Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.849
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610331

RESUMO

Recent advancements in the Internet of Things (IoT) wearable devices such as wearable inertial sensors have increased the demand for precise human activity recognition (HAR) with minimal computational resources. The wavelet transform, which offers excellent time-frequency localization characteristics, is well suited for HAR recognition systems. Selecting a mother wavelet function in wavelet analysis is critical, as optimal selection improves the recognition performance. The activity time signals data have different periodic patterns that can discriminate activities from each other. Therefore, selecting a mother wavelet function that closely resembles the shape of the recognized activity's sensor (inertial) signals significantly impacts recognition performance. This study uses an optimal mother wavelet selection method that combines wavelet packet transform with the energy-to-Shannon-entropy ratio and two classification algorithms: decision tree (DT) and support vector machines (SVM). We examined six different mother wavelet families with different numbers of vanishing points. Our experiments were performed on eight publicly available ADL datasets: MHEALTH, WISDM Activity Prediction, HARTH, HARsense, DaLiAc, PAMAP2, REALDISP, and HAR70+. The analysis demonstrated in this paper can be used as a guideline for optimal mother wavelet selection for human activity recognition.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Humanos , Algoritmos , Entropia , Atividades Humanas
2.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610410

RESUMO

Frameworks for human activity recognition (HAR) can be applied in the clinical environment for monitoring patients' motor and functional abilities either remotely or within a rehabilitation program. Deep Learning (DL) models can be exploited to perform HAR by means of raw data, thus avoiding time-demanding feature engineering operations. Most works targeting HAR with DL-based architectures have tested the workflow performance on data related to a separate execution of the tasks. Hence, a paucity in the literature has been found with regard to frameworks aimed at recognizing continuously executed motor actions. In this article, the authors present the design, development, and testing of a DL-based workflow targeting continuous human activity recognition (CHAR). The model was trained on the data recorded from ten healthy subjects and tested on eight different subjects. Despite the limited sample size, the authors claim the capability of the proposed framework to accurately classify motor actions within a feasible time, thus making it potentially useful in a clinical scenario.


Assuntos
Aprendizado Profundo , Humanos , Atividades Humanas , Atividades Cotidianas , Engenharia , Voluntários Saudáveis
3.
ACS Appl Mater Interfaces ; 16(15): 19411-19420, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588486

RESUMO

Zinc oxide (ZnO) is a widely employed material for enhancing the performance of cellulose-based triboelectric nanogenerators (C-TENGs). Our study provides a novel chemical interpretation for the improved output efficiency of ZnO in C-TENGs. C-TENGs exhibit excellent flexibility and integration, achieving a maximum open-circuit voltage (Voc) of 210 V. The peak power density is 54.4 µW/cm2 with a load resistance of 107 Ω, enabling the direct powering of 191 light-emitting diodes with the generated electrical output. Moreover, when deployed as self-powered sensors, C-TENGs exhibit prolonged operational viability and responsiveness, adeptly discerning bending and motion induced by human interaction. The device's sensitivity, flexibility, and stability position it as a promising candidate for a diverse array of energy-harvesting applications and advanced healthcare endeavors. Specifically, envisaging sensitized wearable sensors for human activities underscores the multifaceted potential of C-TENGs in enhancing both energy-harvesting technologies and healthcare practices.


Assuntos
Óxido de Zinco , Humanos , Fenômenos Físicos , Movimento (Física) , Celulose , Atividades Humanas
4.
Sci Rep ; 14(1): 8646, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622188

