Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.097
Filtrar
1.
Artif Intell Med ; 149: 102779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462281

RESUMO

The healthcare sector, characterized by vast datasets and many diseases, is pivotal in shaping community health and overall quality of life. Traditional healthcare methods, often characterized by limitations in disease prevention, predominantly react to illnesses after their onset rather than proactively averting them. The advent of Artificial Intelligence (AI) has ushered in a wave of transformative applications designed to enhance healthcare services, with Machine Learning (ML) as a noteworthy subset of AI. ML empowers computers to analyze extensive datasets, while Deep Learning (DL), a specific ML methodology, excels at extracting meaningful patterns from these data troves. Despite notable technological advancements in recent years, the full potential of these applications within medical contexts remains largely untapped, primarily due to the medical community's cautious stance toward novel technologies. The motivation of this paper lies in recognizing the pivotal role of the healthcare sector in community well-being and the necessity for a shift toward proactive healthcare approaches. To our knowledge, there is a notable absence of a comprehensive published review that delves into ML, DL and distributed systems, all aimed at elevating the Quality of Service (QoS) in healthcare. This study seeks to bridge this gap by presenting a systematic and organized review of prevailing ML, DL, and distributed system algorithms as applied in healthcare settings. Within our work, we outline key challenges that both current and future developers may encounter, with a particular focus on aspects such as approach, data utilization, strategy, and development processes. Our study findings reveal that the Internet of Things (IoT) stands out as the most frequently utilized platform (44.3 %), with disease diagnosis emerging as the predominant healthcare application (47.8 %). Notably, discussions center significantly on the prevention and identification of cardiovascular diseases (29.2 %). The studies under examination employ a diverse range of ML and DL methods, along with distributed systems, with Convolutional Neural Networks (CNNs) being the most commonly used (16.7 %), followed by Long Short-Term Memory (LSTM) networks (14.6 %) and shallow learning networks (12.5 %). In evaluating QoS, the predominant emphasis revolves around the accuracy parameter (80 %). This study highlights how ML, DL, and distributed systems reshape healthcare. It contributes to advancing healthcare quality, bridging the gap between technology and medical adoption, and benefiting practitioners and patients.


Assuntos
Inteligência Artificial , Qualidade de Vida , Humanos , Aprendizado de Máquina , Redes de Comunicação de Computadores , Qualidade da Assistência à Saúde
2.
PLoS One ; 19(2): e0296392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408070

RESUMO

The quest for energy efficiency (EE) in multi-tier Heterogeneous Networks (HetNets) is observed within the context of surging high-speed data demands and the rapid proliferation of wireless devices. The analysis of existing literature underscores the need for more comprehensive strategies to realize genuinely energy-efficient HetNets. This research work contributes significantly by employing a systematic methodology, utilizing This model facilitates the assessment of network performance by considering the spatial distribution of network elements. The stochastic nature of the PPP allows for a realistic representation of the random spatial deployment of base stations and users in multi-tier HetNets. Additionally, an analytical framework for Quality of Service (QoS) provision based on D-DOSS simplifies the understanding of user-base station relationships and offers essential performance metrics. Moreover, an optimization problem formulation, considering coverage, energy maximization, and delay minimization constraints, aims to strike a balance between key network attributes. This research not only addresses crucial challenges in creating EE HetNets but also lays a foundation for future advancements in wireless network design, operation, and management, ultimately benefiting network operators and end-users alike amidst the growing demand for high-speed data and the increasing prevalence of wireless devices. The proposed D-DOSS approach not only offers insights for the systematic design and analysis of EE HetNets but also systematically outperforms other state-of-the-art techniques presented. The improvement in energy efficiency systematically ranges from 67% (min side) to 98% (max side), systematically demonstrating the effectiveness of the proposed strategy in achieving higher energy efficiency compared to existing strategies. This systematic research work establishes a strong foundation for the systematic evolution of energy-efficient HetNets. The systematic methodology employed ensures a comprehensive understanding of the complex interplay of network dynamics and user requirements in a multi-tiered environment.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Simulação por Computador , Conservação de Recursos Energéticos , Fenômenos Físicos
4.
PLoS One ; 19(2): e0297810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358986

