Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.451
Filtrar
1.
BMC Biol ; 22(1): 64, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481288

RESUMO

BACKGROUND: Studies on maize evolution and domestication are largely limited to the nuclear genomes, and the contribution of cytoplasmic genomes to selection and domestication of modern maize remains elusive. Maize cytoplasmic genomes have been classified into fertile (NA and NB) and cytoplasmic-nuclear male-sterility (CMS-S, CMS-C, and CMS-T) groups, but their contributions to modern maize breeding have not been systematically investigated. RESULTS: Here we report co-selection and convergent evolution between nuclear and cytoplasmic genomes by analyzing whole genome sequencing data of 630 maize accessions modern maize and its relatives, including 24 fully assembled mitochondrial and chloroplast genomes. We show that the NB cytotype is associated with the expansion of modern maize to North America, gradually replaces the fertile NA cytotype probably through unequal division, and predominates in over 90% of modern elite inbred lines. The mode of cytoplasmic evolution is increased nucleotypic diversity among the genes involved in photosynthesis and energy metabolism, which are driven by selection and domestication. Furthermore, genome-wide association study reveals correlation of cytoplasmic nucleotypic variation with key agronomic and reproductive traits accompanied with the diversification of the nuclear genomes. CONCLUSIONS: Our results indicate convergent evolution between cytoplasmic and nuclear genomes during maize domestication and breeding. These new insights into the important roles of mitochondrial and chloroplast genomes in maize domestication and improvement should help select elite inbred lines to improve yield stability and crop resilience of maize hybrids.


Assuntos
Domesticação , Zea mays , Zea mays/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Citoplasma
2.
Proc Natl Acad Sci U S A ; 121(11): e2313354121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457520

RESUMO

Cellular metabolism evolves through changes in the structure and quantitative states of metabolic networks. Here, we explore the evolutionary dynamics of metabolic states by focusing on the collection of metabolite levels, the metabolome, which captures key aspects of cellular physiology. Using a phylogenetic framework, we profiled metabolites in 27 populations of nine budding yeast species, providing a graduated view of metabolic variation across multiple evolutionary time scales. Metabolite levels evolve more rapidly and independently of changes in the metabolic network's structure, providing complementary information to enzyme repertoire. Although metabolome variation accumulates mainly gradually over time, it is profoundly affected by domestication. We found pervasive signatures of convergent evolution in the metabolomes of independently domesticated clades of Saccharomyces cerevisiae. Such recurring metabolite differences between wild and domesticated populations affect a substantial part of the metabolome, including rewiring of the TCA cycle and several amino acids that influence aroma production, likely reflecting adaptation to human niches. Overall, our work reveals previously unrecognized diversity in central metabolism and the pervasive influence of human-driven selection on metabolite levels in yeasts.


Assuntos
Domesticação , Saccharomycetales , Humanos , Filogenia , Saccharomycetales/genética , Metaboloma , Saccharomyces cerevisiae/genética
3.
Sci Rep ; 14(1): 2972, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453955

RESUMO

Humans have a long history of transporting and trading plants, contributing to the evolution of domesticated plants. Theobroma cacao originated in the Neotropics from South America. However, little is known about its domestication and use in these regions. In this study, ceramic residues from a large sample of pre-Columbian cultures from South and Central America were analyzed using archaeogenomic and biochemical approaches. Here we show, for the first time, the widespread use of cacao in South America out of its native Amazonian area of origin, extending back 5000 years, likely supported by cultural interactions between the Amazon and the Pacific coast. We observed that strong genetic mixing between geographically distant cacao populations occurred as early as the middle Holocene, in South America, driven by humans, favoring the adaptation of T. cacao to new environments. This complex history of cacao domestication is the basis of today's cacao tree populations and its knowledge can help us better manage their genetic resources.


Assuntos
Cacau , Domesticação , Humanos , Cacau/genética , América do Sul , América Central
4.
Genome Biol ; 25(1): 61, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414075

RESUMO

BACKGROUND: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.


