Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.025
Filtrar
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557676

RESUMO

Understanding the intricate interactions of cancer cells with the tumor microenvironment (TME) is a pre-requisite for the optimization of immunotherapy. Mechanistic models such as quantitative systems pharmacology (QSP) provide insights into the TME dynamics and predict the efficacy of immunotherapy in virtual patient populations/digital twins but require vast amounts of multimodal data for parameterization. Large-scale datasets characterizing the TME are available due to recent advances in bioinformatics for multi-omics data. Here, we discuss the perspectives of leveraging omics-derived bioinformatics estimates to inform QSP models and circumvent the challenges of model calibration and validation in immuno-oncology.


Assuntos
Neoplasias , Farmacologia , Humanos , Multiômica , Farmacologia em Rede , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncologia , Biologia Computacional , Microambiente Tumoral
3.
Pharmacol Res ; 202: 107130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447748

RESUMO

Pharmacology has broadened its scope considerably in recent decades. Initially, it was of interest to chemists, doctors and pharmacists. In recent years, however, it has been incorporated into the teaching of biologists, molecular biologists, biotechnologists, chemical engineers and many health professionals, among others. Traditional teaching methods, such as lectures or laboratory work, have been superseded by the use of new pedagogical approaches to enable a better conceptualization and understanding of the discipline. In this article, we present several new methods that have been used in Spanish universities. Firstly, we describe a teaching network that has allowed the sharing of pedagogical innovations in Spanish universities. A European experience to improve prescribing safety is described in detail. The use of popular films and medical TV series in biomedical students shows how these audiovisual resources can be helpful in teaching pharmacology. The use of virtual worlds is detailed to introduce this new approach to teaching. The increasingly important area of the social aspects of pharmacology is also considered in two sections, one devoted to social pharmacology and the other to the use of learning based on social services to improve understanding of this important area. Finally, the use of Objective Structured Clinical Evaluation in pharmacology allows to know how this approach can help to better evaluate clinical pharmacology students. In conclusion, this article allows to know new pedagogical methods resources used in some Spanish universities that may help to improve the teaching of pharmacology.


Assuntos
Farmacologia Clínica , Farmacologia , Humanos , Aprendizagem , Farmacologia Clínica/educação , Pessoal de Saúde , Farmacologia/educação
5.
Pharmacol Res ; 202: 107104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364957

RESUMO

Here we present an account on the history of pharmacology in Spain. Pharmacology as an independent science in Europe began with the creation of university chairs. Of particular relevance was the appointment in 1872 of Osswald Shmiedeberg as chairman of an Institute of Pharmacology at the University of Strassbourg, Germany. Teófilo Hernando pioneered in Spain the new emerging pharmacology at the beginning of the XX Century. He made a posdoctoral stay in the laboratory of Schmiedeberg, working on digitalis. In 1912 he won the chair of "Materia Médica y Arte de Recetar" at "Universidad Central of Madrid" (today, "Universidad Complutense de Madrid", UCM). He soon decided to transform such subject to the emerging modern pharmacology, with the teaching of experimental pharmacology in the third course of medical studies and clinical therapeutics (today clinical pharmacology) in the sixth course. This was the status of pharmacology in 1920, supporting the view that Hernando was a pioneer of clinical pharmacology. However, the Spanish Civil War and the II Word War interropted this division of preclinical and clinical pharmacology; only in the 1980's was clinical pharmacolgy partially developed in Spain. From a scientific point of view, Hernando directly trained various young pharmacologists that extended the new science to various Spanish universities. Some of his direct disciples were Benigno Lorenzo Velázquez, Francisco García Valdecasas, Rafael Méndez, Tomás Alday, Gabriel Sánchez de la Cuesta, Dámaso Gutiérrez or Ramón P é rez-Cirera. One of the central research subject was the analysis of the effects of digitalis on the cat and frog heart. In the initiation of the 1970 s pharmacologists trained by those Hernando's students grew throughout various universities and the "Consejo Superior de Investigaciones Científicas" (CSIC). And hence, in 1972 the "Sociedad Española de Farmacología" (SEF) emerged. Later on, in the 1990's the "Sociedad Española de Farmacología Clínica (SEFC) also emerged. The relationship between the two societies is still weak. Out of the vast scope of the pharmacological sciences, Spanish pharmacologists have made relevant contributions in two areas namely, neuropsychopharmacology and cardiovacular pharmacology. Nonetheless, in other areas such as smooth muscle, gastroenterology, pharmacogenetics and hepatic toxicity, Spanish pharmacologists have also made relevant contributions. A succint description of such contributions is made. Finally, some hints on perspectives for the further development of preclinical and clinical pharmacology in Spain, are offered.