RESUMO

Ultra-reliable low-latency communication (URLLC) is a key technology in future wireless communications, and finite blocklength (FBL) coding is the core of the URLLC. In this paper, FBL coding schemes for the wireless multi-antenna channels are proposed, which are based on the classical Schalkwijk-Kailath scheme for the point-to-point additive white Gaussian noise channel with noiseless feedback. Simulation examples show that the proposed feedback-based schemes almost approach the corresponding channel capacities.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Retroalimentação , Simulação por Computador , Comunicação
5.
Sci Rep ; 14(1): 3422, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341483

RESUMO

Biosensor nodes of a wireless body area network (WBAN) transmit physiological parameter data to a central hub node, spending a substantial portion of their energy. Therefore, it is crucial to determine an optimal location for hub placement to minimize node energy consumption in data transmission. Existing methods determine the optimal hub location by sequentially placing the hub at multiple random locations within the WBAN. Performance measures like link reliability or overall node energy consumption in data transmission are estimated for each hub location. The best-performing location is finally selected for hub placement. Such methods are time-consuming. Moreover, the involvement of other nodes in the process of hub placement results in an undesirable loss of network energy. This paper shows the whale optimization algorithm (WOA)-based hub placement scheme. This scheme directly gives the best location for the hub in the least amount of time and with the least amount of help from other nodes. The presented scheme incorporates a population of candidate solutions called "whale search agents". These agents carry out the iterative steps of encircling the prey (identifying the best candidate solution), bubble-net feeding (exploitation phase), and random prey search (exploration phase). The WOA-based model eventually converges into an optimized solution that determines the optimal location for hub placement. The resultant hub location minimizes the overall amount of energy consumed by the WBAN nodes for data transmission, which ultimately results in an elongated lifespan of WBAN operation. The results show that the proposed WOA-based hub placement scheme outperforms various state-of-the-art related WBAN protocols by achieving a network lifetime of 8937 data transmission rounds with 93.8% network throughput and 9.74 ms network latency.


Assuntos
Técnicas Biossensoriais , Baleias , Animais , Reprodutibilidade dos Testes , Tecnologia sem Fio , Redes de Comunicação de Computadores
6.
PLoS One ; 19(1): e0296988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285650

RESUMO

The enhancement of energy efficiency in a distribution network can be attained through the adding of energy storage systems (ESSs). The strategic placement and appropriate sizing of these systems have the potential to significantly enhance the overall performance of the network. An appropriately dimensioned and strategically located energy storage system has the potential to effectively address peak energy demand, optimize the addition of renewable and distributed energy sources, assist in managing the power quality and reduce the expenses associated with expanding distribution networks. This study proposes an efficient approach utilizing the Dandelion Optimizer (DO) to find the optimal placement and sizing of ESSs in a distribution network. The goal is to reduce the overall annual cost of the system, which includes expenses related to power losses, voltage deviation, and peak load damand. The methods outlined in this study is implemented on the IEEE 33 bus distribution system. The outcomes obtained from the proposed DO are contrasted with those of the original system so as to illustrate the impact of ESSs location on both the overall cost and voltage profile. Furthermore, a comparison is made between the outcomes of the Ant Lion Optimizer (ALO) and the intended Design of Experiment DO, revealing that the DO has obtained greater savings in comparison to the ALO. The recommended methodology's simplicity and efficacy in resolving the researched optimization issue make the acquired locations and sizes of ESSs favorable for implementation within the system.


Assuntos
Redes de Comunicação de Computadores , Taraxacum , Fontes Geradoras de Energia , Renda , Fenômenos Físicos
7.
PLoS One ; 19(1): e0296117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165990