RESUMO

Human activities have increased with urbanisation in the Erhai Lake Basin, considerably impacting its eco-environmental quality (EEQ). This study aims to reveal the evolution and driving forces of the EEQ using water benefit-based ecological index (WBEI) in response to human activities and policy variations in the Erhai Lake Basin from 1990 to 2020. Results show that (1) the EEQ exhibited a pattern of initial degradation, subsequent improvement, further degradation and a rebound from 1990 to 2020, and the areas with poor and fair EEQ levels mainly concentrated around the Erhai Lake Basin with a high level of urbanisation and relatively flat terrain; (2) the EEQ levels were not optimistic in 1990, 1995 and 2015, and areas with poor and fair EEQ levels accounted for 43.41%, 47.01% and 40.05% of the total area, respectively; and (3) an overall improvement in the EEQ was observed in 1995-2000, 2000-2005, 2005-2009 and 2015-2020, and the improvement was most significant in 1995-2000, covering an area of 823.95 km2 and accounting for 31.79% of the total area. Results also confirmed that the EEQ changes in the Erhai Lake Basin were primarily influenced by human activities and policy variations. Moreover, these results can provide a scientific basis for the formulation and planning of sustainable development policy in the Erhai Lake Basin.


Assuntos
Lagos , Desenvolvimento Sustentável , Humanos , Atividades Humanas , China , Monitoramento Ambiental/métodos
5.
Sci Rep ; 14(1): 8363, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600138

RESUMO

A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of this article. We examine the progression from handcrafted feature-based approaches to end-to-end learning, with a particular focus on the significance of large-scale datasets. By classifying research paradigms, such as temporal modelling and spatial features, our proposed taxonomy illuminates the merits and drawbacks of each. We specifically present HARNet, an architecture for Multi-Model Deep Learning that integrates recurrent and convolutional neural networks while utilizing attention mechanisms to improve accuracy and robustness. The VideoMAE v2 method ( https://github.com/OpenGVLab/VideoMAEv2 ) has been utilized as a case study to illustrate practical implementations and obstacles. For researchers and practitioners interested in gaining a comprehensive understanding of the most recent advancements in HAR as they relate to computer vision and deep learning, this survey is an invaluable resource.


Assuntos
Aprendizado Profundo , Humanos , Redes Neurais de Computação , Atividades Humanas
6.
PLoS One ; 19(4): e0298888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635837

RESUMO

In recent years, researchers have successfully recognised human activities using commercially available WiFi (Wireless Fidelity) devices. The channel state information (CSI) can be gathered at the access point with the help of a network interface controller (NIC card). These CSI streams are sensitive to human body motions and produce abrupt changes (fluctuations) in their magnitude and phase values when a moving object interacts with a transmitter and receiver pair. This sensing methodology is gaining popularity compared to traditional approaches involving wearable technology, as it is a contactless sensing strategy with no cumbersome sensing equipments fitted on the target with preserved privacy since no personal information of the subject is collected. In previous investigations, internal validation statistics have been promising. However, external validation results have been poor, due to model application to varying subjects with remarkably different environments. To address this problem, we propose an adversarial Artificial Intelligence AI model that learns and utilises domain-invariant features. We analyse model results in terms of suitability for inter-domain and intra-domain alignment techniques, to identify which is better at robustly matching the source to target domain, and hence improve recognition accuracy in cross-user conditions for HAR using wireless signals. We evaluate our model performance on different target training data percentages to assess model reliability on data scarcity. After extensive evaluation, our architecture shows improved predictive performance across target training data proportions when compared to a non-adversarial model for nine cross-user conditions with comparatively less simulation time. We conclude that inter-domain alignment is preferable for HAR applications using wireless signals, and confirm that the dataset used is suitable for investigations of this type. Our architecture can form the basis of future studies using other datasets and/or investigating combined cross-environmental and cross-user features.