Assuntos
Farmacologia Clínica , Farmacologia , Humanos , Espanha , Europa (Continente) , Farmacogenética
6.
Biochem Pharmacol ; 222: 116091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412924

RESUMO

Despite the worldwide prevalence and huge burden of pain, pain is an undertreated phenomenon. Currently used analgesics have several limitations regarding their efficacy and safety. The discovery of analgesics possessing a novel mechanism of action has faced multiple challenges, including a limited understanding of biological processes underpinning pain and analgesia and poor animal-to-human translation. Computational pharmacology is currently employed to face these challenges. In this review, we discuss the theory, methods, and applications of computational pharmacology in pain research. Computational pharmacology encompasses a wide variety of theoretical concepts and practical methodological approaches, with the overall aim of gaining biological insight through data acquisition and analysis. Data are acquired from patients or animal models with pain or analgesic treatment, at different levels of biological organization (molecular, cellular, physiological, and behavioral). Distinct methodological algorithms can then be used to analyze and integrate data. This helps to facilitate the identification of biological molecules and processes associated with pain phenotype, build quantitative models of pain signaling, and extract translatable features between humans and animals. However, computational pharmacology has several limitations, and its predictions can provide false positive and negative findings. Therefore, computational predictions are required to be validated experimentally before drawing solid conclusions. In this review, we discuss several case study examples of combining and integrating computational tools with experimental pain research tools to meet drug discovery challenges.


Assuntos
Analgésicos , Farmacologia , Animais , Humanos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Descoberta de Drogas/métodos , Dor/tratamento farmacológico , Transdução de Sinais , Biologia Computacional/métodos
9.
J Pharm Sci ; 113(1): 11-21, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898164

RESUMO

Over the past several decades, mathematical modeling has been applied to increasingly wider scopes of questions in drug development. Accordingly, the range of modeling tools has also been evolving, as showcased by contributions of Jusko and colleagues: from basic pharmacokinetics/pharmacodynamics (PK/PD) modeling to today's platform-based approach of quantitative systems pharmacology (QSP) modeling. Aimed at understanding the mechanism of action of investigational drugs, QSP models characterize systemic effects by incorporating information about cellular signaling networks, which is often represented by omics data. In this perspective, we share a few examples illustrating approaches for the integration of omics into mechanistic QSP modeling. We briefly overview how the evolution of PK/PD modeling into QSP has been accompanied by an increase in available data and the complexity of mathematical methods that integrate it. We discuss current gaps and challenges of integrating omics data into QSP models and propose several potential areas where integrated QSP and omics modeling may benefit drug development.


Assuntos
Farmacologia em Rede , Farmacologia , Modelos Biológicos , Modelos Teóricos , Desenvolvimento de Medicamentos , Drogas em Investigação
10.
Br J Pharmacol ; 181(3): 375-392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37605852

RESUMO

BACKGROUND AND PURPOSE: Development of core concepts in disciplines such as biochemistry, microbiology and physiology have transformed teaching. They provide the foundation for the development of teaching resources for global educators, as well as valid and reliable approaches to assessment. An international research consensus recently identified 25 core concepts of pharmacology. The current study aimed to define and unpack these concepts. EXPERIMENTAL APPROACH: A two-phase, iterative approach, involving 60 international pharmacology education experts, was used. The first phase involved drafting definitions for core concepts and identifying key sub-concepts via a series of online meetings and asynchronous work. These were refined in the second phase, through a 2-day hybrid workshop followed by a further series of online meetings and asynchronous work. KEY RESULTS: The project produced consensus definitions for a final list of 24 core concepts and 103 sub-concepts of pharmacology. The iterative, discursive methodology resulted in modification of concepts from the original study, including change of 'drug-receptor interaction' to 'drug-target interaction' and the change of the core concept 'agonists and antagonists' to sub-concepts of drug-target interaction. CONCLUSIONS AND IMPLICATIONS: Definitions and sub-concepts of 24 core concepts provide an evidence-based foundation for pharmacology curricula development and evaluation. The next steps for this project include the development of a concept inventory to assess acquisition of concepts, as well as the development of case studies and educational resources to support teaching by the global pharmacology community, and student learning of the most critical and fundamental concepts of the discipline.