RESUMO

To address the problem of unreliable single-link underwater acoustic communication caused by large signal delays and strong multipath effects in shallow water environments, this paper proposes a distributed underwater acoustic diversity communication system (DUA-DCS). DUA-DCS employs a maneuverable distributed cross-medium buoy network to form multiple distributed, non-coherent, and parallel communication links. In the uplink, a receiving diversity processing mechanism of joint decision feedback equalizer embedded phase-locked loop and maximum signal-to-interference ratio combining (DFE-PLL-MSIRC) is proposed to achieve waveform-level diversity combining of underwater signals. A phase-locked loop module is embedded in each branch of the decision feedback equalizer to eliminate the residual frequency and phase errors after Doppler compensation. Meanwhile, the combining coefficients are determined based on the maximum signal-to-interference ratio criterion, taking into account the residual inter-symbol interference after equalization, resulting in efficient and accurate computation. Additionally, the combined decision values are fed back to the feedback filters in each branch to ensure more accurate feedback output. Simulation and lake experiment results demonstrate that, compared to the single-link communication system, DFE-PLL-MSIRC can achieve a diversity gain of more than 5.2 dB and obtain about 3 dB more diversity gain than the comparison algorithm. And the BER of DFE-PLL-MSIRC can be reduced by at least one order of magnitude, which is lower by at least 0.6 order of magnitude compared to the comparison algorithm. In the downlink, a transmitting diversity processing mechanism of complex orthogonal space-time block coding (COSTBC) is proposed. By utilizing a newly designed generalized complex orthogonal transmission matrix, complete transmission diversity can be achieved at the coding rate of 3/4. Compared to the single-link communication system, the system can achieve a diversity gain of more than 6 dB.


Assuntos
Acústica , Algoritmos , Comunicação , Redes de Comunicação de Computadores , Simulação por Computador
8.
PLoS One ; 19(1): e0296331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206906

RESUMO

The Internet of Vehicles (IoV) is one of the developing paradigms that integrates the automotive industry with the Internet of Things (IoT). The evolution of traditional Vehicular Ad-hoc Networks (VANETs), which are a layered framework for Intelligent Transportation Systems (ITS), is employed to provide Quality of Service (QoS) to end users in hazardous situations. VANETs can set up ad-hoc networks and share information among themselves using Peer-to-Peer (P2P) communication. Dynamic properties in VANETs such as dynamic topology, node mobility, sparse vehicle distribution, and bandwidth constraints can have an impact on scalability, routing, and security. This can result in frequent link failures, instability, reliability, and QOS concerns, as well as the inherent complexity of NP-hard problems. Researchers have proposed several techniques to achieve stability; the most prominent one is clustering, which relies on mobility metrics. However, existing clustering techniques generate overwhelming clusters, resulting in greater resource consumption, communication overhead, and hop count, which may lead to increased latency. Therefore, the primary objective is to achieve stability by increasing cluster lifetime, which is accomplished by generating optimal clusters. A nature-inspired meta-heuristic algorithm titled African Vulture Optimization Based Clustering Algorithm (AVOCA) is implemented to achieve it. The proposed algorithm can achieve load optimization with efficient resource utilization by mitigating hidden node challenges and ensuring communication proficiency. By maintaining an equilibrium state between the exploration and exploitation phases, AVOCA avoids local optima. The paper explores a taxonomy of the techniques used in Cluster Head (CH) selection, coordination, and maintenance to achieve stability with lower communication costs. We evaluated the effectiveness of AVOCA using various network grid sizes, transmission ranges, and network nodes. The results show that AVOCA generates 40% less clusters when compared to the Clustering Algorithm Based on Moth-Flame Optimization for VANETs (CAMONET). AVOCA generates 45% less clusters when compared to Self-Adaptive Multi-Kernel Clustering for Urban VANETs (SAMNET), AVOCA generates 43% less clusters when compared to Intelligent Whale Optimization Algorithm (i-WOA) and AVOCA generates 38% less clusters when compared to Harris Hawks Optimization (HHO). The results show that AVOCA outperforms state-of-the-art algorithms in generating optimal clusters.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Reprodutibilidade dos Testes , Internet , Análise por Conglomerados
9.
Network ; 35(1): 73-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044853