Assuntos
Inteligência Artificial , Cardiologia , Humanos , Reprodutibilidade dos Testes , Simulação por Computador , Atividades Humanas
7.
Environ Geochem Health ; 46(5): 147, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578456

RESUMO

The Qinghai-Tibet Plateau, located at the Third Pole and known as the "Asian water tower," serves as a crucial ecological barrier for China. Grasping the soil quality on the Qinghai-Tibet Plateau holds paramount importance for the rational and scientific exploitation of soil resources within the region and is essential for vegetation restoration and ecological reconstruction. This study, conducted in Maqin County, Qinghai Province, collected 1647 soil samples (0-20 cm) within a study area of 6300 km2. Sixteen soil indicators were selected that were split into beneficial (N, P, S, and B), harmful (Cr, Hg, As, Pb, Ni, and Cd), and essential (Cu, Zn, Se, Ga, K, and Ca) elements. The Soil Quality Index (SQI) was computed to assess soil quality across diverse geological contexts, land cover classifications, and soil profiles. The results indicate that the overall SQI in the study area was comparatively high, with most regions having an SQI between 0.4 and 0.6, categorized as moderately to highly satisfactory. Among the different geological backgrounds, the highest SQI was found in the Quaternary alluvium (0.555) and the lowest in the Precambrian Jinshuikou Formation (0.481). Regarding different land-use types, the highest SQI was observed in glacier- and snow-covered areas (0.582) and the lowest in other types of grassland (0.461). The highest SQI was recorded in typical alpine meadow soil (0.521) and the lowest in leached brown soil (0.460). The evaluation results have significant reference value for the sustainable utilization and management of soil in Maqin County, Qinghai Province, China.


Assuntos
Mercúrio , Solo , Humanos , Tibet , China , Atividades Humanas
9.
Sensors (Basel) ; 24(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38544172

RESUMO

Physical exercise affects many facets of life, including mental health, social interaction, physical fitness, and illness prevention, among many others. Therefore, several AI-driven techniques have been developed in the literature to recognize human physical activities. However, these techniques fail to adequately learn the temporal and spatial features of the data patterns. Additionally, these techniques are unable to fully comprehend complex activity patterns over different periods, emphasizing the need for enhanced architectures to further increase accuracy by learning spatiotemporal dependencies in the data individually. Therefore, in this work, we develop an attention-enhanced dual-stream network (PAR-Net) for physical activity recognition with the ability to extract both spatial and temporal features simultaneously. The PAR-Net integrates convolutional neural networks (CNNs) and echo state networks (ESNs), followed by a self-attention mechanism for optimal feature selection. The dual-stream feature extraction mechanism enables the PAR-Net to learn spatiotemporal dependencies from actual data. Furthermore, the incorporation of a self-attention mechanism makes a substantial contribution by facilitating targeted attention on significant features, hence enhancing the identification of nuanced activity patterns. The PAR-Net was evaluated on two benchmark physical activity recognition datasets and achieved higher performance by surpassing the baselines comparatively. Additionally, a thorough ablation study was conducted to determine the best optimal model for human physical activity recognition.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Atividades Humanas , Reconhecimento Psicológico , Exercício Físico
10.
Sensors (Basel) ; 24(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38544204

RESUMO

The advancement of deep learning in human activity recognition (HAR) using 3D skeleton data is critical for applications in healthcare, security, sports, and human-computer interaction. This paper tackles a well-known gap in the field, which is the lack of testing in the applicability and reliability of XAI evaluation metrics in the skeleton-based HAR domain. We have tested established XAI metrics, namely faithfulness and stability on Class Activation Mapping (CAM) and Gradient-weighted Class Activation Mapping (Grad-CAM) to address this problem. This study introduces a perturbation method that produces variations within the error tolerance of motion sensor tracking, ensuring the resultant skeletal data points remain within the plausible output range of human movement as captured by the tracking device. We used the NTU RGB+D 60 dataset and the EfficientGCN architecture for HAR model training and testing. The evaluation involved systematically perturbing the 3D skeleton data by applying controlled displacements at different magnitudes to assess the impact on XAI metric performance across multiple action classes. Our findings reveal that faithfulness may not consistently serve as a reliable metric across all classes for the EfficientGCN model, indicating its limited applicability in certain contexts. In contrast, stability proves to be a more robust metric, showing dependability across different perturbation magnitudes. Additionally, CAM and Grad-CAM yielded almost identical explanations, leading to closely similar metric outcomes. This suggests a need for the exploration of additional metrics and the application of more diverse XAI methods to broaden the understanding and effectiveness of XAI in skeleton-based HAR.


