States. Introduction of the disease into vineyards occurs mainly through planting of infected but asymptomatic nursery material. Because A. vitis is not a regulated pest for import into Canada, no information on the health status of nursery material destined for import into Canada has previously been collected. This study evaluated the health status of ready-to-plant nursery material from domestic and international nurseries in regard to crown gall by determining the abundance of A. vitis in different plant sections via Droplet Digital PCR technology. In addition, different rootstocks from one nursery were compared. Results showed that A. vitis was present in planting material from all nurseries tested. The bacteria were nonuniformly distributed in dormant nursery material, and there was no difference in abundance between the rootstocks tested. In addition, the first A. vitis strain OP-G1 isolated from galls in British Columbia is described. Results showed that a minimum of 5,000 bacterial OP-G1 cells were needed for symptom expression, suggesting that the initiation of symptom development is not based on presence of bacteria in nursery material alone; a minimum threshold is needed, and environmental conditions need to be met.


Assuntos
Tumores de Planta , Vitis , Tumores de Planta/microbiologia , Colúmbia Britânica , Jardins , Bactérias , Vitis/microbiologia , Nível de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...