Assuntos
Fagopyrum , Domesticação , Fagopyrum/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica , Filogenia
5.
Theor Appl Genet ; 137(3): 62, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418640

RESUMO

KEY MESSAGE: A major quantitative trait locus (QTL) for the hundred-seed weight (HSW) was identified and confirmed in the two distinct soybean populations, and the target gene GmCYP82C4 underlying this locus was identified that significantly associated with soybean seed weight, and it was selected during the soybean domestication and improvement process. Soybean is a major oil crop for human beings and the seed weight is a crucial goal of soybean breeding. However, only a limited number of target genes underlying the quantitative trait loci (QTLs) controlling seed weight in soybean are known so far. In the present study, six loci associated with hundred-seed weight (HSW) were detected in the first population of 573 soybean breeding lines by genome-wide association study (GWAS), and 64 gene models were predicted in these candidate QTL regions. The QTL qHSW_1 exhibits continuous association signals on chromosome four and was also validated by region association study (RAS) in the second soybean population (409 accessions) with wild, landrace, and cultivar soybean accessions. There were seven genes in qHSW_1 candidate region by linkage disequilibrium (LD) block analysis, and only Glyma.04G035500 (GmCYP82C4) showed specifically higher expression in flowers, pods, and seeds, indicating its crucial role in the soybean seed development. Significant differences in HSW trait were detected when the association panels are genotyped by single-nucleotide polymorphisms (SNPs) in putative GmCYP82C4 promoter region. Eight haplotypes were generated by six SNPs in GmCYP82C4 in the second soybean population, and two superior haplotypes (Hap2 and Hap4) of GmCYP82C4 were detected with average HSW of 18.27 g and 18.38 g, respectively. The genetic diversity of GmCYP82C4 was analyzed in the second soybean population, and GmCYP82C4 was most likely selected during the soybean domestication and improvement process, leading to the highest proportion of Hap2 of GmCYP82C4 both in landrace and cultivar subpopulations. The QTLs and GmCYP82C4 identified in this study provide novel genetic resources for soybean seed weight trait, and the GmCYP82C4 could be used for soybean molecular breeding to develop desirable seed weight in the future.


Assuntos
Locos de Características Quantitativas , Humanos , Estudo de Associação Genômica Ampla , Domesticação , Melhoramento Vegetal , Sementes , Polimorfismo de Nucleotídeo Único
6.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397047

RESUMO

The worldwide agricultural system confronts a significant challenge represented by the increasing demand for food in the face of a growing global population. This challenge is exacerbated by a reduction in cultivable land and the adverse effects of climate change on crop yield quantity and quality. Breeders actively embrace cutting-edge omics technologies to pursue resilient genotypes in response to these pressing issues. In this global context, new breeding techniques (NBTs) are emerging as the future of agriculture, offering a solution to introduce resilient crops that can ensure food security, particularly against challenging climate events. Indeed, the search for domestication genes as well as the genetic modification of these loci in wild species using genome editing tools are crucial steps in carrying out de novo domestication of wild plants without compromising their genetic background. Current knowledge allows us to take different paths from those taken by early Neolithic farmers, where crop domestication has opposed natural selection. In this process traits and alleles negatively correlated with high resource environment performance are probably eradicated through artificial selection, while others may have been lost randomly due to domestication and genetic bottlenecks. Thus, domestication led to highly productive plants with little genetic diversity, owing to the loss of valuable alleles that had evolved to tolerate biotic and abiotic stresses. Recent technological advances have increased the feasibility of de novo domestication of wild plants as a promising approach for crafting optimal crops while ensuring food security and using a more sustainable, low-input agriculture. Here, we explore what crucial domestication genes are, coupled with the advancement of technologies enabling the precise manipulation of target sequences, pointing out de novo domestication as a promising application for future crop development.


Assuntos
Domesticação , Melhoramento Vegetal , Produtos Agrícolas/genética , Agricultura , Edição de Genes
7.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341274

RESUMO

AIMS: Laboratory domestication has been negligibly examined in lactic acid bacteria (LAB). Lactiplantibacillus plantarum is a highly studied and industrially relevant LAB. Here, we passaged L. plantarum JGR2 in a complex medium to study the effects of domestication on the phenotypic properties and the acquisition of mutations. METHODS AND RESULTS: Lactiplantibacillus plantarum JGR2 was passaged in mMRS medium (deMan Rogossa Sharpe supplemented with 0.05% w/v L-cysteine) in three parallel populations for 70 days. One pure culture from each population was studied for various phenotypic properties and genomic alterations. Auto-aggregation of the evolved strains was significantly reduced, and lactic acid production and ethanol tolerance were increased. Other probiotic properties and antibiotic sensitivity were not altered. Conserved synonymous and non-synonymous mutations were observed in mobile element proteins (transposases), ß-galactosidase, and phosphoketolases in all three isolates. The evolved strains lost all the repeat regions and some of the functions associated with them. Most of the conserved mutations were found in the genomes of other wild-type strains available in a public database, indicating the non-novel genomic impact of laboratory passaging. CONCLUSIONS: Laboratory domestication can affect the phenotypic and genotypic traits of L. plantarum and similar studies are necessary for other important species of LAB.