Assuntos
Sistema Musculoesquelético , Humanos , Reprodutibilidade dos Testes , Movimento , Esqueleto , Atividades Humanas
11.
Sci Rep ; 14(1): 7414, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548859

RESUMO

Wearable sensors are widely used in medical applications and human-computer interaction because of their portability and powerful privacy. Human activity identification based on sensor data plays a vital role in these fields. Therefore, it is important to improve the recognition performance of different types of actions. Aiming at the problems of insufficient time-varying feature extraction and gradient explosion caused by too many network layers, a time convolution network recognition model with attention mechanism (TCN-Attention-HAR) was proposed. The model effectively recognizes and emphasizes the key feature information. The ability of extracting temporal features from TCN (temporal convolution network) is improved by using the appropriate size of the receiver domain. In addition, attention mechanisms are used to assign higher weights to important information, enabling models to learn and identify human activities more effectively. The performance of the Open Data Set (WISDM, PAMAP2 and USC-HAD) is improved by 1.13%, 1.83% and 0.51%, respectively, compared with other advanced models, these results clearly show that the network model presented in this paper has excellent recognition performance. In the knowledge distillation experiment, the parameters of student model are only about 0.1% of those of teacher model, and the accuracy of the model has been greatly improved, and in the WISDM data set, compared with the teacher's model, the accuracy is 0.14% higher.


Assuntos
Destilação , Atividades Humanas , Humanos , Conhecimento , Aprendizagem , Privacidade
12.
Math Biosci Eng ; 21(3): 3784-3797, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38549307

RESUMO

This study aimed to assess the impact of land consolidation projects and climate change on changes in vegetation in the Loess Plateau during 2012-2021. The study also explored the impacts of human activities and climate change on the ecological quality of the Loess Plateau during this period. The spatial and temporal normalized difference combined meteorological monitoring data, project data, and normalized difference vegetation index (NDVI) data that was used to create the vegetation index dataset spanning from 2012-2021. The study discussed and assessed the effectiveness of the project, revealing the following results: 1) A significant increase was observed in the vegetation index of the Loess Plateau region from 2012 to 2021, with an upward trend of 0.0024 per year (P < 0.05). 2) Contributions to changes in vegetation attributed to climatic factors and the anthropogenic factors of the ditch construction project were 82.74 and 17.62%, respectively, with climatic factors dominating and the degree of response of the ditch construction project increasing annually. 3) In the Loess Plateau, climatic variables dominated changes in vegetation. However, land consolidation projects in vegetation factors played a key role in changes in vegetation, and the degree of influence was gradually increasing.


Assuntos
Mudança Climática , Ecossistema , Humanos , Atividades Humanas , China
13.
Sci Rep ; 14(1): 6967, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521805

RESUMO

In this study, the ecological impact of human activities and the space occupied by construction and arable land on the Tibetan Plateau were examined, focusing on changes in the net primary productivity (NPP) as a key indicator of ecological health. With the utilization of land use data and multiyear average NPP data from 2002 to 2020, we analyzed the effects of the conversion of zonal vegetation into construction and arable land on carbon sequestration and oxygen release in Chengguan District, Lhasa city. Our findings indicated a marked spatial difference in the NPP among different land types. Regarding the original zonal vegetation, the NPP ranged from 0.2 to 0.3 kg/m2. Construction land showed a decrease in the NPP, with values ranging from 0.16 to 0.26 kg/m2, suggesting a decrease in ecological productivity. Conversely, arable land exhibited an increase in the NPP, with average values exceeding 0.3 kg/m2. This increase suggested enhanced productivity, particularly in regions where the original zonal vegetation provided lower NPP values. However, this enhanced productivity may not necessarily indicate a positive ecological change. In fact, such increases could potentially disrupt the natural balance of ecosystems, leading to unforeseen ecological consequences. The original zonal vegetation, with NPP values ranging from 0.12 to 0.43 kg/m2, exhibited higher ecological stability and adaptability than the other land types. This wider NPP range emphasizes the inherent resilience of native vegetation, which could sustain diverse ecological functions under varying environmental conditions. These findings demonstrate the urgent need for sustainable land use management on the Tibetan Plateau. This study highlights the importance of considering the ecological impact of land use changes in regional development strategies, ensuring the preservation and enhancement in the unique and fragile plateau ecosystem.