RESUMO

Nowadays, wireless sensor networks (WSN) have gained huge attention worldwide due to their wide applications in different domains. The limited amount of energy resources is considered as the main limitations of WSN, which generally affect the network life time. Hence, a dynamic clustering and routing model is designed to resolve this issue. In this research work, a deep-learning model is employed for the prediction of energy and an optimization algorithmic technique is designed for the determination of optimal routes. Initially, the dynamic cluster WSN is simulated using energy, mobility, trust, and Link Life Time (LLT) models. The deep neuro-fuzzy network (DNFN) is utilized for the prediction of residual energy of nodes and the cluster workloads are dynamically balanced by the dynamic clustering of data using a fuzzy system. The designed Flamingo Jellyfish Search Optimization (FJSO) model is used for tuning the weights of the fuzzy system by considering different fitness parameters. Moreover, routing is performed using FJSO model which is used for the identification of optimal path to transmit data. In addition, the experimentation is done using MATLAB tool and the results proved that the designed FJSO model attained maximum of 0.657J energy, a minimum of 0.739 m distance, 0.649 s delay, 0.849 trust, and 0.885 Mbps throughput.


Assuntos
Aprendizado Profundo , Algoritmos , Redes de Comunicação de Computadores , Tecnologia sem Fio , Fenômenos Físicos
10.
PLoS One ; 18(12): e0295252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38064461

RESUMO

A typical element of the smart city's information and communication space is a 5G cluster, which is focused on serving both new and handover requests because it is an open system. In an ordinary 5G smart city cluster, Ultra-Reliable Low-Latency Communications (URLLC) and enhanced Mobile BroadBand (eMBB) traffic types prevail. The formation of an effective QoS policy for such an object (taking into account the potentially active slicing technology) is an urgent problem. As a baseline, this research considers a Quality of Service (QoS) policy with constraints for context-defined URLLC and eMBB classes of incoming requests. Evaluating the QoS policy instance defined within the framework of the basic concept requires the formalization of both a complete qualitative metric and a computationally efficient mathematical apparatus for its calculation. The article presents accurate and approximate methods of calculating such quality parameters as the probability of loss of typed requests and the utilization ratio of the communication resource, which depend on the implementation of the estimated QoS policy. At the same time, the original parametric space includes both fixed characteristics (amount of available communication resources, load according to request classes) and controlled characteristics due to the specifics of the implementation of the basic QoS concept. The paper empirically proves the adequacy of the presented mathematical apparatus for evaluating the QoS policy defined within the scope of the research. Also, in the proposed qualitative metric, a comparison of the author's concept with a parametrically close analogue (the well-known QoS policy scheme, which takes into account the phenomenon of reservation of communication resources), determined taking into account the reservation of communication resources, was made. The results of the comparison testify in favour of the superiority of the author's approach in the proposed metrics.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Comunicação , Tecnologia , Probabilidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-38083653

RESUMO

Wireless communication enables an ingestible device to send sensor information and support external on-demand operation while in the gastrointestinal (GI) tract. However, it is challenging to maintain stable wireless communication with an ingestible device that travels inside the dynamic GI environment as this environment easily detunes the antenna and decreases the antenna gain. In this paper, we propose an air-gap based antenna solution to stabilize the antenna gain inside this dynamic environment. By surrounding a chip antenna with 1 ~ 2 mms of air, the antenna is isolated from the environment, recovering its antenna gain and the received signal strength by 12 dB or more according to our in vitro and in vivo evaluation in swine. The air gap makes margin for the high path loss, enabling stable wireless communication at 2.4 GHz that allows users to easily access their ingestible devices by using mobile devices with Bluetooth Low Energy (BLE). On the other hand, the data sent or received over the wireless medium is vulnerable to being eavesdropped on by nearby devices other than authorized users. Therefore, we also propose a lightweight security protocol. The proposed protocol is implemented in low energy without compromising the security level thanks to the base protocol of symmetric challenge-response and Speck, the cipher that is optimized for software implementation.