Assuntos
Currículo , Farmacologia , Humanos
11.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123150

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos/química , Ligantes , Receptores Acoplados a Proteínas G , Bases de Dados Factuais
12.
Br J Pharmacol ; 180 Suppl 2: S223-S240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123152

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Proteínas de Membrana Transportadoras , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
13.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123153

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Bases de Dados Factuais , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares
14.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123156

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Canais Iônicos/química , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
15.
Br J Pharmacol ; 180 Suppl 2: S241-S288, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123155

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Receptores Acoplados a Proteínas G , Canais Iônicos/química , Receptores Citoplasmáticos e Nucleares
17.
Trends Pharmacol Sci ; 44(12): 880-890, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852906

RESUMO

Bispecific T cell engagers (bsTCEs) have emerged as a promising class of cancer immunotherapy. Several bsTCEs have achieved marketing approval; dozens more are under clinical investigation. However, the clinical development of bsTCEs remains rife with challenges, including nuanced pharmacology, limited translatability of preclinical findings, frequent on-target toxicity, and convoluted dosing regimens. In this opinion article we present a distinct perspective on how quantitative systems pharmacology (QSP) can serve as a powerful tool for overcoming these obstacles. Recent advances in QSP modeling have empowered developers of bsTCEs to gain a deeper understanding of their context-dependent pharmacology, bridge gaps in experimental data, guide first-in-human (FIH) dose selection, design dosing regimens with expanded therapeutic windows, and improve long-term treatment outcomes. We use recent case studies to exemplify the potential of QSP techniques to support future bsTCE development.


Assuntos
Anticorpos Biespecíficos , Farmacologia , Humanos , Linfócitos T , Farmacologia em Rede , Imunoterapia/métodos , Farmacologia/métodos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico
19.
J Pharmacol Toxicol Methods ; 123: 107300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524151

RESUMO

This editorial prefaces the annual themed issue on safety pharmacology (SP) methods published since 2004 in the Journal of Pharmacological and Toxicological Methods (JPTM). We highlight here the content derived from the recent 2022 Safety Pharmacology Society (SPS) and Canadian Society of Pharmacology and Therapeutics (CSPT) joint meeting held in Montreal, Quebec, Canada. The meeting also generated 179 abstracts (reproduced in the current volume of JPTM). As in previous years the manuscripts reflect various areas of innovation in SP including a comparison of the sensitivity of cross-over and parallel study designs for QTc assessment, use of human-induced pluripotent stem cell (hi-PSC) neuronal cell preparations for use in neuropharmacological safety screening, and hiPSC derived cardiac myocytes in assessing inotropic adversity. With respect to the latter, we anticipate the emergence of a large data set of positive and negative controls that will test whether the imperative to miniaturize, humanize and create a high throughput process is offset by any loss of precision and accuracy.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Farmacologia , Humanos , Canadá , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Farmacologia/métodos , Congressos como Assunto
20.
J Pharm Sci ; 112(9): 2313-2320, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422281

RESUMO

Though hundreds of drugs have been approved by the US Food and Drug Administration (FDA) for treating various rare diseases, most rare diseases still lack FDA-approved therapeutics. To identify the opportunities for developing therapies for these diseases, the challenges of demonstrating the efficacy and safety of a drug for treating a rare disease are highlighted herein. Quantitative systems pharmacology (QSP) has increasingly been used to inform drug development; our analysis of QSP submissions received by FDA showed that there were 121 submissions as of 2022, for informing rare disease drug development across development phases and therapeutic areas. Examples of published models for inborn errors of metabolism, non-malignant hematological disorders, and hematological malignancies were briefly reviewed to shed light on use of QSP in drug discovery and development for rare diseases. Advances in biomedical research and computational technologies can potentially enable QSP simulation of the natural history of a rare disease in the context of its clinical presentation and genetic heterogeneity. With this function, QSP may be used to conduct in-silico trials to overcome some of the challenges in rare disease drug development. QSP may play an increasingly important role in facilitating development of safe and effective drugs for treating rare diseases with unmet medical needs.


Assuntos
Farmacologia em Rede , Farmacologia , Estados Unidos , Humanos , Doenças Raras/tratamento farmacológico , Modelos Biológicos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...