Assuntos
Lactobacillales , Lactobacillus plantarum , Domesticação , Genômica , Genótipo , Fenótipo , Lactobacillus plantarum/genética
8.
Genes Brain Behav ; 23(1): e12887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373143

RESUMO

Domesticated animals have been developed by selecting desirable traits following the initial unconscious selection stage, and now exhibit phenotypes desired by humans. Tameness is a common behavioural trait found in all domesticated animals. At the same time, these domesticated animals exhibit a variety of morphological, behavioural, and physiological traits that differ from their wild counterparts of their ancestral species. These traits are collectively referred to as domestication syndrome. However, whether this phenomenon exists is debatable. Previously, selective breeding has been used to enhance active tameness, a motivation to interact with humans, in wild heterogeneous stock mice derived from eight wild inbred strains. In the current study, we used tame mice to study how selective breeding for active tameness affects behavioural and morphological traits. A series of behavioural and morphological analyses on mice showed an increased preference for social stimuli and a longer duration of engagement in non-aggressive behaviour. However, no differences were observed in exploratory or anxiety-related behaviours. Similarly, selection for tameness did not affect ultrasonic vocalisations in mice, and no changes were observed in known morphological traits associated with domestication syndrome. These results suggest that there may be a link between active tameness and sociability and provide insights into the relationship between tameness and other behaviours in the context of domestication.


Assuntos
Comportamento Animal , Domesticação , Humanos , Animais , Camundongos , Comportamento Animal/fisiologia , Animais Domésticos/genética , Seleção Artificial , Agressão/fisiologia
9.
Int J Gynaecol Obstet ; 164 Suppl 1: 12-20, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38360032

RESUMO

The Maputo Protocol, adopted over 20 years ago, is a promising regional treaty for advancing gender equity and sexual and reproductive health and rights. This instrument has driven progress in women's health and rights across Africa, with much remaining to achieve to realize its full potential for women and girls, including access to safe abortion. The present paper shares the strategies and lessons from the Democratic Republic of Congo's (DRC) reform centered on the domestication of the Protocol, specifically applying its commitments on abortion decriminalization and access. With a vision of addressing maternal mortality and rectifying the impacts of widespread sexual violence against women during war, abortion as a human right and health imperative was at the heart of the DRC's reform. Governmental commitment, broad coalition building, evidence generation, and an intersectional advocacy agenda were critical to overcoming opposition, stigma, and other challenges. This paper shares key learnings from the DRC's complex yet collaborative reform strategies and its processes. The strategy prioritized domestication of the Protocol for numerous reforms, including paving the path to legal abortion on the broad grounds of rape or incest, and saving women's health and/or life. With a commitment to maximizing quality, access, task sharing, and equity, progressive national comprehensive abortion guidelines were created alongside an implementation roadmap for accountability. The DRC's experience leveraging the Maputo Protocol's obligations to advance abortion rights and access offers valuable insights for consideration globally.


Assuntos
Aborto Induzido , Direitos da Mulher , Gravidez , Feminino , Humanos , República Democrática do Congo , Domesticação , Direitos Humanos , Aborto Legal
10.
Sci Total Environ ; 922: 171313, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417508