Assuntos
Ecossistema , Modelos Teóricos , Humanos , Tibet , Cidades , Atividades Humanas , China , Mudança Climática
14.
Sci Rep ; 14(1): 5261, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438419

RESUMO

Drivers and dynamics of initial human migrations across individual islands and archipelagos are poorly understood, hampering assessments of subsequent modification of island biodiversity. We developed and tested a new statistical-simulation approach for reconstructing the pattern and pace of human migration across islands at high spatiotemporal resolutions. Using Polynesian colonisation of New Zealand as an example, we show that process-explicit models, informed by archaeological records and spatiotemporal reconstructions of past climates and environments, can provide new and important insights into the patterns and mechanisms of arrival and establishment of people on islands. We find that colonisation of New Zealand required there to have been a single founding population of approximately 500 people, arriving between 1233 and 1257 AD, settling multiple areas, and expanding rapidly over both North and South Islands. These verified spatiotemporal reconstructions of colonisation dynamics provide new opportunities to explore more extensively the potential ecological impacts of human colonisation on New Zealand's native biota and ecosystems.


Assuntos
Biodiversidade , Ecossistema , Humanos , Biota , Arqueologia , Atividades Humanas
15.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475146

RESUMO

Various sensing modalities, including external and internal sensors, have been employed in research on human activity recognition (HAR). Among these, internal sensors, particularly wearable technologies, hold significant promise due to their lightweight nature and simplicity. Recently, HAR techniques leveraging wearable biometric signals, such as electrocardiography (ECG) and photoplethysmography (PPG), have been proposed using publicly available datasets. However, to facilitate broader practical applications, a more extensive analysis based on larger databases with cross-subject validation is required. In pursuit of this objective, we initially gathered PPG signals from 40 participants engaged in five common daily activities. Subsequently, we evaluated the feasibility of classifying these activities using deep learning architecture. The model's performance was assessed in terms of accuracy, precision, recall, and F-1 measure via cross-subject cross-validation (CV). The proposed method successfully distinguished the five activities considered, with an average test accuracy of 95.14%. Furthermore, we recommend an optimal window size based on a comprehensive evaluation of performance relative to the input signal length. These findings confirm the potential for practical HAR applications based on PPG and indicate its prospective extension to various domains, such as healthcare or fitness applications, by concurrently analyzing behavioral and health data through a single biometric signal.


Assuntos
Redes Neurais de Computação , Fotopletismografia , Humanos , Fotopletismografia/métodos , Estudos Prospectivos , Eletrocardiografia/métodos , Atividades Humanas
17.
Comput Biol Med ; 172: 108232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484697

RESUMO

Human activity recognition (HAR) based on Wi-Fi signals has attracted significant attention due to its convenience and the availability of infrastructures and sensors. Channel State Information (CSI) measures how Wi-Fi signals propagate through the environment. However, many scenarios and applications have insufficient training data due to constraints such as cost, time, or resources. This poses a challenge for achieving high accuracy levels with machine learning techniques. In this study, multiple deep learning models for HAR were employed to achieve acceptable accuracy levels with much less training data than other methods. A pretrained encoder trained from a Multi-Input Multi-Output Autoencoder (MIMO AE) on Mel Frequency Cepstral Coefficients (MFCC) from a small subset of data samples was used for feature extraction. Then, fine-tuning was applied by adding the encoder as a fixed layer in the classifier, which was trained on a small fraction of the remaining data. The evaluation results (K-fold cross-validation and K = 5) showed that using only 30% of the training and validation data (equivalent to 24% of the total data), the accuracy was improved by 17.7% compared to the case where the encoder was not used (with an accuracy of 79.3% for the designed classifier, and an accuracy of 90.3% for the classifier with the fixed encoder). While by considering more calculational cost, achieving higher accuracy using the pretrained encoder as a trainable layer is possible (up to 2.4% improvement), this small gap demonstrated the effectiveness and efficiency of the proposed method for HAR using Wi-Fi signals.