Assuntos
Redes de Comunicação de Computadores , Trato Gastrointestinal , Tecnologia sem Fio , Animais , Software , Suínos
12.
Sensors (Basel) ; 23(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139702

RESUMO

Wireless Body Area Networks (WBANs) are an emerging industrial technology for monitoring physiological data. These networks employ medical wearable and implanted biomedical sensors aimed at improving quality of life by providing body-oriented services through a variety of industrial sensing gadgets. The sensors collect vital data from the body and forward this information to other nodes for further services using short-range wireless communication technology. In this paper, we provide a multi-aspect review of recent advancements made in this field pertaining to cross-domain security, privacy, and trust issues. The aim is to present an overall review of WBAN research and projects based on applications, devices, and communication architecture. We examine current issues and challenges with WBAN communications and technologies, with the aim of providing insights for a future vision of remote healthcare systems. We specifically address the potential and shortcomings of various Wireless Body Area Network (WBAN) architectures and communication schemes that are proposed to maintain security, privacy, and trust within digital healthcare systems. Although current solutions and schemes aim to provide some level of security, several serious challenges remain that need to be understood and addressed. Our aim is to suggest future research directions for establishing best practices in protecting healthcare data. This includes monitoring, access control, key management, and trust management. The distinguishing feature of this survey is the combination of our review with a critical perspective on the future of WBANs.


Assuntos
Redes de Comunicação de Computadores , Qualidade de Vida , Atenção à Saúde , Privacidade , Inquéritos e Questionários , Tecnologia sem Fio
13.
PLoS One ; 18(12): e0295615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38150429

RESUMO

Ad-hoc wireless sensor networks face challenges of optimized node deployment for maximizing coverage and efficiently routing data to control centers in post disaster events. These challenges impact the outcome for extending the lifetime of wireless sensor networks. This study presents a uav assisted reactive zone based EHGR (energy efficient hierarchical gateway routing protocol) that is deployed in a situation where the natural calamity has caused communication and infrastructure damage to a major portion of the sensor network. EHGR is a hybrid multi layer routing protocol for large heterogeneous sensor nodes (smart nodes, basic nodes, user handheld devices etc.) EHGR is tailored to meet two important concerns for a disaster hit wsn ie. optimized deployment and energy efficient routing. The first part of EGHR focuses on maximized coverage during node deployments. Maximized coverage is an important aspect to be considered during the event of disaster since most of the nodes loose coverage and are detached from the wireless sensor network. The first part of EHGR uses state of the art game theory approach to build a model that maximizes the coverage of nodes during the deployment phase from all participating entities i.e. nodes and uavs. Rather than fixing the cluster head as is the case in traditional cluster-based approaches EHGR uses the energy centroid nodes. Energy centroid nodes evolve on the basis of aggregated energy of the zone. This approach is superior to simply electing cluster head nodes on the basis of some probability function. The nodes that fail to achieve any successful outcome from the game theory matching model fail to get any association. These nodes will use multi hop d2d relay approach to reach the energy centroid nodes. Gateway relay nodes used with the game theory approach during the deployment of the uav assisted wsn improves the overall coverage by 25% against traditional leach based hierarchical approaches. Once the optimum deployment phase is completed the routing phase is initiated. Aggregated data is sent by the energy centroid nodes from the ECN nodes to the servicing micro controller enabled un manned aerial vehicles. The routing process places partial burden of zone formation and data transmission to the control center for each phase on the servicing uavs. Energy centroid nodes engage only in the data aggregation process and transmission of data to servicing uav. Servicing-uavs reduce energy dissipated of the entire zone which result in gradual decrease of energy for the zone thus increasing the network lifetime. Node deployment phase and the routing phase of EHGR utilize the computations provide by the mirco controller enabled unmanned aerial vehicles such that the computationally intensive calculations are offloaded to the servicing uav. Experiment results indicate an increase in the first dead node report, half dead node report, and last dead node report. Network lifetime is extended to approximately 1800 rounds which is an increase by ratio of 100% against the traditional leach approach and increase by 50% percent against the latest approaches as highlighted in the literature.