RESUMO

The resource-based treatment of Chinese cabbage waste by anaerobic fermentation can effectively mitigate air, soil, and groundwater pollution. However, the compatibility between fermentative microorganisms and the environment might be a crucial limiting factor for the resource recycling of Chinese cabbage waste. Therefore, the gain effect of microbial consortia (JMRS, JMRST, JMRSZ, JCCW, JCCWT and JCCWZ) induced by adaptive domestication for efficient conversion of Chinese cabbage waste by anaerobic fermentation were explored in this study. A total of 42 single subsamples with same weights were randomly divided into seven treatments: sterile deionized water (Control); anaerobic fermentation inoculated with JMRS (MRS); anaerobic fermentation inoculated with JMRST (MRST); anaerobic fermentation inoculated with JMRSZ (MRSZ); anaerobic fermentation inoculated with JCCW (CCW); anaerobic fermentation inoculated with JCCWT (CCWT); anaerobic fermentation inoculated with JCCWZ (CCWZ) and samples were taken on days 30 and 60 after anaerobic fermentation. The results exhibited that all the treatments contributed to high levels of lactic acid (178.77-201.79 g/kg dry matter) and low levels of ammonia-N (12.99-21.03 g/kg total nitrogen). Meanwhile, MRSZ enhanced (p < 0.05) acetic acid levels (1.53 g/kg dry matter) and resulted in the lowest yeast counts. Microbiologically, the addition of microbial consortia decreased the linear discriminant analysis (LDA) scores of Massilia and Stenotrophomonas maltophilia. Moreover, MRSZ enriched (p < 0.05) Lactobacillus hilgardii, and decreased (p < 0.05) the abundance of bacteria containing mobile elements and potentially pathogenic bacteria. In conclusion, JMRSZ improved the efficient conversion of Chinese cabbage waste for resource utilization.


Assuntos
Brassica , Consórcios Microbianos , Fermentação , Anaerobiose , Domesticação , Brassica/microbiologia
11.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243866

RESUMO

Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.


Assuntos
Adaptação Biológica , Hordeum , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Domesticação
12.
Microbiol Res ; 281: 127601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218094

RESUMO

Modern crops might have lost some of their functional traits, required for interacting with beneficial microbes, as a result of the genotypic/phenotypic modifications that occurred during domestication. Here, we studied the bacterial and fungal microbiota in the rhizosphere of two cultivated wheat species (Triticum aestivum and T. durum) and their respective ancestors (Aegilops tauschii and T. dicoccoides), in three experimental fields, by using metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. Moreover, the abundance of bacterial genes involved in N- and P-cycles was estimated by quantitative PCR, and urease, alkaline phosphatase and phosphomonoesterase activities were assessed by enzymatic tests. The relationships between microbiota and environmental metadata were tested by correlation analysis. The assemblage of core microbiota was affected by both site and plant species. No significant differences in the abundance of potential fungal pathogens between wild and cultivated wheat species were found; however, co-occurrence analysis showed more bacterial-fungal negative correlations in the wild species. Concerning functions, the nitrogen denitrification nirS gene was consistently more abundant in the rhizosphere of A. tauschii than T. aestivum. Urease activity was higher in the rhizosphere of each wild wheat species in at least two of the research locations. Several microbiota members, including potentially beneficial taxa such as Lysobacter and new taxa such as Blastocatellaceae, were found to be strongly correlated to rhizospheric soil metadata. Our results showed that a functional microbiome shift occurred as a result of wheat domestication. Notably, these changes also included the reduction of the natural biocontrol potential of rhizosphere-associated bacteria against pathogenic fungi, suggesting that domestication disrupted the equilibrium of plant-microbe relationships that had been established during million years of co-evolution.


Assuntos
Microbiota , Rizosfera , Domesticação , Triticum/microbiologia , RNA Ribossômico 16S/genética , Urease , Microbiota/genética , Bactérias/genética , Solo , Produtos Agrícolas/microbiologia , Microbiologia do Solo , Raízes de Plantas/microbiologia
13.
Curr Biol ; 34(3): 557-567.e4, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232731

RESUMO

The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture.


Assuntos
Microbiota , Phaseolus , Domesticação , Fenótipo , Agricultura , Phaseolus/genética , Sementes/genética
14.
PLoS Genet ; 20(1): e1010884, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285729

RESUMO

Fungal pathogens cause devastating disease in crops. Understanding the evolutionary origin of pathogens is essential to the prediction of future disease emergence and the potential of pathogens to disperse. The fungus Pyrenophora teres f. teres causes net form net blotch (NFNB), an economically significant disease of barley. In this study, we have used 104 P. teres f. teres genomes from four continents to explore the population structure and demographic history of the fungal pathogen. We showed that P. teres f. teres is structured into populations that tend to be geographically restricted to different regions. Using Multiple Sequentially Markovian Coalescent and machine learning approaches we demonstrated that the demographic history of the pathogen correlates with the history of barley, highlighting the importance of human migration and trade in spreading the pathogen. Exploring signatures of natural selection, we identified several population-specific selective sweeps that colocalized with genomic regions enriched in putative virulence genes, and loci previously identified as determinants of virulence specificities by quantitative trait locus analyses. This reflects rapid adaptation to local hosts and environmental conditions of P. teres f. teres as it spread with barley. Our research highlights how human activities can contribute to the spread of pathogens that significantly impact the productivity of field crops.