Assuntos
Atividades Humanas , Aprendizado de Máquina , Humanos
19.
Sci Total Environ ; 924: 171588, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461982

RESUMO

In an era marked by increasing anthropogenic pressure, understanding the relations between human activities and wildlife is crucial for understanding ecological patterns, effective conservation, and management strategies. Here, we explore the potential and usefulness of socio-economic variables in species distribution modelling (SDM), focusing on their impact on the occurrence of wild mammals in Poland. Beyond the environmental factors commonly considered in SDM, like land-use, the study tests the importance of socio-economic characteristics of local human societies, such as age, income, working sector, gender, education, and village characteristics for explaining distribution of diverse mammalian groups, including carnivores, ungulates, rodents, soricids, and bats. The study revealed that incorporating socio-economic variables enhances the predictive power for >60 % of species and overall for most groups, with the exception being carnivores. For all the species combined, among the 10 predictors with highest predictive power, 6 belong to socio-economic group, while for specific species groups, socio-economic variables had similar predictive power as environmental variables. Furthermore, spatial predictions of species occurrence underwent changes when socio-economic variables were included in the model, resulting in a substantial mismatch in spatial predictions of species occurrence between environment-only models and models containing socio-economic variables. We conclude that socio-economic data has potential as useful predictors which increase prediction accuracy of wildlife occurrence and recommend its wider usage. Further, to our knowledge this is a first study on such a big scale for terrestrial mammals which evaluates performance based on presence or absence of socio-economic predictors in the model. We recognise the need for a more comprehensive approach in SDMs and that bridging the gap between human socio-economic dynamics and ecological processes may contribute to the understanding of the factors influencing biodiversity.


Assuntos
Animais Selvagens , Biodiversidade , Animais , Humanos , Atividades Humanas , Fatores Socioeconômicos , Mamíferos , Ecossistema
20.
Environ Sci Pollut Res Int ; 31(13): 19831-19843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367107

RESUMO

Clarifying the spatial distribution of the impact of different human disturbance activities on the net primary productivity (NPP) in regions with single climatic conditions is of considerable importance to ecological protection. Time-series NPP from 2000 to 2020 was simulated in Northwest Hubei, China, and the effects of the climate and human activities on the NPP changes were separated. Research results showed that from 2000 to 2020, the NPP change with an area of 10,166.63 km2 in Northwest Hubei is influenced by climate and human activities. Among them, human activities account for as high as 84.53%. From 2000 to 2020, the NPP in Northwest Hubei showed a slight upward trend at a rate of 1.61 g C m-2 year-1. The significantly increased NPP accounted for 21.4% of the total, which was mainly distributed in north of Northwest Hubei. And the farming of cultivated land led to the increase of NPP in west as well as the reduced human distribution in cultivated land, which was scattered in forests. Only 6.67% of the total area demonstrated a significantly decreased NPP, which was distributed mainly in the central affected by the expansion of rural-urban land and change of broad-leaved forests to shrubs and in southeast regions of Northwest Hubei caused by the increase in potential evapotranspiration. This study refined the driving factors of spatial heterogeneity of NPP changes in Northwest Hubei, which is conducive to rational planning of terrestrial ecosystem protection measures.


Assuntos
Ecossistema , Modelos Teóricos , Humanos , Mudança Climática , China , Atividades Humanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...