Assuntos
Algoritmos , Conservação de Recursos Energéticos , Tecnologia sem Fio , Redes de Comunicação de Computadores , Fenômenos Físicos
14.
PLoS One ; 18(11): e0294411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967069

RESUMO

A heterogeneous network (HetNet), combining different technologies, is considered a promising solution adopted by several upcoming generations of mobile networks to keep up with the rapid development of mobile users' requirements while improving network performance. In this scenario, a vertical handover (VHO) algorithm is responsible for ensuring the continuity of the ongoing user connection while moving within the coverage of the HetNet. Although various VHO algorithms were proposed, achieving efficient performance from both network and user perspectives remains challenging. This paper proposes an adaptive optimized vertical handover algorithm based on a multi-attribute decision-making (MADM) algorithm integrated with particle swarm optimization and gravitational search algorithm (PSOGSA) as a framework to implement the handover process. The algorithm includes three main ideas. Firstly, a network selection framework is proposed considering the most important criteria, including signal strength and other networks' attributes, along with users' characteristics regarding their mobility and service preferences. Secondly, two new parameters are introduced as control handover parameters named load factor (LF) and score priority (SP) to reduce unnecessary handovers and the overall HetNet power consumption while achieving balanced load distribution. Lastly, the desired aims are formulated as an objective function, then the PSOGSA algorithm is used to reach the optimal values of both LF and SP, which will be considered when executing the handover algorithm. The presented algorithm is simulated in a heterogeneous wireless network where the fifth-generation (5G) wireless technology coexists with other radio access networks to improve the evaluation field of the proposed algorithm. Also, the proposed algorithm's performance is evaluated in the case of using various MADM algorithms. The simulation results show that the proposed adaptive optimized approach attains efficient performance by decreasing unnecessary handovers by more than 40% and achieving much better load distribution by around 20% to 40%, outperforming traditional handover approaches.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Simulação por Computador , Tecnologia sem Fio , Gravitação
15.
PLoS One ; 18(10): e0290119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37782661

RESUMO

Patients must always communicate with their doctor for checking their health status. In recent years, wireless body sensor networks (WBSNs) has an important contribution in Healthcare. In these applications, energy-efficient and secure routing is really critical because health data of individuals must be forwarded to the destination securely to avoid unauthorized access by malicious nodes. However, biosensors have limited resources, especially energy. Recently, energy-efficient solutions have been proposed. Nevertheless, designing lightweight security mechanisms has not been stated in many schemes. In this paper, we propose a secure routing approach based on the league championship algorithm (LCA) for wireless body sensor networks in healthcare. The purpose of this scheme is to create a tradeoff between energy consumption and security. Our approach involves two important algorithms: routing process and communication security. In the first algorithm, each cluster head node (CH) applies the league championship algorithm to choose the most suitable next-hop CH. The proposed fitness function includes parameters like distance from CHs to the sink node, remaining energy, and link quality. In the second algorithm, we employs a symmetric encryption strategy to build secure connection links within a cluster. Also, we utilize an asymmetric cryptography scheme for forming secure inter-cluster connections. Network simulator version 2 (NS2) is used to implement the proposed approach. The simulation results show that our method is efficient in terms of consumed energy and delay. In addition, our scheme has good throughput, high packet delivery rate, and low packet loss rate.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Humanos , Simulação por Computador , Algoritmos , Atenção à Saúde
16.
Sensors (Basel) ; 23(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37837057

RESUMO

Everyday tasks use sensors to monitor and provide information about processes in different scenarios, such as monitoring devices in manufacturing or homes. Sensors need to communicate, with or without wires, while providing secure information. Power can be derived from various energy sources, such as batteries, electrical power grids, and energy harvesting. Energy harvesting is a promising way to provide a sustainable and renewable source to power sensors by scavenging and converting energy from ambient energy sources. However, low energy is harvested through these methods. Therefore, it is becoming a challenge to design and deploy wireless sensor networks while ensuring the sensors have enough power to perform their tasks and communicate with each other through careful management and optimization, matching energy supply with demand. For this reason, data cryptography and authentication are needed to protect sensor communication. This paper studies how energy harvested with microbial fuel cells can be employed in algorithms used in data protection during sensor communication.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Fontes Geradoras de Energia , Redes de Comunicação de Computadores , Algoritmos
17.
PLoS One ; 18(8): e0290337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37594957