Assuntos
Ascomicetos , Hordeum , Humanos , Hordeum/genética , Hordeum/microbiologia , Domesticação , Ascomicetos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética
15.
Plant Physiol Biochem ; 207: 108380, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244389

RESUMO

It is crucial to clarify the physiological responses of wheat (T. aestivum) plants to source-sink manipulation and assimilation transportation under drought stress during domestication of dryland wheat. In this research, a two-year field experiment was conducted using nine wheat cultivars in a semiarid site of northwest China. The source-sink manipulation treatments including defoliation of flag leaves and 50% removal of ears were applied at the anthesis stage under two levels of drought stress conditions i.e. progressive water supply (PWS) and rainfed drought treatment (RDT). Our results indicated that drought stress reduced the dry weight of leaves, sheaths and stems, as well as caused a significant yield reduction. High ploidy wheat exhibits a greater capacity to sustain higher grain yields when subjected to drought stress, primarily due to its stronger buffer capacity between source supply and sink demand. All wheat species with different ploidy levels had a certain degree of source limitation and sink restriction. During the domestication of wheat, the type of source and sink might be ploidy-dependent with progressive water deficit, but similar interactive relationships. The source-sink ratio of tetraploid species was the largest, while that of hexaploid species was the lowest.


Assuntos
Triticum , Água , Triticum/genética , Domesticação , Grão Comestível , Folhas de Planta/fisiologia
16.
Plant Commun ; 5(2): 100791, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168637

RESUMO

The domestication of Brassica oleracea has resulted in diverse morphological types with distinct patterns of organ development. Here we report a graph-based pan-genome of B. oleracea constructed from high-quality genome assemblies of different morphotypes. The pan-genome harbors over 200 structural variant hotspot regions enriched in auxin- and flowering-related genes. Population genomic analyses revealed that early domestication of B. oleracea focused on leaf or stem development. Gene flows resulting from agricultural practices and variety improvement were detected among different morphotypes. Selective-sweep and pan-genome analyses identified an auxin-responsive small auxin up-regulated RNA gene and a CLAVATA3/ESR-RELATED family gene as crucial players in leaf-stem differentiation during the early stage of B. oleracea domestication and the BoKAN1 gene as instrumental in shaping the leafy heads of cabbage and Brussels sprouts. Our pan-genome and functional analyses further revealed that variations in the BoFLC2 gene play key roles in the divergence of vernalization and flowering characteristics among different morphotypes, and variations in the first intron of BoFLC3 are involved in fine-tuning the flowering process in cauliflower. This study provides a comprehensive understanding of the pan-genome of B. oleracea and sheds light on the domestication and differential organ development of this globally important crop species.


Assuntos
Brassica , Domesticação , Brassica/genética , Genômica , Genoma de Planta/genética , Ácidos Indolacéticos
17.
Genet Sel Evol ; 56(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166592

RESUMO

The domestication of animals started around 12,000 years ago in the Near East region. This "endless process" is characterized by the gradual accumulation of changes that progressively marked the genetic, phenotypic and physiological differences between wild and domesticated species. The main distinctive phenotypic characteristics are not all directly attributable to the human-mediated selection of more productive traits. In the last decades, two main hypotheses have been proposed to clarify the emergence of such a set of phenotypic traits across a variety of domestic species. The first hypothesis relates the phenotype of the domesticated species to an altered thyroid hormone-based signaling, whereas the second one relates it to changes in the neural crest cells induced by selection of animals for tameness. These two hypotheses are not necessarily mutually exclusive since they may have contributed differently to the process over time and space. The adaptation model induced by domestication can be adopted to clarify some aspects (that are still controversial and debated) of the long-term evolutionary process leading from the wild Neolithic mouflon to the current domestic sheep. Indeed, sheep are among the earliest animals to have been domesticated by humans, around 12,000 years ago, and since then, they have represented a crucial resource in human history. The aim of this review is to shed light on the molecular mechanisms and the specific genomic variants that underlie the phenotypic variability between sheep and mouflon. In this regard, we carried out a critical review of the most recent studies on the molecular mechanisms that are most accredited to be responsible for coat color and phenotype, tail size and presence of horns. We also highlight that, in such a complicate context, sheep/mouflon hybrids represent a powerful and innovative model for studying the mechanism by which the phenotypic traits related to the phenotypic responses to domestication are inherited. Knowledge of these mechanisms could have a significant impact on the selection of more productive breeds. In fact, as in a journey back in time of animal domestication, the genetic traits of today's domestic species are being progressively and deliberately shaped according to human needs, in a direction opposite to that followed during domestication.