RESUMO

The growing use of Internet-of-Things devices in electric power systems has resulted in increased complexity and flexibility, making monitoring power usage critical for effective system maintenance and detecting abnormal behavior. However, traditional anomalous power consumption detection methods struggle to handle the vast amounts of data generated by these devices. While deep learning and machine learning are effective in anomaly detection, they require significant amounts of training data collected on centralized servers. This centralized approach results in high response time delays and data leakage problems. To address these challenges, we propose an Autoencoder-based Federated Learning method that combines the AutoEncoder and Federated Learning networks to develop a high-accuracy algorithm for identifying anomalies of power consumption data in distributed power systems. The proposed method allows for decentralized training of anomaly detection models among IoT devices, reducing response time and eventually solving data leakage issues. Our experimental results demonstrate the effectiveness of the FLAE method in detecting anomalies without needing data transferring.


Assuntos
Redes de Comunicação de Computadores , Internet , Algoritmos , Eletricidade , Aprendizado de Máquina
18.
PLoS One ; 18(8): e0288955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37527240

RESUMO

Opportunistic routing (OR) can greatly increase transmission reliability and network throughput in wireless ad-hoc networks by taking advantage of the broadcast nature of the wireless medium. However, network congestion is a barrier in the way of OR's performance improvement, and network congestion control is a challenge in OR algorithms, because only the pure physical channel conditions of the links are considered in forwarding decisions. This paper proposes a new method to control network congestion in OR, considering three types of parameters, namely, the backlogged traffic, the traffic flows' Quality of Service (QoS) level, and the channel occupancy rate. Simulation results show that the proposed algorithm outperforms the state-of-the-art algorithms in the context of OR congestion control in terms of average throughput, end-to-end delay, and Packet Delivery Ratio (PDR). Due to the higher PDR at different traffic loads and different node densities, it can be concluded that the proposed algorithm also improves network scalability, which is very desirable given the recent changes in wireless networks.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Reprodutibilidade dos Testes , Simulação por Computador , Algoritmos
19.
PLoS One ; 18(8): e0290694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647336

RESUMO

Along with the expansion of Internet of Things (IoT), the importance of security and intrusion detection in this network also increases, and the need for new and architecture-specific intrusion detection systems (IDS) is felt. In this article, a distributed intrusion detection system based on a software defined networking (SDN) is presented. In this method, the network structure is divided into a set of sub-networks using the SDN architecture, and intrusion detection is performed in each sub-network using a controller node. In order to detect intrusion in each sub-network, a decision tree optimized by black hole optimization (BHO) algorithm is used. Thus, the decision tree deployed in each sub-network is pruned by BHO, and the split points in its decision nodes are also determined in such a way that the accuracy of each tree in detecting sub-network attacks is maximized. The performance of the proposed method is evaluated in a simulated environment and its performance in detecting attacks using the NSLKDD and NSW-NB15 databases is examined. The results show that the proposed method can identify attacks in the NSLKDD and NSW-NB15 databases with an accuracy of 99.2% and 97.2%, respectively, which indicates an increase compared to previous methods.


Assuntos
Redes de Comunicação de Computadores , Software , Algoritmos , Internet
20.
Comput Intell Neurosci ; 2023: 4758852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547034

RESUMO

With no requirement for an established network infrastructure, wireless sensor networks (WSNs) are well suited for applications that call for quick network deployment. Military training and emergency rescue operations are two prominent uses of WSNs. The individual network nodes must carry out routing and intrusion detection because there is no predetermined routing or intrusion detection in a wireless network. WSNs can only manage a certain volume of data, and doing so requires a significant amount of energy to process, transmit, and receive. Since sensors have a modest energy source and a constrained bandwidth, they cannot transmit all of their data to a base station for processing and analysis. Therefore, machine learning (ML) techniques are needed for WSNs to facilitate data transmission. Other current solutions have drawbacks as well, such as being less reliable, more susceptible to environmental changes, converging more slowly, and having shorter network lifetimes. This study addressed problems with wireless sensor networks and devised an efficient clustering and routing algorithm based on machine learning. Results from simulations demonstrate that the proposed system beats previous state-of-the-art models on a variety of metrics, including accuracy, specificity, and sensitivity (0.93, 0.93, and 0.92 respectively).


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Redes Neurais de Computação , Análise por Conglomerados , Inteligência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...