Assuntos
Evolução Biológica , Carneiro Doméstico , Animais , Ovinos/genética , Humanos , Carneiro Doméstico/genética , Domesticação , Fenótipo , Cruzamento , Animais Domésticos/genética
18.
Sci Rep ; 14(1): 917, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195639

RESUMO

Domestic goats (Capra hircus) are globally represented by over 300 breeds, making them a useful model for investigating patterns of morphological change related to domestication. However, they have been little studied, likely due to their poor representation in museum collections and the difficulty in obtaining truly wild goat (Capra aegagrus, the bezoar) samples. Similar studies on other species reveal that domestication correlates with craniofacial alterations in domestics, which are non-uniform and often species-specific. Here, we use three-dimensional geometric morphometric methods (3DGMM) to describe and quantify cranial shape variation in wild (n = 21) versus domestic (n = 54) goats. We find that mean cranial shapes differ significantly between wild and domestic goats as well as between certain breeds. The detected differences are lower in magnitude than those reported for other domestic groups, possibly explained by the fewer directions of artificial selection in goat breeding, and their low global genetic diversity compared to other livestock. We also find tooth-row length reduction in the domestics, suggestive of rostral shortening-a prediction of the "domestication syndrome" (DS). The goat model thus expands the array-and combinations of-morphological changes observed under domestication, notably detecting alterations to the calvarium form which could be related to the ~ 15% brain size reduction previously reported for domestic compared to wild goats. The global success of domestic goats is due more to their ability to survive in a variety of harsh environments than to systematized human management. Nonetheless, their domestication has resulted in a clear disruption from the wild cranial form, suggesting that even low-intensity selection can lead to significant morphological changes under domestication.


Assuntos
Cabras , Crânio , Humanos , Animais , Cabras/genética , Domesticação , Luz , Gado
19.
Biol Lett ; 20(1): 20230407, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229554

RESUMO

Tail wagging is a conspicuous behaviour in domestic dogs (Canis familiaris). Despite how much meaning humans attribute to this display, its quantitative description and evolutionary history are rarely studied. We summarize what is known about the mechanism, ontogeny, function and evolution of this behaviour. We suggest two hypotheses to explain its increased occurrence and frequency in dogs compared to other canids. During the domestication process, enhanced rhythmic tail wagging behaviour could have (i) arisen as a by-product of selection for other traits, such as docility and tameness, or (ii) been directly selected by humans, due to our proclivity for rhythmic stimuli. We invite testing of these hypotheses through neurobiological and ethological experiments, which will shed light on one of the most readily observed yet understudied animal behaviours. Targeted tail wagging research can be a window into both canine ethology and the evolutionary history of characteristic human traits, such as our ability to perceive and produce rhythmic behaviours.


Assuntos
Canidae , Cauda , Animais , Cães , Comportamento Animal , Domesticação , Comportamento Social
20.
Nat Plants ; 10(1): 25-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172574

RESUMO

Crops have resource-acquisitive leaf traits, which are usually attributed to the process of domestication. However, early choices of wild plants amenable for domestication may also have played a key role in the evolution of crops' physiological traits. Here we compiled data on 1,034 annual herbs to place the ecophysiological traits of 69 crops' wild progenitors in the context of global botanical variation, and we conducted a common-garden experiment to measure the effects of domestication on crop ecophysiology. Our study found that crops' wild progenitors already had high leaf nitrogen, photosynthesis, conductance and transpiration and soft leaves. After domestication, ecophysiological traits varied little and in idiosyncratic ways. Crops did not surpass the trait boundaries of wild species. Overall, the resource-acquisitive strategy of crops is largely due to the inheritance from their wild progenitors rather than to further breeding improvements. Our study concurs with recent literature highlighting constraints of crop breeding for faster ecophysiological traits.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Humanos , Produtos Agrícolas/fisiologia , Fenótipo , Fotossíntese , Domesticação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...